文档库 最新最全的文档下载
当前位置:文档库 › 遗传算法优化小波神经网络的网络流量预测

遗传算法优化小波神经网络的网络流量预测

遗传算法优化小波神经网络的网络流量预测
遗传算法优化小波神经网络的网络流量预测

matlab遗传算法优化神经网络权值教程

matlab遗传算法优化神经网络权值教程第4章nnToolKit神经网络工具包 4.1 nnToolKit简介 神经网络工具包是基于MATLAB神经网络工具箱自行开发的一组神经网络算法函数库 可在MATLAB环境下均独立运行,也可打包成DLL组件,直接被VB、VC、 C++ 、C#、JAVA或其他支持COM的语言所调用 本工具包中增加了一些MATLAB中没有的神经网络算法,如模糊神经网络、小波神经网络、遗传神经网络算法等 4.2nnToolKit函数库 4.2nnToolKit 函数库 4.2nnToolKit函数库 例4-1 对ch4\nnToolKit工具箱\lmnet文件夹中文件(input_para1.txt和output_para1.txt)提供的专家样本数据进行网络训练。%此为BP网络训练程序

function retstr = LmTrain(ModelNo,NetPara,TrainPara,InputFun,OutputFun,DataDir)NNTWARN OFF retstr=-1; ModelNo=‘1’;NetPara(1)=7;Ne tPara(2)=1; NetPara(3)=6;NetPara(4)=10; 4.2nnToolKit函数库 4.2nnToolKit函数库 例4-2 输入一组测试样本数据,对例4-1训练的网络模型进行仿真 %此为一仿真程序%首先读入权域值参数 function retdouble = LmSimu(ModelNo,NetPara,SimulatePara,InputFun,OutputFun,DataDir)NNTWA RN OFF %%%% 输入参数赋值开始 %%%%%%%%%%%%%%%%%%%%%%%% 这 部分代码主要是方便用户调试用ModelNo=‘1’; NetPara(1)=7; 4.2nnToolKit函数库

小波神经网络的时间序列预测-短时交通流量预测

%% 清空环境变量 clc clear %% 网络参数配置 load traffic_flux input output input_test output_test M=size(input,2); %输入节点个数 N=size(output,2); %输出节点个数 n=6; %隐形节点个数 lr1=0.01; %学习概率 lr2=0.001; %学习概率 maxgen=100; %迭代次数 %权值初始化 Wjk=randn(n,M);Wjk_1=Wjk;Wjk_2=Wjk_1; Wij=randn(N,n);Wij_1=Wij;Wij_2=Wij_1; a=randn(1,n);a_1=a;a_2=a_1; b=randn(1,n);b_1=b;b_2=b_1; %节点初始化 y=zeros(1,N); net=zeros(1,n); net_ab=zeros(1,n); %权值学习增量初始化 d_Wjk=zeros(n,M); d_Wij=zeros(N,n); d_a=zeros(1,n);

d_b=zeros(1,n); %% 输入输出数据归一化 [inputn,inputps]=mapminmax(input'); [outputn,outputps]=mapminmax(output'); inputn=inputn'; outputn=outputn'; %% 网络训练 for i=1:maxgen %误差累计 error(i)=0; % 循环训练 for kk=1:size(input,1) x=inputn(kk,:); yqw=outputn(kk,:); for j=1:n for k=1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end temp=mymorlet(net_ab(j)); for k=1:N y=y+Wij(k,j)*temp; %小波函数 end end

(完整版)小波神经网络的时间预测

基于小波神经网络的短时交通流预测 摘要 将小波神经网络的时间序列预测理论应用于短时交通流量的预测。通过小波分解与重构获取交通流量数据中的低频近似部分和高频随机部分, 然后在分析各种模型的优、劣的基础上, 选取较有效的模型或模型结合方式, 建立了交通流量预测模型。最后, 利用实测交通流量数据对模型仿真, 结果表明该模型可以有效地提高短时交通流量预测的精度。 关键词: 小波变换 交通流预测 神经网络 1.背景 众所周知, 道路交通系统是一个有人参与的、时变的、复杂的非线性大系统, 它的显著特点之一就是具有高度的不确定性(人为的和自然的影响)。这种不确定性给短时交通流量预测带来了极大的困难。这也就是短时交通流量预测相对于中长期预测更复杂的原因所在。在交通流量预测方面,小波分析不是一个完全陌生的工具,但是仍然处于探索性的应用阶段。实际上,这种方法在计算机网络的流量的预测中有着广泛的应用。与计算机网络一样,车流也表现出复杂的习性。所以可以把它的应用推广类比到交通流量的预测中来。小波分析有着与生俱来的解决非稳定时间序列的能力, 所以常常被单独用来解决常规时间序列模型中的问题。 2.小波理论 小波分析是针对傅里叶变换的不足发展而来的,傅里叶变换是信号处理领域里最为广泛的一种分析手段,然而他有一个严重的不足,就是变换抛弃了时间信息,变换结果无法判断某个信号发生的时间。小波是一种长度有限,平均值为0的波形,它的特点包括: (1)时域都具有紧支集或近似紧支集; (2)直流分量为0; 小波变换是指把某一基本小波函数ψ(t)平移b 后,再在不同尺度a 下与待分析的信号x(t)做内积。 dt a b t t x a b a WT x )()(1),(-=?*ψ??==?*)(),()()(,,t t x dt t t x b a b a ψψ (2 — 1) 等效的时域表达式为 dt a b x a b a WT x ωωψωj e )()(1),(-=?* a > 0 (2 — 2) 3.小波神经网络 小波神经网络是小波分析理论与神经网络理论相结合的产物,把小波基函数作为隐含层节点的传递函数,信号前向传播的同时误差反向传播的神经网络。 图一中1x ,2x ,....k x 是小波神经网络的输入参数,1y ,2y ....,m y 是小波神经网络的预测输出。

遗传算法在BP神经网络优化中的应用.

遗传算法在 BP 神经网络优化中的应用 2O世纪80年代后期,多机器人协作成为一种新的机器人应用形式日益引起国内外学术界的兴趣与关注。一方面,由于任务的复杂性,在单机器人难以完成任务时,人们希望通过多机器人之间的协调与合作来完成。另一方面,人们也希望通过多机器人间的协调与合作,来提高机器人系统在作业过程中的效率。1943年,Maeullocu和 Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展、停滞、再发展的过程,时至今日正走向成熟,在广泛领域里得到了应用,其中将人工神经网络技术应用到多机器人协作成为新的研究领域。本文研究通过人工神经网络控制多机器人完成协作搬运的任务-3 J,并应用遗传算法来对神经网络进行优化。仿真结果表明,经过遗传算法优化后的搬运工作效率显著提高,误差降低。 1 人工神经网络 ANN)的基本原理和结构 人工神经网络(Artiifcial Neural Network,ANN)) 是抽象、简化与模拟大脑神经结构的计算模型,又称并行分布处理模型 J。ANN 由大量功能简单且具有自适应能力的信息处理单元——人工神经元按照大规模并行的方式通过一定的拓扑结构连接而成。ANN拓扑结构很多,其中采用反向传播(Back-Propa- gation,BP)算法的前馈型神经网络(如下图1所示),即BP人工神经网络,是人工神经网络中最常用、最成熟的神经网络之一。 BP网络模型处理信息的基本原理是:输入信号x;通过中间节点(隐层点 )作用于出节点,经过非线形变换,产生输出信Yk,网络训练的每个样本包括输入向量 x和期望输出量 T,网络输出值Y与期望输出值T之间的偏差,通过调整输入节点与隐层节点的联接强度取值w;;和隐层节点与输出节点之间的联接强度Y以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数 (权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

小波神经网络程序

这是一个小波神经网络程序,作者judyever %参考<青岛海洋大学学报> 2001年第1期一种基于BP算法学习的小波神经网络%% %step1--------网络初始化------------------------------------------- clc; clear all; %设定期望的误差最小值 err_goal=0.001; %设定最大循环次数 max_epoch=50; %设定修正权值的学习速率0.01-0.7 lr=0.7; epoch=0; x=0:0.01:0.3;%输入时间序列 d=sin(8*pi*x)+sin(16*pi*x);%目标输出序列 M=size(x,2);%输入节点的个数 N=M;%输出节点的个数 n=10;%隐形节点的个数 %这个地方需要改进,由于实际上隐形节点的个数可以通过小波的时频分析确定 Wjk=randn(n,M); Wij=randn(N,n); % a=randn(1,n); a=1:1:n; b=randn(1,n); % stepa=0.2*(x(M)-x(1)); % a=stepa(n-1)+stepa; % step=(x(M)-x(1))/n; % b=x(1)+step:step:x(1)+n*step; % y=zeros(1,N);%输出节点初始化 y=zeros(1,N);%输出节点初始化 net=zeros(1,n);%隐形节点初始化 net_ab=zeros(1,n);%隐形节点初始化 %step2--------对网络进行训练------------------------------------------- for i=1:1:N for j=1:1:n for k=1:1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end y(i)=y(i)+Wij(i,j)*mymorlet(net_ab(j)); %mymorlet是judyever编写的小波函数,以后可以扩展成输入不同的小波名字即可 % y(i)=mysigmoid(2,y(i)); end

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转) 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]'; YY=[1:4]; XX=premnmx(XX); YY=premnmx(YY); YY %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数

遗传算法优化的BP神经网络建模[精选.]

遗传算法优化的BP神经网络建模 十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。 遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。 目标: 对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。 步骤: 未经遗传算法优化的BP神经网络建模 1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。 2、数据预处理:归一化处理。 3、构建BP神经网络的隐层数,次数,步长,目标。 4、使用训练数据input_train训练BP神经网络net。 5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。 6、分析预测数据与期望数据之间的误差。 遗传算法优化的BP神经网络建模 1、读取前面步骤中保存的数据data; 2、对数据进行归一化处理; 3、设置隐层数目; 4、初始化进化次数,种群规模,交叉概率,变异概率 5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数; 6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值; 7、将得到最佳初始权值和阈值来构建BP神经网络; 8、使用训练数据input_train训练BP神经网络net; 9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理; 10、分析预测数据与期望数据之间的误差。 算法流程图如下:

小波神经网络及其应用

小波神经网络及其应用 1014202032 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1.研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛性的保证,网络节点数的经验性确定等问题尚有待进一步探讨和改善。 小波理论自 Morlet 提出以来,由于小波函数具有良好的局部化性质,已经广泛渗透到各个领域。小波变换方法是一种窗口大小固定但其形状可以改变, 时间窗和频率窗都可以改变的时频局部化分析方法, 由于在低频部分具有较高的频率分辨率和较低的时间分辨率, 在高频部分具有较高的时间分辨率和较低的频率分辨率, 所以被誉为数学显微镜。正是这种特性, 使小波变换具有对信号的自适应性。基于多分辨分析的小波变换由于具有时频局部化特性而成为了信号处理的有效工具。实际应用时常采用Mallat快速算法,利用正交小波基将信号分解到不同尺度上。实现过程如同重复使用一组高通和低通滤波器把信号分解到不同的频带上,高通滤波器产生信号的高频细节分量,低通滤波器产生信号的低频近似分量。每分解一次信号的采样频率降低一倍,近似分量还可以通过高通滤波和低通滤波进一步地分解,得到下一层次上的两个分解分量。 而小波神经网络(Wavelet Neural Network, WNN)正是在近年来小波分析研究获得突破的基础上提出的一种人工神经网络。它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型,即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。 小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。 小波神经网络具有以下特点。首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络训练过程从根本上避免了局部最优等非线性优化问题;第三,有较强的函数学习能力和推广能力。 2.数学模型与小波工具 2.1 小波变换及多分辨分析 L R(或更广泛的Hilbert 空间)中,选择一个母小波函数(又称为基本在函数空间2() ,使其满足允许条件: 小波函数)()x

神经网络的应用及其发展

神经网络的应用及其发展 [摘要] 该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。 [关键词]遗传算法灰色系统专家系统模糊控制小波分析 一、前言 神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP 网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个高潮。神经网络具有以下优点: (1) 具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。 (2) 并行处理方法,使得计算快速。 (3) 自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。 (4) 可以充分逼近任意复杂的非线性关系。 (5) 具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。 二、神经网络应用现状 神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: (1) 图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。

遗传算法优化BP神经网络的实现代码-共6页

%读取数据 data=xlsread('data.xls'); %训练预测数据 data_train=data(1:113,:); data_test=data(118:123,:); input_train=data_train(:,1:9)'; output_train=data_train(:,10)'; input_test=data_test(:,1:9)'; output_test=data_test(:,10)'; %数据归一化 [inputn,mininput,maxinput,outputn,minoutput,maxoutput]=premnmx(input_tr ain,output_train); %对p和t进行字标准化预处理 net=newff(minmax(inputn),[10,1],{'tansig','purelin'},'trainlm'); net.trainParam.epochs=100; net.trainParam.lr=0.1; net.trainParam.goal=0.00001; %net.trainParam.show=NaN %网络训练 net=train(net,inputn,outputn); %数据归一化 inputn_test = tramnmx(input_test,mininput,maxinput); an=sim(net,inputn); test_simu=postmnmx(an,minoutput,maxoutput); error=test_simu-output_train; plot(error) k=error./output_train

浅谈基于小波分析的神经网络

浅谈基于小波分析的神经网络 摘要:基于小波分析的神经网络在我们的日常生产中有着重要的作用,尤其是在故障检测中,正因为有了它的存在,使得我们能更好的对一些机器内部微小的部件进行检测。在一定程度上,避免了人工检测工作量大且准确度不高的情况,降低了检验的成本,减少了因零件损坏而带来的损失,为工业的生产提供了极大的帮助。 关键词:小波分析,神经网络,故障诊断 随着科学的进步与时代的发展,神经网络正慢慢的运用到我们的日常生活与生产之中。从1943年人们首次提出了人工神经网络这一概念至今,神经网络已经与越来越多的其他技术结合了起来,例如,结合神经元的混沌属性提出混沌神经网络,应用于组合优化的问题中,与粗集理论结合,应用于对数据的分类处理,与分形理论结合,应用于图形识别、图像编码、图像压缩等,与小波分析结合,应用于机械设备的故障检测中。以下是我对基于小波分析的神经网络的见解。 一、概述 小波分析即小波变换,是1981年Morlet首先提出的,经过发展后成为了一门学科,小波分析对低频信号在频域和高频信号在时域里有着较好的分辨率。而神经网络特有的对非线性适应性信息处理能力,当它与小波分析相结合后,使得它们能在对高压电网的信号处理,机械故障的检测等方面发挥了重要的作用。

二、小波神经网络的算法 小波神经网络的算法大体的思路是这样的,小波神经网络的核心是隐层神经元的激活函数小波基函数(Morlet )进行非线性映射,信号通路只进行前向传递,待分类信号进行前向传递的同时,误差信号进行反向的传递。输出层的传递函数为S 函数,小波函数的拓扑结构如下所示: 小波函数的修正公式如下: (k 1)(k)*E mc ωωη ωω?+=++? (1) a(k 1)(k)*E a mc a a η?+=++? (2) b(k 1)(k)*E b mc b b η ?+=++? (3) 误差函数如下: 211 1(y yt )2N M n n m m n m E N ===-∑∑ (4) 输入层 隐含层 输出层

基于遗传算法的BP神经网络优化算法

案例3:基于遗传算法的BP神经网络优化算法 ******************************************************************************* **** 论坛申明: 1 案例为原创案例,论坛拥有帖子的版权,转载请注明出处(MATLABSKY论坛,《MATLAB 智能算法30个案例分析》 2 案例内容为书籍原创内容,内容为案例的提纲和主要内容。 3 作者长期驻扎在板块,对读者和会员问题有问必答。 4 案例配套有教学视频和完整的MATLAB程序,MATLAB程序在购买书籍后可以自由下载,教学视频需要另外购买。 MATLAB书籍预定方法和优惠服务:https://www.wendangku.net/doc/5a2553206.html,/thread-9258-1-1.html 点击这里,预览该案例程序:https://www.wendangku.net/doc/5a2553206.html,/znsf/view/s3/GABPMain.html 已经预定的朋友点此下载程序源代码:https://www.wendangku.net/doc/5a2553206.html,/thread-11921-1-1.html * ******************************************************************************* ** 1、案例背景 BP网络是一类多层的前馈神经网络。它的名字源于在网络训练的过程中,调整网络的权值的算法是误差的反向传播的学习算法,即为BP学习算法。BP算法是Rumelhart等人在1986年提出来的。由于它的结构简单,可调整的参数多,训练算法也多,而且可操作性好,BP 神经网络获得了非常广泛的应用。据统计,有80%~90%的神经网络模型都是采用了BP网络或者是它的变形。BP网络是前向网络的核心部分,是神经网络中最精华、最完美的部分。BP神经网络虽然是人工神经网络中应用最广泛的算法,但是也存在着一些缺陷,例如: ①、学习收敛速度太慢; ②、不能保证收敛到全局最小点; ③、网络结构不易确定。 另外,网络结构、初始连接权值和阈值的选择对网络训练的影响很大,但是又无法准确获得,针对这些特点可以采用遗传算法对神经网络进行优化。 本节以某型号拖拉机的齿轮箱为工程背景,介绍使用基于遗传算法的BP神经网络进行齿轮箱故障的诊断。

小波神经网络及其应用

小波神经网络及其应用 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1. 研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛 即 ,焦李神经网络2. 2.1()x ,使式中为的Fourier 变换。对作伸缩、平移变换得到小波基函数系 对任意2()()f x L R ∈,其连续小波变换定义为: 反演公式为: 在实际应用中,特别是计算机实现中,往往要把上述的连续小波及其变换离散化,通常采用二进制离散,即 令2,2m m a b k ==,则 二进小波一定是一个允许小波,且是一个正交小波基。考虑一个连续的、平方可积的函数 2()()f x L R ∈在分辨率2m 下的逼近()m f x ,由多分辨分析理论可知:

()x Φ是尺度函数,对其作伸缩、平移变换得到()mk x Φ。 Mallat 同时证明了函数()f x 在2m 和12m -分辨率下的信息差别(即细节)()m D f x ,可以通过将函数() f x 在一小波正交基上分解而获得,从而定义了一种完全而且正交的多分辨率描述,即小波描述。 ()mk x ψ就是式(5)定义的二进小波,则()f x 在12m -分辨率下的逼近式为: Mallat 并指出,对于任意一个函数 2()()f x L R ∈可以在一组正交小波基上展开: 式(11)是一个平方可积函数的小波分解,提供了小波神经网络设计的理论框架。 .. 12(,)x x ο 则有2.2 (ψ(f x 式(Lk a 与式 (17i c i 则有: 即(21)=f Ac 式(20)的最小二乘解为: +A 被称为A 的伪逆矩阵。且 如果样本i x 均匀分布,(1,2,...,)θ=i i n 是正交基, 则T A A 是一个?n n 单位矩阵,且

遗传算法与神经网络的结合.

系统工程理论与实践 Systems Engineering——Theory & Practice 1999年第2期第19卷 vol.19 No.2 1999 遗传算法与神经网络的结合 李敏强徐博艺寇纪淞 摘要阐明了遗传算法和神经网络结合的必要性和可行性,提出用多层前馈神经网络作为遗传搜索的问题表示方式的思想。用遗传算法和神经网络结合的方法求解了短期地震预报问题,设计了用遗传算法训练神经网络权重的新方法,实验结果显示了遗传算法快速学习网络权重的能力,并且能够摆脱局部极点的困扰。 关键词遗传算法进化计算神经网络 On the Combination of Genetic Algorithms and Neural Networks Li Minqiang Xu Boyi Kou Jisong (Institute of Systems Engineering, Tianjin University, Tianjin 300072 Abstract In this paper, we demonstrate the necessity and possibility of combining neural network (NN with GAs. The notion of using multilayered feed forward NN as the representation method of genetic and the searching technique is introduced. We combine GA and NN for solving short term earthquake forecasting problem, design a novel method of using GAs to train connection weights of NN.The empirical test indicates the capability of the new method in fast learning of NN and escaping local optima. Keywords genetic algorithms; evolutionary computation; neural networks

遗传算法优化BP神经网络权值和阈值(完整版)

https://www.wendangku.net/doc/5a2553206.html,/viewthread.php?tid= 50653&extra=&highlight=%E9%81%97%E4%BC%A0%E7% AE%97%E6%B3%95&page=1 Matlab遗传算法优化神经网络的例子(已调试成功)最近论坛里问到用遗传算法优化神经网络问题的人很多,而且论坛里有很多这方面的代码。但可惜的是所有代码都或多或少有些错误!最郁闷的莫过于只有发帖寻求问题答案的探索者,却很少有对问题进行解答的victor。本人在论坛里看到不少会员对能运行成功的遗传算法优化神经网络例子的需求是多么急切,我也深有感触!现把调试成功的一个例子贴出来,供大家参考!(本例子是基于一篇硕士论文里的代码为蓝本改 编的,此处就不再注明作者了。)遗传算法优化bp.rar (3.34 KB) 注:该代码是由会员“书童”耗费了一整天的时间调试成功的,在此再次对我们的“书童”同学乐于助人的高尚品德致敬,并对其深表感谢!PS:参考会员“ilovexyq”意见,先对其做以补充。该网络为遗传算法 优化bp的一个典型例子,输入为7,输出为7,隐层为25。该网络输入输出数据就是为了说明问题而随便加的,没有实际意义。如用于自己的实际问题,把数据替换并根据需要改一下网络结构就行了。

PS:如有问题,请先阅读此贴: https://www.wendangku.net/doc/5a2553206.html,/thread-52587-1-1.html### [本帖最后由 yuthreestone 于 2009-10-15 10:52 编辑] 搜索更多相关主题的帖子: 调试例子算法Matlab神经网络 https://www.wendangku.net/doc/5a2553206.html,/thread-52587-1-1.html 遗传算法优化BP神经网络权值和阈值(完整版) 会员renjia前一段时间分享的程序,地址如下: https://www.wendangku.net/doc/5a2553206.html,/viewthread.php?tid=50653&extra=&highlight=% E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95&page=1: (1)renjia提供的程序存在一些小错误,主要是设计的bp网络是两个隐含层,但编码的时候只有一个隐含层。修改后的程序将bp改成了单隐层以确保一致;(2)很多会员不知道该如何运行程序,各个m文件之间的关系弄不清楚。修改后的程序共包含三个m文件: 其中,主程序为ga_bp.m,适应度函数为gabpEval.m,编解码子函数为gadecod.m 注意:使用前需安装gaot工具箱(见附件),上述三个文件需放在同一文件夹中且将该文件夹设置为当前工作路径。 运行程序时只需运行主程序ga_bp.m即可。 (3)此程序仅为示例,针对其他的问题,只需将数据修改即可,但需注意变量名保持一致,尤其是全局变量修改时(在gadecod.m和gabpEval.m中也要修改)(4)gaot工具箱如何安装? 点击file选择set path,在弹出的对话框中选择add folder,将gaot文件夹添加进去,然后点击save保存即可。

介绍遗传算法神经网络

课程设计作业——翻译 课题:介绍遗传算法神经网络 穆姣姣 0808490233 物流08-班

介绍遗传算法神经网络 理查德·坎普 1. 介绍 一旦一个神经网络模型被创造出来,它常常是可取的。利用这个模型的时候,识别套输入变量导致一个期望输出值。大量的变量和非线性性质的许多材料模型可以使找到一个最优组输入变量变得困难。 在这里,我们可以用遗传算法并试图解决这个问题。 遗传算法是什么?遗传算法是基于搜索algo-rithms力学的自然选择和遗传观察到生物的世界。他们使用两个方向(\适者生存”),在这种条件下,探索一个强劲的功能。重要的是,采用遗传算法,这不是必需要知道功能的形式,就其输出给定的输入(图1)。 健壮性我们这么说是什么意思呢?健壮性是效率和效能之间的平衡所使用的技术在许多不同的环境中。帮助解释这个问题,我们可以比其他搜索和优化技术,如calculus-based,列举,与随机的求索。 方法Calculus-based假设一个光滑,无约束函数和要么找到点在衍生为零(知易行难)或者接受一个方向梯度与当地日当地一所高中点(爬山)。研究了这些技术已经被重点研究、扩展、修改,但展现自己缺乏的鲁棒性是很简单的。 考虑如图2所示的功能。利用Calculus-based在这里发现极值是很容易的(假定派生的函数可以发现…!)。然而,一个更复杂的功能(图3)显示该方法是当地——如果搜索算法,在该地区的一个开始,它就会错过低高峰目标,最高的山峰。 图1 使用网络神经算法没必要知道它的每一项具体功能。 一旦一个局部极大时,进一步改进需要一个随机的重启或类似的东西。同时,假设一个函数光滑,可导,并明确知道很少尊重现实。许多真实世界充满了间断模型和设置在嘈杂的多通道搜索空间(图4)。 虽然calculus-based方法在某些环境中至非常有效的,但内在的假

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的 Matlab编程实例 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP 算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=premnmx(XX); YY=premnmx(YY); %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},' trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutatio n',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-'); xlabel('Generation'); ylabel('Sum-Squared Error'); figure(2) plot(trace(:,1),trace(:,3),'r-'); hold on plot(trace(:,1),trace(:,2),'b-'); xlabel('Generation'); ylabel('Fittness'); %下面将初步得到的权值矩阵赋给尚未开始训练的BP网络 [W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.LW{2,1}=W1; net.LW{3,2}=W2; net.b{2,1}=B1; net.b{3,1}=B2; XX=P; YY=T; %设置训练参数 net.trainParam.show=1; net.trainParam.lr=1; net.trainParam.epochs=50; net.trainParam.goal=0.001; %训练网络 net=train(net,XX,YY); 程序二:适应值函数 function [sol, val] = gabpEval(sol,options) % val - the fittness of this individual % sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation] load data2 nntwarn off XX=premnmx(XX); YY=premnmx(YY); P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 for i=1:S, x(i)=sol(i); end; [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);

小波神经网络预测的代码1

clc; clear all; %设定期望的误差最小值 err_goal=0.01; %设定最大循环次数 max_epoch=50; %设定修正权值的学习速率0.01-0.7 lr=0.7; epoch=0; x=0:0.01:0.3;%输入时间序列 %d=sin(8*pi*x)+sin(4*pi*x)+5*sin(pi*x);% d=[1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 10 9 8 7];%目标输出序列M=size(x,2);%输入节点的个数 N=M;%输出节点的个数 n=10;%隐形节点的个数 %这个地方需要改进,由于实际上隐形节点的个数可以通过小波的时频分析确定 Wjk=randn(n,M); Wij=randn(N,n); % a=randn(1,n); a=1:1:n; b=randn(1,n); % stepa=0.2*(x(M)-x(1)); % a=stepa:1n-1)+stepa; % step=(x(M)-x(1))/n; % b=x(1)+step:step:x(1)+n*step; % y=zeros(1,N);%输出节点初始化 y=zeros(1,N);%输出节点初始化 net=zeros(1,n);%隐形节点初始化 net_ab=zeros(1,n);%隐形节点初始化 %step2--------对网络进行训练------------------------------------------- for i=1:1:N for j=1:1:n for k=1:1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end y(i)=y(i)+Wij(i,j)*mymorlet(net_ab(j)); %mymorlet是judyever编写的小波函数,以后可以扩展成输入不同的小波名字即可 % y(i)=mysigmoid(2,y(i)); end end

神经网络与遗传算法

5.4 神经网络与遗传算法简介 在本节中,我们将着重讲述一些在网络设计、优化、性能分析、通信路由优化、选择、神经网络控制优化中有重要应用的常用的算法,包括神经网络算法、遗传算法、模拟退火算法等方法。用这些算法可以较容易地解决一些很复杂的,常规算法很难解决的问题。这些算法都有着很深的理论背景,本节不准备详细地讨论这些算法的理论,只对算法的原理和方法作简要的讨论。 5.4.1 神经网络 1. 神经网络的简单原理 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。所以说, 人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作出状态相应而进行信息处理。它是根据人的认识过程而开发出的一种算法。假如我们现在只有一些输入和相应的输出,而对如何由输入得到输出的机理并不清楚,那么我们可以把输入与输出之间的未知过程看成是一个“网络”,通过不断地给这个网络输入和相应的输出来“训练”这个网络,网络根据输入和输出不断地调节自己的各节点之间的权值来满足输入和输出。这样,当训练结束后,我们给定一个输入,网络便会根据自己已调节好的权值计算出一个输出。这就是神经网络的简单原理。 2. 神经元和神经网络的结构 如上所述,神经网络的基本结构如图5.35所示: 隐层隐层2 1 图5.35 神经网络一般都有多层,分为输入层,输出层和隐含层,层数越多,计算结果越精确,但所需的时间也就越长,所以实际应用中要根据要求设计网络层数。神经网络中每一个节点叫做一个人工神经元,他对应于人脑中的神经元。人脑神经元由细胞体、树突和轴突三部分组成,是一种根须状蔓延物。神经元的中心有一闭点,称为细胞体,它能对接受到的信息进行处理,细胞体周围的纤维有两类,轴突是较长的神经纤维,是发出信息的。树突的神经纤维较短,而分支众多,是接收信息的。一个神经元的轴突末端与另一神经元的树突之间密

相关文档
相关文档 最新文档