文档库 最新最全的文档下载
当前位置:文档库 › 数值分析2-2

数值分析2-2

数值分析2-2

第二节 与Poisson 过程相联系的若干分布

第n-1次与第n 次事件间的间隔时间记作n X .而?==

n i i n X W 1为第n 次事件的到达或等待时间。

命题2.2 L ,2,1,=n X n 是均值为

l

1的独立同分布的指数随机变量,n W 服从参数为n 和l 的G 分布。

定理2.1 若()0,3t t N 为Poisson 过程,则给定()n t N =下等待时间n W W ,,1L 的联合密度

为: ()()t w w t n n w w f n n

n n t N W W n £<<<==L L L 11,,0,!,,1。 例2.2 顾客依速率为l 的Poisson 过程到达车站。若火车在时刻t 离站,问在],0(t 区间里顾客的平均总等待时间是多少?

解: 作为依Poisson 过程到达的第一位顾客,他的到达时间为1W ,等到时刻t 发车需等待1W t -.而第i 位旅客的等待时间为i W t -.在],0(t 区间段总共来了()t N 位客人,所以总

等待时间为()

?=-t N i i W t 1.而所要求的平均总等待时间就是()()ú?

ùê?é-?=t N i i W t E 1。

为求出它可以先求条件期望: ()()()()()()ú?

ùê?é=-=ú?ùê?é=-=ú?ùê?é=-???===n i i n i i t N i i n t N W E nt n t N W t E n t N W t E 111 注意到给定()n i W n t N i ,,2,1,,L ==的联合密度是与],0(t 上均匀分布中随机样本n i U i ,,2,1,L =,的次序统计量()n i U i ,,2,1,L =的联合密度是一样的。所以: ()()2

111nt U E U E n t N W E n i i n i i n i i =ú?ùê?é=ú?ùê?é=ú?ùê?é=???=== ()()()221nt nt nt n t N W t E t N i i =-=ú?

ùê?é=-?= 最后得:()()()[]22

2

1t t N E t W t E t N i i l ==ú?ùê?é-?= 合肥工业大学数学系

用计算器求超越方程数值解的几个简单有趣的例子

用计算器求超越方程数值解的几个简单有趣的例子 孟也清(原创)REV1.02 01052013 很显然,这些超越方程都可以编个简单程序解决,但这里说的是仅使用普通函数计算器, JUST FOR FUN! 解方程1 X=Cos(X) 这可能是世界上最简单的用函数计算器迭代方式解超越方程的例子了,只要你连续按函数计算器上的COS键。第一个近似解可以是计算器上显示的任何数字,如一开机为0就可按键,或是99999999都无所谓,因为COS是周期函数,所有数字都会以2π为模。 按键若干次后你就看到那个解趋近你使用的计算器的最高精度。 在8位计算器上得到X=0.7390851,约按键50次, 在10位计算器上得到X=0.739085133,约按键52次, 在Windows上的32位计算器上为X=0.73908513321516064165531208767387,约按键200次。 注意上面X是弧度 若X是“度“则收敛更快, 仅10次即可得到32位解X=0.9998477415310881129598107686798 解方程2 X= - LOG(X) 见下图,蓝色为y=log(x), 紫色为y=-x, 交点约为X=0.4 若用X取对数再取正值后再迭代,其过程发散。 所以这样解, 将两次相近的解的几何平均值代回去迭代。有弦位法的意思。 X0=0.4 X1’=-Log(X0) =0.39794 X1=(X0+X1’)/2=0.39897 经过10次迭代可得到 X10=0.399012978260252 用几何平均值代回去迭代,也是10次,因为Xn范围很小。 1

解方程3 X=10LOG(X) 若X为功率,而10LOG(X)表示dBm,则在数值上有两个点它们是相等的。 即求解方程X=10LOG(X)的两个解。 见下图,蓝色为y=x, 紫色为y=10log(x), 交点2约为X=10,y=10LOG(10)=10,此点可用直接迭代求出,但收敛速度不很快。 交点1约为X=1.4,此点用直接迭代或上面平均值迭代均发散,反而在计算器上用凑数法比较快,为1.371288573~4 当然可考虑牛顿法(切线法)切线法似乎也会发散。弦位法应可以,没试过。 2

数值分析之幂法及反幂法C语言程序实例

数值分析之幂法及反幂法C 语言程序实例 1、算法设计方案: ①求1λ、501λ和s λ的值: s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。 1λ、501λ:已知矩阵A 的特征值满足关系 1n λλ<< ,要求1λ、及501λ时,可 按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。 b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m B A I λ=+,对矩阵B 用反幂法 求得B 的按模最小特征值2m λ。 c . 321m m m λλλ=- 则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。 ②求和A 的与数5011 140 k k λλμλ-=+最接近的特征值 ik λ(k=0,1,…39): 求矩阵A 的特征值中与k μ最接近的特征值的大小,采用原点平移的方法: 先求矩阵 B=A-k μI 对应的按模最小特征值k β,则k β+k μ即为矩阵A 与k μ最接近的特征值。 重复以上过程39次即可求得ik λ(k=0,1,…39)的值。 ③求A 的(谱范数)条件数2cond()A 和行列式det A : 在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。 求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()s cond A λλ= ,max λ和s λ分别为模最大特征值与模最小特征值。

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

北京大学数值分析试题2015 经过订正

北京大学2014--2015学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(每空3分,共24分) (1) 设1 2A ?-=-?? ,则A 的奇异值为 。 (2) 设0.00013753x =为真值0.00013759T x =的近似值,则x 有 位有效数字。 (3) 设数据123,,x x x 的绝对误差为0.002,那么123x x x -+的绝对误差约为 ____ _。 (4) )x (l ,),x (l ),x (l n 10是以01,, ,,(2)n x x x n ≥为节点的拉格朗日插值基函数, 则 20 (2)()n k k k x l x =+=∑ 。 (5) 插值型求积公式 2 2 =≈∑? ()()n k k k x f x dx A f x 的求积系数之和0 n k k A ==∑ 。 其中2x 为权函数,1≥n 。 (6)已知(3,4),(0,1)T T x y ==,求Householder 阵H 使Hx ky =,其中k R ∈。 H= 。 (7) 数值求积公式 1 1 2()((0)3f x dx f f f -?? ≈ ++???? ? 的代数精度为___。 (8) 下面Matlab 程序所求解的数学问题是 。 (输入向量x , 输出S ) x =input('输入x :x ='); n=length(x ); S=x (1); for i=2:n if x (i)

演讲稿数值分析应用实例.doc

非线性方程求根 问题:在相距100m的两座建筑物(高度相等的点)之间悬挂一根电缆,仅允许电缆在中间最多下垂1m,试计算所需电缆的长度。 设空中电缆的曲线(悬链线)方程为 ] , [ , ) ( 50 50 2 - ∈ + = - x e e a y a x a x (1) 由题设知曲线的最低点)) ( , (0 0y与最高点)) ( , (50 50y之间的高度差为1m,所以有 1 2 50 50 + = +- a e e a a a) ( (2) 由上述方程解出a后,电缆长度可用下式计算: ) ( ) (a a a x a x L e e a dx e e dx x y ds L 50 50 50 50 50 2 1- - - - = ? ? ? ? ? ? + = ' + = =? ? ?(3) 相关Matlab命令: 1、描绘函数] , [ , ) ( ) (1500 500 1 2 50 50 ∈ - - + = - a a e e a a y a a 的图形;

2、用fzero 命令求方程在1250=a 附近的根的近似值x ,并计算)(x y 的函数值; 3、编写二分法程序,用二分法求0=)(a y 在],[13001200内的根,误差不超过310-,并给出对分次数; 4、编写Newton 迭代法程序,并求0=)(a y 在],[13001200内的根,误差不超过310-,并给出迭代次数。 5、编写Newton 割线法程序,并求0=)(a y 在],[13001200内的根,误差不超过310-,并给出迭代次数。

线性方程组求解应用实例 问题:投入产出分析 国民经济各个部门之间存在相互依存的关系,每个部门在运转中将其他部门的产品或半成品(称为投入)经过加工变为自己的产品(称为产出),如何根据各部门间的投入产出关系,确定各部门的产出水平,以满足社会需求,是投入产出分析中研究的课题。考虑下面的例子: 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、外部需求、初始投入等如表1所示(数字表示产值)。 表1 国民经济三个部门间的关系单位:亿元 假定总投入等于总产出,并且每个部门的产出与它的投入成正比,由上表可以确定三个部门的投入产出表:如表2所示。 表2 三个部门的投入产出表

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

东南大学 数值分析 考试要求

第一章绪论 误差的基本概念:了解误差的来源,理解绝对误差、相对误差和有效数的概念,熟练掌握数据误差对函数值影响的估计式。 机器数系:了解数的浮点表示法和机器数系的运算规则。 数值稳定性:理解算法数值稳定性的概念,掌握分析简单算例数值稳定性的方法,了解病态问题的定义,学习使用秦九韶算法。 第二章非线性方程解法 简单迭代法:熟练掌握迭代格式、几何表示以及收敛定理的内容,理解迭代格式收敛的定义、局部收敛的定义和局部收敛定理的内容。 牛顿迭代法:熟练掌握Newton迭代格式及其应用,掌握局部收敛性的证明和大范围收敛定理的内容,了解Newton法的变形和重根的处理方法。 第三章线性方程组数值解法 (1)Guass消去法:会应用高斯消去法和列主元Guass消去法求解线性方程组,掌握求解三对角方程组的追赶法。 (2)方程组的性态及条件数:理解向量范数和矩阵范数的定义、性质,会计算三种常用范数,掌握谱半径与2- 范数的关系,会计算条件数,掌握实用误差分析法。 (3)迭代法:熟练掌握Jacobi迭代法、Guass-Seidel迭代法及SOR方法,能够判断迭代格式的收敛性。 (4)幂法:掌握求矩阵按模最大和按模最小特征值的幂法。 第四章插值与逼近 (1)Lagrange插值:熟练掌握插值条件、Lagrange插值多项式的表达形式和插值余项。(2)Newton插值:理解差商的定义、性质,会应用差商表计算差商,熟练掌握Newton插值多项式的表达形式,了解Newton型插值余项的表达式。 (3)Hermite插值:掌握Newton型Hermite插值多项式的求法。 (4)高次插值的缺点和分段低次插值:了解高次插值的缺点和Runge现象,掌握分段线性插值的表达形式及误差分析过程。 (5)三次样条插值:理解三次样条插值的求解思路,会计算第一、二类边界条件下的三次样条插值函数,了解收敛定理的内容。 (6)最佳一致逼近:掌握赋范线性空间的定义和连续函数的范数,理解最佳一致逼近多项式的概念和特征定理,掌握最佳一致逼近多项式的求法。 (7)最佳平方逼近:理解内积空间的概念,掌握求离散数据的最佳平方逼近的方法,会求超定方程组的最小二乘解,掌握连续函数的最佳平方逼近的求法。

数值分析

数值分析上机报告

前言 随着计算机技术的高速发展,越来越多的科技工作者使用计算机进行科学研究和解决工程技术问题。数值分析(或计算方法)课程的内容是科学工程计算的必备知识,已经成为众多理工科大学生、研究生的必修课程,越来越受到重视。 由于工程实际中所遇到的数学模型求解过程迭代次数很多,计算量很大,所以需要借助很多编程软件来解决,得到一个满足误差限的解。本文所计算题目,均采用C++编程。在本文中使用C++编写了牛顿法、牛顿-Steffensen法方程求解的程序和雅格比法、高斯-赛德尔迭代法求解方程组的程序及Ru n ge-Kutt a4阶算法,并通过实例求解验证了其可行性,比较了求解同一种问题时不同方法之间的优缺性,其中包含解的精确度和解的收敛速度两个重要指标。

一 牛顿法和牛顿-Steffensen 法迭代求解的比较 1. 计算题目 分别用牛顿法,及基于牛顿算法下的Steffensen 加速法 (1) 求ln(x +sin x )=0的根。初值x0分别取0.1, 1,1.5, 2, 4进行计算。 (2) 求sin x =0的根。初值x0分别取1,1.4,1.6, 1.8,3进行计算。 分析其中遇到的现象与问题。 2. 计算过程和结果 1.对方程ln(x +sin x )=0,其导数有些复杂,我们可以对其进行变形,即求解x+sinx=1的解。使用牛顿法,令1sin )(-+=x x x f ,则x x f cos 1)(+=',直至 5 110 1||-+?<-k k x x 时,结束迭代;然后再使用基于牛顿法的Steffensen 加速法进 行计算,直至51101||-+?<-k k x x 时,结束迭代。其迭代结果与迭代次数如下表所示(注N1为牛顿法迭代次数,N2为基于牛顿法Steffensen 加速法迭代次数): 2.对方程sin x =0,使用牛顿法时,令x x f sin )(=,使用牛顿法计算,直至 5 110 1||-+?<-k k x x 时,结束迭代;然后依据Steffensen 加速法进行编程计算,直 至51101||-+?<-k k x x 时,结束迭代。其迭代结果与迭代次数如下表所示:

数值分析在生活中的应用举例及Matlab实现

Matlab 实验报告 学院:数学与信息科学学院班级:信息班 学号:20135034027 姓名:马永杉

最小二乘法,用MATLAB实现 1.数值实例 下面给定的是郑州最近1个月早晨7:00左右的天气预报所得到的温度,按照数据找出任意次曲线拟合方程和它的图像。下面用MATLAB编程对上述数据进行最小二乘拟合。 2、程序代码 x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9 ,7,6,5,3,1]; a1=polyfit(x,y,3) %三次多项式拟合% a2= polyfit(x,y,9) %九次多项式拟合% a3= polyfit(x,y,15) %十五次多项式拟合% b1=polyval(a1,x) b2=polyval(a2,x) b3=polyval(a3,x) r1= sum((y-b1).^2) %三次多项式误差平方和% r2= sum((y-b2).^2) %九次次多项式误差平方和% r3= sum((y-b3).^2) %十五次多项式误差平方和% plot(x,y,'*') %用*画出x,y图像% hold on plot(x,b1, 'r') %用红色线画出x,b1图像% hold on plot(x,b2, 'g') %用绿色线画出x,b2图像% hold on plot(x,b3, 'b:o') %用蓝色o线画出x,b3图像% 2.流程图

4.数值结果分析 不同次数多项式拟合误差平方和为: r1=67.6659 r2=20.1060 r3=3.7952 r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。 5、拟合曲线如下图

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

数值分析简述及求解应用

数值分析简述及求解应用 摘要:数值分析是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,本文主要介绍了数值分析的一些求解方法的原理和过程,并应用在电流回路和单晶硅提拉过程中的,进一步体现数值分析的实际应用。 关键字:解方程组插值法牛顿法 一、引言 随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。有可靠的理论分析,要有数值实验,并对计算的结果进行误差分析。数值分析的主要内容包括插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。运用数值分析解决问题的过程包括: 实际问题→数学建模→数值计算方法→程序设计→上机计算求出结果。 在自然科学研究和工程技术中有许多问题可归结为求解方程组的问题,方程组求解是科学计算中最常遇到的问题。如在应力分析、电路分析、分子结构、测量学中都会遇到解方程组问题。在很多广泛应用的数学问题的数值方法中,如三次样条、最小二乘法、微分方程边值问题的差分法与有限元法也都涉及到求解方程组。 在工程中常会遇到求解线性方程组的问题,解线性方程组的方法有直接法和迭代法,直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。将方程组的解看作是某极限过程的极限值,且计算这一极限值的每一步是利用前一步所得结果施行相同的演算步骤而进行。迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。迭代法包括Jacobi法SOR法、SSOR法等多种方法。非线性是实际问题中经常用到出现的并在科学和工程中的低位也越来越重要,很多线性模型都是在一定条件下由非线性简化得到的。所以往往需要非线性的研究。非线性的数值解法有牛顿法,迭代收敛的加速解法,弦解法和抛物线法等。还有很多问题都可用常微分方程的定解来描述,主要有处置问题和边值问题。常微分方程是描述连续变化的数学语言,微分方程的求解是确定满足给定方程的可微函数y(x)。下面就数值分析中常用的一些方法和实例进行阐述。 二、数值分析中的一些方法 1、插值法 许多实际问题都用y=f(x)来表示,有的函数虽然有解析式,但由于计算复杂实用不方便,为了找一个既能反映函数的特性又便于计算的函数,我们利用插值法可以得到这个简单函数,插值法包括拉格朗日插值,牛顿插值,Hermite插值等多种方法。 拉格朗日插值是n次多项式插值,其成功地用构造插值基函数的方法解决了

数值分析课程设计学生题目

《数值分析》课程设计

本课程设计的内容为:每个小组的同学均应完成以下五个案例; 目标:能将数值分析课程中所学的算法知识熟练应用于实际问题中。 案例1 土木工程和环境工程师在设计一条排水渠道时必须考虑渠道的各种参数(如宽度,深度,渠道内壁光滑度)及水流速度、流量、水深等物理量之间的关系。 假设修一条横断面为矩形的水渠,其宽度为B ,假定水流是定常的,也就是说水流速度不随时间而变化。 根据质量守恒定律可以得到 Q=UBH (1.1) 其中Q 是水的流量(s m /3 ),U 是流速(s m /),H 是水的深度(m )。 在水工学中应用的有关流速的公式是 3 /23 /22/1)2()(1H B BH S n U += (1.2) 这里n 是Manning 粗糙系数,它是一个与水渠内壁材料的光滑性有关的无量纲量;S 是水渠 的斜度系数,也是一个无量纲量,它代表水渠底每米内的落差。 把(1.2)代入(1.1)就得到 3 /23 /52/1)2()(1H B BH S n U += (1.3) 为了不同的工业目的(比如说要把污染物稀释到一定的浓度以下,或者为某工厂输入一定量 的水),需要指定流量Q 和B ,求出水的深度。这样,就需要求解 0) 2()(1)(3 /23 /52/1=-+=Q H B BH S n H f (1.4) 一个具体的案例是 s m Q S n m B /5 ,0002.0 ,03.0 ,203==== 求出渠道中水的深度H 。 所涉及的知识——非线性方程解法。 案例2 在化学工程中常常研究在一个封闭系统中同时进行的两种可逆反应 C D A C B A ?+?+2 其中A ,B ,C 和D 代表不同的物质。反应达到平衡是有如下的平衡关系: d a c b a c C C C k C C C k == 22 1 , 其中2 24 1107.3 ,104--?=?=k k 称为平衡常数,),,,(d c b a n C n =代表平衡状态时该物质的浓度。假定反应开始时各种物质的浓度为:

数值分析心得体会

数值分析心得体会 篇一:学习数值分析的经验 数值分析实验的经验、感受、收获、建议班级:计算131 学号:XX014302 姓名:曾欢欢 数值分析实验主要就是学习MATLAB的使用以及对数值分析类容的应用,可以使学生更加理解和记忆数值分析学得类容,也巩固了MATLAB的学习,有利于以后这个软件我们的使用。在做实验中,我们需要具备较好的编程能力、明白MATLAB软件的使用以及掌握数值分析的思想,才能让我们独立自主的完成该作业,如果是上述能力有限的同学,需要借助MATLAB的书以及网络来完成实验。数值分析实验对于我来说还是有一定难度,所以我课下先复习了MATLAB的使用方法以及编写程序的基本类容,借助互联网和同学老师资源完成了数值分析得实验的内容。在实验书写中,我复习了各种知识,所以我认为这门课程是有必要且是有用处的,特别是需要处理大量实验数据的人员,很有必要深入了解学习它,这样在以后的工作学习里面就减少了很多计算问题也提高了实验结果的精确度。 学习数值分析的经验、感受、收获、建议数值分析的内容包括插值与逼近,数值微分与数值积分,非线性方程与线性方程组的数值解法,矩阵的特征值与特征向量计算,常微分方程数值解等。

首先我们必须明白数值分析的用途。通常所学的其他数学类学科都是由公式定理开始,从研究他们的定义,性质再到证明与应用。但实际上,尤其是工程,物理,化学等其它具体的学科。往往我们拿到 手的只是通过实验得到的数据。如果是验证性试验,需要代回到公式 进行分析,验证。但往往更多面对的是研究性或试探性试验,无具体 公式定理可代。那就必须通过插值,拟合等计算方法进行数据处理以得到一个相对可用的一般公式。还有许多计算公式理论上非常复杂,在工程中不实用,所以必须根据实际情况把它转化成多项式近似表 示。学习数值分析,不应盲目记公式,因为公事通常很长且很乏味。其次,应从公式所面临的问题以及用途出发。比如插值方法,就 是就是把实验所得的数据看成是公式的解,由这些解反推出一个近似公式,可以具有局部一般性。再比如说拟合,在插值的基础上考虑实 验误差,通过拟合能将误差尽可能缩小,之后目的也是得到一个具有 一定条件下的一般性的公式。。建议学习本门课程要结合知识与实际,比如在物理实验里面很多

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

数值分析试验一

数值分析第一次实验报告 姓名: 学号: 实验1: 1. 实验项目的性质和任务 通过上机实验,使学生对病态问题、线性方程组求解和函数的数值逼近方法有一个初步理解。 2.教学内容和要求 1)对高阶多多项式 20 1()(1)(2)(20)()k p x x x x x k ==---=-∏ 编程求下面方程的解 19()0p x x ε+= 并绘图演示方程的解与扰动量ε的关系。(实验) 2)对2~20n =,生成对应的Hilbert 矩阵,计算矩阵的条件数;通过先确定解获得常向量b 的方法,确定方程组 n H x b = 最后,用矩阵分解方法求解方程组,并分析计算结果。(第三章,实验题4) 3)对函数 2 1()[1,1]125f x x x =∈-+ 的Chebyshev 点 (21)cos( ) 1,2,...,12(1) k k x k n n π -==++ 编程进行Lagrange 插值,并分析插值结果。(第四章 实验1)

项目涉及核心知识点 病态方程求解、矩阵分解和方程组求解、Lagrange插值。 重点与难点 算法设计和matlab编程。 1)a.实验方案: 先创建一个20*50的零矩阵X,然后利用Matlab中的roots()和poly()函数将50个不同的ess扰动值所产生的50个解向量分别存入X矩阵中。然后再将ess向量分别和X的20个行向量绘图。即可直观的看出充分小的扰动值会产生非常大的偏差。即证明了这个问题的病态性。 b.编写程序: >> X=zeros(20,50); >> ve=zeros(1,21); >> ess=linspace(0,,50);k=1; >> while k<=50 ve(2)=ess(k); X(1:20,k)=roots(poly(1:20)+ve); k=k+1; end >> m=1; >> while m<=20 figure(m),plot(ess,X(m,:));

数值分析实验题目及解答

内容包括: 实验题目1:算法的数值稳定性实验 实验题目2:LU分解实验 实验题目3:三次样条插值外推样条实验 实验题目4:第二类Fredholm 积分方程实验实验题目5:M级显式R_K法

实验题目:算法的数值稳定性实验 实验内容:计算积分()1 0()d 1515n x I n x a x ==+? (n=1,2,…,20) 易得到下面递推公式 ()()1 1I n aI n n =--+ 并有估计式 ()() ()() 1 1 111I n a n a n << +++ 计算方法: 算法一:采用下面递推公式计算: ()()1 1I n aI n n =--+ ()1,2,,20 n = 取初值()116 0ln ln 15a I a +== 算法二: 采用下面递推公式计算: ()()111I n I n a n ??-= -+???? ()20,19,,1 n =

结果分析:(分析哪个好哪个不好,原因是什么) 我觉得算法二比较好, 原因一:根据式 ()() ()() 1 1 111I n a n a n << +++得知,I(n)不可能小于 零,而算法一的计算结果有部分结果小于零。原因二:对算法一记初始误差 ε0=/I 0-I(0)/>0; 则εn =/I n -I(n)/=a/I n-1-I(n-1)/=a n *ε0 由此可知,当n=20时, ε20把ε0放大了a 20倍,其结果造成严重的。 而对于算法二^ ^ 11n n a εε-= ,…, ^ ^ 01 n n a εε=,尽管有初始误差^ 20ε,但随着计算的进程,这个误差的影响不断减小。 附:源程序:(把源程序附上) 算法一程序: >> format long >> a=15;I=log(16/15); for n=1:20 n I=-a*I+1/n end 算法二程序: >> format long >> a=15;I=31/10080; >> for n=20:-1:1 n I I=1/a*(-I+1/n); End

数值计算实例

数值计算 插值 假设需要得到x 坐标每改变0.1 时的y 坐标, 用三次插值方法对机翼断面下缘轮廓线上的部分数据加细, 并作出插值函数的图形. 程序: clear, close all x=[0,3,5,7,9,11,12,13,14,15]; y=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6]; plot(x,y); xi=0:0.1:15; yi_cubic=interp1(x,y,xi,'cubic'); plot(x,y,'ro',xi,yi_cubic); pp=csape(x,y,'second'); v=ppval(pp,xi); v; T=(ppval(pp,0.1)-ppval(pp,0))/0.1; angle=atan(T)*180/pi; s=v(130:151); ss=min(s); 图形: 最小二乘拟合

已知空气温度与动力粘度关系如下,进行最小二乘拟合 0℃170.8×10^-4mPa.s 40℃190.4×10^-4mPa.s 74 ℃210.2×10^-4mPa.s 229 ℃263.8×10^-4mPa.s 334℃312.3×10^-4mPa.s 409℃341.3×10^-4mPa.s 481℃358.3×10^-4mPa.s 565℃375.0×10^-4mPa.s 638℃401.4×10^-4mPa.s 750 ℃426.3×10^-4mPa.s 810 ℃441.9×10^-4mPa.s 程序: >> x=[0 40 74 229 334 409 481 565 638 750 810]; >> y=[170.8 190.4 210.2 263.8 312.3 341.3 358.3 375.0 401.4 426.3 441.9]; >> p=polyfit(x,y,2) p = -0.0002 0.4652 172.5460 >> xi=[0:2:810]; >> yi=polyval(p,xi); >> plot(x,y,'ko-',xi,yi,'k--') 解线性方程组的直接法

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

西北工业大学数值分析(附答案)

西北工业大学数值分析习题集 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设 028,Y =按递推公式 1n n Y Y -= ( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求 211N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =-

(完整版)数值分析每节课的教学重点、难点

计算方法教案新疆医科大学 数学教研室 张利萍

一、课程基本信息 1、课程英文名称:Numerical Analysis 2、课程类别:专业基础课程 3、课程学时:总学时54 4、学分:4 5、先修课程:《高等数学》、《线性代数》、《Matlab 语言》 二、课程的目的与任务: 计算方法是信息管理与信息系统专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握计算方法的常用的基本的数值计算方法 2.掌握计算方法的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 计算方法(数值分析)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

相关文档