文档库 最新最全的文档下载
当前位置:文档库 › 实验四数组的压缩存储

实验四数组的压缩存储

实验四数组的压缩存储
实验四数组的压缩存储

实验四数组的压缩存储

实验目的

掌握稀疏矩阵的压缩存储方法,熟练数组的基本操作及应用。

实验要求

写一个AddSMatrix函数,实现以三元组方式存储的两个稀疏矩阵M和N的加法,并保存到新的矩阵Q中。

程序代码(部分)

#include

#define maxsize 100

typedef struct{

int i,j;

int val;

}Triple;

typedef struct{

Triple data[maxsize+1];

int mu,nu,tu;

}TSMatrix;

int CreateSMatrix(TSMatrix &M){

int row,col,e;

printf("input mu=");

scanf("%d",&M.mu);

printf(" nu=");

scanf("%d",&M.nu);

printf(" tu=");

scanf("%d",&M.tu);

if(M.tu>maxsize) return 0;

else {

printf(" row col e:\n");

for(int k=0;k

scanf("%d %d %d",&row,&col,&e);

M.data[k].i=row;

M.data[k].j=col;

M.data[k].val=e;

}

return 1;

}

}/*以三元组方式创建矩阵*/

void PrintSMatrix(TSMatrix M){

for(int i=0;i

printf("%d %d %d\n",M.data[i].i,M.data[i].j,M.data[i].val);

}

}

int AddSMatrix(TSMatrix M,TSMatrix N,TSMatrix &Q){ /*补充代码*/

return 1;

}

int main(){

TSMatrix M;

int tag;

tag=CreateSMatrix(M);

if(tag==1) PrintSMatrix(M);

else printf("Error!\n");

/*补充代码*/

return 1;

YUYJD55制冷压缩机性能测试实训装置

YUY-JD55制冷压缩机性能测试实训装置 实 验 指 书 导 上海育仰科教设备有限公司

一、实验目的 1、了解压缩机性能测定的原理及方法; 2、了解压缩式制冷的循环流程及各组成设备; 3、测定蒸气压缩式制冷循环的性能; 4、理解与认识回热循环; 5、比较单级压缩制冷机在实际循环中有回热与无回热性能上的差异; 6、熟悉实验装置的有关仪器、仪表,掌握其操作方法。 二、实验原理 1、单级压缩制冷机的理论循环 图1显示了压力-比焓图上单级蒸气压缩制冷机的理论循环。压缩机吸入的是以点1表示的饱和蒸气,1-2表示制冷剂在压缩机中的等熵压缩过程;2-3表示制冷剂在冷凝器中的等压放热过程,在冷却过程22'-中制冷剂与环境介质有温差,放出过热热量,在冷凝过程32'-'中制冷剂与环境介质无温差,放出比潜热,在冷却和冷凝过程中制冷剂的压力保持不变,且等于冷凝温度T K 下的饱和蒸气压力P K ;(33-')是液态再冷却放出的热量;3-4表示节流过程,制冷剂在节流过程中压力和温度都降低,且焓值保持不变,进入两相区;4-1表示制冷剂在蒸发器中的蒸发过程,制冷剂在温度T 0、饱和压力P 0保持不变的情况下蒸发,而被冷却物体或载冷剂的温度得以降低。 图 1

2、有回热的单级蒸气压缩制冷理论循环 为了使膨胀阀前液态制冷剂的温度降得更低(即增加再冷度),以便进一步减少节流损失,同时又能保证压缩机吸入具有一定过热度的蒸气,可以采用蒸气回热循环。 图3示为来自蒸发器的低温气态制冷剂1,在进入压缩机前先经过一个热交换器——回热器。在回热器中低温蒸气与来自冷凝器的饱和液体3进行热交换,低温蒸气1定压过热到状态1',而温度较高的液体3被定压再冷却到状态3',回热循环1'—2'—3—3'—4'—1—1'中,3—3'为液体的再冷却过程,过热后的蒸气温度称为过热温度,过热温度与蒸发温度之差称为过热度。 根据稳定流动连续定理,流经回热器的液态制冷剂和气态制冷剂的质量流量相等。因此,在对外无热损失情况下,每公斤液态制冷剂放出的热量应等于每公斤气态制冷剂吸收的热量。也就是说,单位质量制冷剂再冷却所增加的制冷能力△q0(面积b'4'4bb')等于单位质量气体制冷剂所吸收的热量△q(面积a11'a'a)。由于有了回热器,虽然单位质量制冷能力有所增加,但是,压缩机的耗功量也增加了△w0(面积11'2'21)。因此,回热式蒸气压缩制冷循环的理论制冷系数有可能提高,也有可能降低,应具体分析。 图3 采用回热器的优点: (1)对于一个给定的制冷量,制冷剂流量减少。 (2)在液体管路上气化的可能性减少(特别是在管路较长的情况下)。 (3)在压缩机的吸气管道上,可减少吸入外界热量。 (4)在压缩机吸气口消除液滴,防止失压缩。

岩石单轴压缩实验

实验名称:岩石单轴压缩实验 一实验目的: 1.了解RFPA软件,熟悉软件界面,了解软件用途。 2.掌握软件RFPA的原理及使用方法。 3.了解岩石在外界压力的作用下的破碎情况。 4.掌握RFPA软件模拟岩石单轴压缩的过程。 二实验步骤: 1、熟悉RFPA软件界面,了解软件个部分的作用。见图1-1: 图1-1 2、运用软件进行相关试验 (1)试验模型 试样模型尺寸100mm×50mm ,网个划分为100×100个基元。采用平面应力问题,整个加载过程通过位移加载方式。力学性质参数如下表: 表2-1

(2)网格划分和参数赋值 网格的划分以及其他参数的赋值见下图2-1,2-2: 图2-1 岩石试件及参数设定值 图2-2 岩石试件参数设定 (3)边界条件和控制条件的选定 点击主面板上的控制键Boundary conditions,进行设置边界条件,其具体数据如

图2-3: 图2-3 加载力的数值设置 打开主面板上的Built,选择Control Information进行完成这个实验的步骤设置,具体数据如图2-4: 图2-4 加载步数设定 (4)计算过程以及结果分析 压缩破裂过程见图2-5:

图2-5压缩破裂过程

结果曲线分析,N-S曲线见图2-6 图2-6N-S曲线 从数值试验得到的载荷-位移全过程曲线再现了如下基本的岩石力学性质 ○1.线性变形阶段。在加载的初期,载荷-位移曲线几乎是线性的。 ○2.非线性变形阶段。当载荷达到试件最大承载能力的50%左右时,试件的变形开始偏离线性,部分基元破坏。 ○3.软化阶段。当达到最大载荷之后,使试件进一步变形的载荷越来越小,进入弱化阶段,直至试件产生宏观破坏。 三实验结论及体会 试验数值表明,试件在破坏过程中,开始出现许多小裂纹,再进一步加载的条件下,试件中突发性地出现了由一系列小张裂纹汇集成的一个剪切带。载荷的宏观破裂带是由宏观剪切应力带中的大量细观拉伸微破裂汇聚形成的。同时,试件的宏观破坏并非发生在试件达到峰值应力的瞬间,而是在试件所受的载荷达到峰值应力以后的某个应力降之后。这个结果表明,岩石介质在达到最大承载能力之后,仍具有一定的承载能力。

SG-ZL81制冷压缩机性能测试实训装置

SG-ZL81制冷压缩机性能测试实训装置 "SG-ZL81制冷压缩机性能测试实训装置"采用蒸汽压缩式制冷循环系统,配备全封闭式制冷压缩机、冷凝器、蒸发器等制冷系统真实部件,并设有智能温度调节仪、流量计、压力表、电压表、电流表等测量仪表。不但能开设制冷压缩机性能参数的测定实训,还能进行制冷循环基本原理的演示实训。适用于职业院校制冷专业相关课程的教学实训。 一、装置特点 1.本实训装置按照国际标准GB/T 5773-2004容积式制冷压缩机性能实训方法建立,以"蒸发器液体载冷剂循环法"为主要测量,以"水冷冷凝器量热器法"作为辅助测量

2.采用1匹制冷机组,冷凝器和蒸发器均为壳管式水换热器,系统结构紧凑、布局合理,造型美观大方 3.设有电压型漏电保护、电流型漏电保护、过流保护、过载保护、接地保护,可对人身及设备进行有效保护 二、技术性能 1.输入电源:单相三线~220V±10% 50Hz 2.工作环境:温度-10℃~+40℃相对湿度<85%(25℃) 海拔<4000m 3.装置容量:<2.5kVA 4.制冷剂:R22 5.制冷量:1.3kW 6.重量:100kg 7.外形尺寸:120cm×60cm×142cm 三、基本配置及功能 1.控制屏 采用双层亚光密纹喷塑结构,造型新颖。最上层布置制冷系统,可直观展示制冷系统结构;正面设有电源控制及测量仪表功能板。底部装有四个带刹车的万向轮,便于移动和固定。 2.交流控制单元 单相三线220V交流电源供电,经漏电流保护器控制总电源,动作电流30mA 3.制冷系统 1匹全封闭压缩机、卧式壳管式冷凝器、视液镜、干燥过滤器、手动节流阀、储液器和干式蒸发器 4.循环水系统 (1)水泵2只 主要技术参数为: 额定功率:95W 额定扬程:6m 额定流量:1.08立方米/小时 (2)水箱2只 采用不锈钢材料制成,分别为冷凝器循环水箱和蒸发器循环水箱 (3)加热器1只(功率1000W) 输出功率可通过电位器进行调节,用于加热蒸发器循环水 5.测量仪表 (1)功率表2只(精度0.5级) 分别测量加热功率和压缩机功率。通过键控、数显窗口实现人机对话的智能控制模式,可测量负载的有功功率、无功功率、功率因数、电压、电流、频率及负载的性质;并可以贮存、查询15组功率和功率因数的测试数据 (2)数显温度表1只(精度0.5级)

空压机的性能检测

1空压机的概述 1.1 NPT5 空压机的组成结构和工作原理 (1)组成结构 NPT5空气压缩机是一种常用的空气压缩机,目前为止,它也是机车中使用最多的一种空气压缩机。当环境温度小于30 0C时,它能够连续稳定运转。前面也介绍了,它主要用于铁路机车的制动系统,还包括其它的气源部件,如鸣笛等。NPT5是三缸,立式,风冷,两级压缩的活塞式空气压缩机。其结构图如图1所示。 图1空压机的结构图 NPT5主要由运动部件,空气压缩系统,润滑系统和冷却系统组成,下面分别对各个部分作简单的介绍。 1)运动部件 曲轴是空压缩机中很重要的一个部件。原动机经由曲轴带动,使电机的旋转运动转换成活塞的上下来回运动。在曲轴的一端装有油泵的联轴器带动油泵旋转。连杆是受力部件。活塞环是个密封部件,主要负责布油和导热。 2)空气压缩系统 曲轴由原动机带动作规律的旋转,通过连杆使活塞作规律的往复运动。在活塞不断运动的过程中,气缸内工作容积也在随之不断变化。因为气阀的原因,空气也会按照一定规律在运动,从而形成对空气的压缩作用。 3)润滑系统 对于空压机的运行,润滑系统是一个必不可少也非常关键的系统分。NPT5空压机主要是采用压力润滑的解决办法。 4)冷却系统 压缩机的冷却系统是非常有必要的,不然超过了它的运行温度,会导致空压机不能正常的工作。空压机的冷去系统主要包括对压缩空气的冷却和受热机件的冷却。本压缩机采用了强迫通风的冷却装置,结构很简单,主要部件为风扇和冷却器。 ( 2) NPT5空压机的工作原理 电动机通过联轴器将动力输入,然后带动空压机的曲轴按指定的方向作旋转运动。由于

连杆的作用,然后带动装在连杆小端的活塞在气缸内做活塞运动。在活塞的不停运动中,活塞的顶部与气缸之间形成进气和排气的空气压缩过程。气阀的工作原理如图2所示。 图2气阀的工作原理 1.2 NPT5 空压机的主要参数 表1为NPT5 的主要参数 表1 NPT5 的主要参数

实验

实验3 常温单轴拉伸实验 马 杭 编写 单轴拉伸实验是研究材料机械性能的最基本、应用最广泛的实验。由于试验方法简单而且易于得到较为可靠的试验数据,在工程上和实验室中都广泛利用单轴拉伸实验来测取材料的机械性能。多数工程材料拉伸曲线的特性介于低碳钢和铸铁之间,但其强度和塑性指标的定义与测试方法基本相同,因此通过单轴拉伸实验分析比较两种材料的拉伸过程,测定其机械性能,在机械性能的试验研究中具有典型的意义,掌握其拉伸和破坏过程的特点有助于正确合理地认识和选用材料,了解静载条件下结构材料的许用应力的内涵。 一、实验目的 1.通过单轴拉伸实验,观察分析典型的塑性材料(低碳钢)和脆性材料(铸铁)的拉伸过程,观察断口,比较其机械性能。 2.测定材料的强度指标(屈服极限S σ、强度极限b σ)和塑性指标(延伸率δ和面缩率ψ)。 二、实验设备 1.电子万能材料试验机WDW-100A(见附录一)。 2.计算机、打印机。 3.游标卡尺。 图3-1 圆棒拉伸试样简图 三、试样 材料性能的测试是通过试样进行的,试样制备是试验的重要环节,国家标准GB6397-86对此有详细的规定。本试验采用圆棒试样,如图1-1所示。试样的工作部分(即均匀部分,其长度为C l )应保持均匀光滑以确保材料的单向应力状态。均匀部分的有效工作长度0l 称为标距,0d 和0A 分别为工作部分的直径和面积。试样的过渡部分应有适当的圆角以降低应力集中,两端的夹持部分用以传递载荷,其形状与尺寸应与试验机的钳口相匹配。 材料性能的测试结果与试样的形状、尺寸有关,为了比较不同材料的性能,特别是为了使得采用不同的实验设备、在不同的实验场所测试的试验数据具有可比性,试样的形状与尺寸应符合国家标准(GB6397-86)。例如,由于颈缩局部及其影响区的塑性变形在断后延伸

实验实训12 空调压缩机的性能测试实验

实验实训12 空调压缩机的性能测试实验 一、测试原理 压缩机制冷量定义为试验直接测得的流经压缩机的制冷剂流量乘以压缩机吸气口的制冷剂气体比焓与排气口压力对应的膨胀阀前制冷剂液体比焓的差值。本压缩机性能测试系统采用第二制冷剂量热器法对压缩机的制冷量进行测试,其构造为蒸发器盘管悬置在一压力容器上部,下面是第二制冷剂液体,电加热器安装在第二制冷剂液面下,用电加热量平衡压缩机制冷量,用电加热量去计算出流经压缩机的流量。 二、设备概述 本测试系统由水冷冷凝器、储液器、膨胀阀、过冷器、量热器(第二制冷为环保制冷剂R123)、控制系统、测量系统。 1. 控制系统需控制五个参数,分别为压缩机吸气温度、压缩机吸气压力、过冷温度、压缩 2. 测量系统由五个压力变送器、四支PT100铂电阻及数据记录仪DA100及测试程序组成,各传感器及DA100配置如下表: 三、测试软件使用说明 压缩机测试平台软件是整个测试平台的终端软件,用来采集、处理、保存测试数据,以及

生成测试报告。 1.界面功能介绍 整个界面可以分为菜单、状态栏、调节器控制显示、实时数据图形显示、计算数据显示、功能选择按钮、页面显示选择和通讯状态指示栏,共8个部分。 菜单包括所有功能选择按钮的功能,同时包括高级控制功能和不常使用的功能; 状态栏用来指示当前系统的工作状态,用于提示; 调节器控制显示用于显示调节器当前的工作状态,和设定调节器的输出值; 实时数据图形显示用来显示实时数据和整个过程的数据变化状况; 计算数据显示用来显示瞬态计算数据; 功能选择按钮用来选择不通的功能,控制测试平台的工作以及查看设定相关数据; 页面显示用来选择实时数据的显示方式; 通讯状态指示栏用来显示上位机(PC)和下位机(数据采集仪DA100、调节器UT350、可编程控制器PLC、压缩机电量采集仪8902F、量热器电量采集仪8905F)的通讯状态; 2.菜单 菜单包括系统、系统设置、数据处理和帮助四个一级菜单,每个菜单都有相应的子菜单。 2.1 系统菜单 系统菜单主要用于管理系统用户和控制测试开始、停止和退出,如下图所示: 高级用户登陆用于系统权限管理,高级用户登陆后可以使用用 户管理、硬件配置等高级功能。如右图所示,在未登陆前,用户 无权限进行用户管理,同时也无权限对硬件进行配置(系统设置菜 单内容),快捷键(Ctrl+L)。 用户管理用来管理使用该平台用户的权限,快捷键(Ctrl+M)。 注销用户用来退出当前使用者的权限设置功能。 开始测试用来启动、停止测试功能,和开始测试按钮具有完全相同的功能,快捷键(Ctrl+R)。退出菜单用来退出整个测试平台,快捷键(Ctrl+Q)。 2.2 系统配置菜单 注:本菜单只有在设备更换或测量不正常时使用,在设备正常使用时切无操作,不然可能会引起错误。 系统设置菜单包括工况设置、铭牌设置和硬件初始化设置(权限设置,有效登陆后激活)。 工况设定(Ctrl+T)用来设定工况控制的目 标值,自动更新调节器的设定值,和按钮工 况设定功能完全相同; 铭牌设定(Ctrl+N)用来设置压缩机铭牌,和 铭牌设定按钮功能完全相同; 硬件初始化菜单在测试进行过程中无效; 通讯端口配置(Ctrl+O)用来设置下位机设 备的通信端口; 冷凝温度(排气压力)调节器初始化、蒸发温 度(吸气压力)调节器初始化、过冷温度调节器初始化、吸气温度调节器初始化、环境温度调节器分别用来初始化相应的调节器; 电量表8902F初始化用来初始化压缩机电量采集仪; 电量表8905F初始化用来初始化量热器电量采集仪; 数据采集仪初始化用来初始化DA100数据采集仪,并恢复数据采集输入类型为系统默认值;

往复活塞式压缩机性能测定实验汇总

一、目的要求 1.了解往复活塞式压缩机的结构特点; 2.了解温度、压差等参数的测定方法,计算机数据采集与处理;3.掌握压缩机排气量的测定原理及方法; 4.掌握压缩机示功图的测试原理、测量方法和测量过程; 5.了解脉冲计数法测量转速的方法; 6.掌握测试过程中,计算机的使用和测量。 单作用压缩机工作原理图

二、实验仪器、设备、工具和材料

往复活塞式压缩机性能测定实验验装置简图 1-消音器2-喷嘴3-压力传感器4-温度传感器5-减压箱6-调节阀7-压力表8-安全阀9-稳压罐10-单向阀11-温度传感器12-压力传感器13-温度传感器14-吸入阀15-控制柜16-计算机17-接近开关18-冷却水排空阀19-进水阀20-排水管 注:图中虚线为信号传输线 三、实验原理和设计要求 活塞式压缩机原理示意简图 1.活塞压缩机排气量的测定实验的实验原理

用喷嘴法测量活塞式压缩机的排气量是目前广泛采用的一种方法。它是利用流体流经排气管道的喷嘴时,在喷嘴出口处形成局部收缩,从而使流速增加,经压力降低,并在喷嘴的前后产生压力差,流体的流量越大,在喷嘴前后产生的压力差就越大,两者具有一定的关系。因此测出喷嘴前后的压力差值,就可以间接地测量气体的流量。排气量的计算公式如下: 式中: q V:压缩机的排气量,m3/min, C:喷嘴系数,根据喷嘴前后的压力差,喷嘴前气体的绝对温度,在喷嘴系数表中查取,见本实验教材; D:喷嘴直径,D=19.05mm: H:喷嘴前后的压力差,mmH20; p0:吸入气体的绝对压力,Pa; T0:压缩机吸入气体的绝对温度,K; T1:压缩机排出气体的绝对温度,K。 通过测量装置,计算机采集吸入气体温度T0、排出气体温度T1、喷嘴压差H,并由计算机已存储的喷嘴系数表,计算出喷嘴系数,用上述公式计算出排气量q V。 2.传感器的布置和安装 排气量的测试需要测量出喷嘴前后的压力差、环境温度、排气温度三个参数,因此需要安装测量这三个参数的传感器。它们的布置如图1-2所示。

实验五__岩石单轴压缩实验

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

Ⅱ型压缩机性能测定实验指导书

活塞式压缩机性能测定 实验指导书 V3.0 北京化工大学

活塞式压缩机性能测定实验 一、实验目的 1.活塞式压缩机性能曲线测试 压力比—排气量曲线(ε— Q ) 压力比—轴功率曲线(ε— Ne ) 压力比—效率曲线(ε—η) 2.活塞式压缩机闭式示功图 3.实验数据、实验曲线的显示存储和打印。 二、实验设备 1.实验装置如图1所示。 2.压缩机性能参数: 1)型号:TA-80型一级三缸风冷移动式空气压缩机; 2) 气缸直径:D=80毫米×3个 3) 活塞行程:S=60毫米 =0.5立方米/分(额定工况下) 4) 排气量:Q 5) 轴功率:Nz<4千瓦(额定工况下) 6) 回转速:n=875 rpm =0.8 Mpa(表) 7) 额定排气压力:P 2 3.三相交流异步电动机型号:Y112M-2FSY 1) 额定功率 4 kW 2) 转速 875 rpm 3) 额定电压 V=380V 4) 额定电流 I=8.2A 5) 频率 50Hz 6) 电机效率η=0.882 7) 功率因数 cosφ=0.88 =97% 8) 皮带传动效率η C 4.辅助装置 1) 控制箱和操作台 2) 储罐:容积V=0.17米3;直径D=400毫米长度L=1.7米 3) 低压箱及喷嘴喷嘴直径d=9.52 mm 4) 导管及调节阀 5.主要测量仪器及仪表 1)喷嘴流量测量装置

2)差压变送器 3)压力变送器 4)温度变送器 5)磁电式齿轮转速传感器 图1 空气压缩机性能实验装置简图 1.喷嘴 2.差压变送器 3.温度变送器 4.出口调节阀 5.压力变送器 6.压力变送器 7.气缸 8.电动机 9.电气控制箱 10.储气罐 三、实验步骤 1.方法:本实验用调节压缩机储罐出口调节阀来改变压力比ε大小,以得到不同的排气量、功率、效率; 根据GB3853-83《一般用容积式空气压缩机性能试验方法》标准规定,采用喷嘴测量压缩机的排气流量,标准喷嘴系数为C。 2.步骤: 1) 启动测量装置:启动计算机,运行“压缩机试验”程序,点击“试验”按钮进入试验条件输入画面,输入实验条件。点击“确认”按钮进入试验画面; 2) 压缩机启动:a.盘车——用手转动皮带轮一周以上;b.将储气罐出口调节阀完全打开;c.转动压缩机控制箱旋钮——启动压缩机; 3)点击“清空数据”按钮, 4)调储气罐出口调节阀,改变排气压力(间隔0.05Mpa),等试验系统稳定后,记录各项数据。(运转中,如发现有不正常现象应及时停车); 5)停车:转动压缩机控制箱旋钮——关闭压缩机(注意:此时不得转动储气罐出口调节阀)。 四、压缩机参数计算 1.实测排气量计算

汽车空调压缩机性能测试台

汽车空调压缩机性能测试台 林穗斌(广州电器科学研究所,广州市 5l0300) l 前言 衡量汽车空调压缩机性能的好坏,检验产品性能是否达到设计要求,汽车空调系统与压缩机的匹配,都必须准确知道压缩机的性能参数,即压缩机的制冷量、输入功率、COP 值和不同转速下其性能参数的变化。为满足产品检测的需要,我们研制出汽车空调压缩机性能测试台。 2 基本结构及工作原理 图l 结构框图 该测试台由动力系统、制冷系统、电气测 控系统、数据采集处理及计算机系统组成。 如图l 所示。2.l 动力系统 该测试台适用于依靠汽车发动机提供动力的非独立式汽车空调压缩机,与其它制冷压缩机不同之处在于它必须依靠外加动力来带动压缩机工作,在测试台中必须具备一套动力装置带动压缩机工作。动力系统由电动机、变频调速器、转矩测试仪组成。电动机提供压缩机所需要的动力,通过离合器带动压缩机工作,变频调速器通过调频来实现对电动机线性调速,从而改变压缩机的旋转速度,以适应检测不同转速下压缩机的性能参数的目的。通过转矩测试仪测量电动机的扭矩和转速,从而求出压缩机的输入功率。 ?2l ?200l 年第l 期 《电机电器技术》# ######################################################?测试技术?

2.2 制冷系统 本测试台采用第二制冷剂电量热器法作为主测,其原理是利用量热器内充注的与被测压缩机制冷系统相隔离的第二制冷剂作为热交换介质,将制冷系统产生的冷量与电加热器产生的热量相互交换,达到平衡时,通过测量加热电量而得出制冷量的一种间接试验方法;同时采用液体质量流量计法作为辅测,其原理是通过测量制冷系统单位时间内所流过的液态制冷剂的质量,计算出它在规定工况条件下转换成气态所必须吸收的热量,即制冷量。计算公式如下: O 0= l 3.6m f (1gl -1fl )V l /V gl O 0———制冷量;W m f ———制冷剂质量流量;kg /11gl — ——规定工况下压缩机吸入的制冷剂气体比焓;kJ /kg 1fl ———规定工况下对应于排气压力的膨胀阀前制冷剂液体比焓;kJ /kg V l ———压缩机吸气口制冷剂气体实际比容;m 3/kg V gl ———规定工况下压缩机吸入的制冷剂气体比容;m 3/kg 单级蒸气压缩式制冷循环的压焓图如图2所示。本测试台的制冷系统图如图3 所示。 图2 制冷循环压焓图 图3制冷系统图 压缩机吸入蒸发器内产生的过热低温低压制冷蒸气(l ’),经被测压缩机压缩成高温高压蒸汽排入冷凝器(l ’-2’ ),被冷却介质等压冷却,放出热量,凝结成液态(2’-3) ,液态制冷剂经过冷器进一步冷却成过冷液体(3-3’ ),高压制冷剂液体流过流量计后,经过? 3l ??测试技术?《电机电器技术》200l 年第l ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!期

压缩机性能测试实验.doc

制冷压缩机性能测试实验 一、实验目的 通过制冷压缩机实际运行测试实验,使学生了解并掌握以下内容: 1、制冷压缩机制冷量的测试方法; 2、蒸发温度、冷凝温度与制冷量的关系; 3、制冷系统主要运行参数及其相互之间的影响; 4、有关测试仪器、仪表的使用方法; 5、测试数据处理及误差分析方法。 二、实验原理 1、制冷压缩机的性能随蒸发温度和冷凝温度的变化而变化,因此需要在国家标准规定的工况下进行制冷压缩机的性能测试。 2、压缩机的性能可由其工作工况的性能系数COP 来衡量: Q COP W = 式中,0Q 为压缩机的制冷量; W 为压缩机输入功率。 3、在一个确定的工况下,蒸发温度、冷凝温度、吸气温度以及过冷度都是已知的。这样,对于单级蒸气压缩式制冷机来说,其循环p-h 图如图3 所示。 图3 图中,1点为压缩机吸气状态;4-5为过冷段。 在特定工况下,压缩机的单位质量制冷量是确定的,即:015q h h =- 。这样只要测得流经压缩机的制冷剂质量流量m G ,就可计算出压缩机的制冷量,即 0015()m m Q G q G h h =?=?- 4、压缩机的输入功率:开启式压缩机为输入压缩机的轴功率,封闭式(包括半封闭式和全封闭式)压缩机为电动机输入功率。 三、实验设备

整个实验装置由制冷系统及换热系统、参数测量采集和控制系统共三部分组成: 1、制冷系统采用全封闭涡旋式制冷压缩机,蒸发器为板式换热器,冷凝器为壳管式换热器,节流装置为电子膨胀阀。 1.1冷却水换热系统由冷却水泵、冷却水塔、调节冷凝器进水温度的恒温器和水流量调节阀门及管路组成; 1.2冷媒水换热系统由冷媒水泵、调节蒸发器进水温度的恒温器、调节水流量的阀门组成; 2、六个绝对压力变送器、十个PT100温度传感器、两个涡轮流量变送器分别对应原理图位置及安捷伦34970型数据采集仪和压缩机性能测试软件; 3、控制系统:通过三块山武SCD36数字调节器分别根据设定值与实测值的差值来调节冷却水、冷媒水的加热量和电子膨胀阀的开度,将机组运行控制在设定工况允许的范围内。 图4 四、实验方法 制冷工况由两个主要参数来决定,即蒸发温度和冷凝温度,制冷压缩机性能测试的国家工况名称 蒸发温度 ℃ 冷凝温度 ℃ 吸气温度 ℃ 标准工况 -15 +30 +15±3 最大压差工况 -30 +50 最大轴功率工况 +10 +50 空调工况(水冷) +5 +35 空调工况(风冷) +5 +55 试验工况的稳定与否,是关系到测试数据是否准确的关键问题,工况稳定的标志是主要的测试参数都不随时间变化。调节时需要特别地耐心、细致。 实际试验中是根据吸气压力来确定蒸发温度,冷凝温度是根据排气压力来确定。如果吸气温度也达到稳定,表明制冷量也达到稳定。本装置是通过: 1、调整冷却水流量和温度来稳定压缩机的排气压力; 2、调整冷媒水流量和温度来稳定压缩机的吸气温度;

压缩机检测方法和参数

压缩机检测方法和参数—压缩机性能测试 一、前言 制冷压缩机是制冷装置中最主要的设备,是制冷系统的动力装置和主机,相当于制冷机的心脏。它使制冷剂在系统的管路中循环,把来自蒸发器的低温低压制冷剂蒸汽压缩成高温高压的制冷剂蒸汽再排入冷凝器。 压缩机的作用可总结为: 1)从蒸发器中吸出蒸汽,以保证蒸发汽内一定的蒸发压力。 2)提高压力(压缩)以创造在较高温度下冷凝的条件。 3) 输送制冷剂,使制冷剂完成制冷循环。 压缩机性能的好坏直接影响到整机的制冷效果。而且,压缩机与制冷系统的匹配是否合理,不但涉及到整个装置的成本,而且对使用寿命和能耗均有影响,所以对压缩机的性能及有关参数的测试是非常有必要的。 对 压缩机性能的测试主要是测定压缩机运行时相关温度、压力、液位、转速、功率、振动、噪声、制冷剂流量、制冷量,其中制冷剂流量、制冷量及规定工况下的制冷 量是测试的重点。压缩机测试完后,需要对测试数据参照国家标准进行判断分析,以找出压缩机结构设计中问题,或者判断该压缩机是否运行良好。 本文将先对压缩机的测试原理、方法和相关规定做一个简单介绍,然后对测试过程进行描述,并对测试后数据进行分析、评价。以此对压缩机检测与分析的全过程进行描述和分析,不到之处,请大家批评指正。 二、压缩机测试的相关规定 为保证测试的统一性和结果的可靠性,国家规定了压缩机测试的相关标准,而该标准也即国际标准ISO 917-1974 中的《制冷压缩机的试验标准》。 2.1 一般规定 2.1.1 排除试验系统内的不凝性气体.确认没有制冷剂的泄漏. 2.1.2 系统内应有足够的符合有关标准规定的制冷剂.压缩机内保持正常运转用润滑油量. 2.1.3 循环的制冷剂液体内含油量应不超过2%(以质量计). 2.1.4 压缩机吸、排气口的压力一温度在同一部位测量,该测点应在吸、排气截止阀外(不带阀的封闭 压缩机为距机壳体)0.3m的直管段处。 2.1.5 排气管道上应设置有效的油分离器. 2.1.6试验系统装置的周围不应有异常的空气流动。 2.1.7 试验装置环境温度为30±5℃。 2.1.8 提供测量含油量而抽取制冷剂??—油混合物样品的设备。 2.2 试验规定 2.2.1 压缩机性能试验包括主要试验和校核试验,二者应同时进行测量。 2.2.2 校核试验和主要试验的试验结果之间的偏差应在±4% 以内,并以主要试验的测量结果为计算依 据。 2.2.3 压 缩机试验时,系统应建立热平衡状态,试验时间一般不少于1.5h。测量数据的记录应在试验 工况稳定半小时后,每隔20min测量一次,直至连续四次的测量 数据符合规定为止。第一次测量到第四次测量记录的时间称为试验周期,在该周期内允许对压力、温度、流量和液面作微小的调节。 2.2.4 主要试验方法 a. 第二制冷剂量热器法 b. 满液式制冷剂量热器法 c. 干式制冷剂量热器法 d. 制冷剂气体流量计法 2.2.5 校核试验方法 a. 水冷冷凝器量热器法 b. 制冷剂液体流量计法 c. 压缩机排气管道量热器法 2.3 测量仪表和精度的规定 2.3.1 一般规定 2.3.1.1 试验用仪表的类型,可采用一种或数种进行测量。 2.3.1.2 试验用仪表应在有效使用期内,并应有近期经国家计量部门或有关部门校正的合格证明。 2.3.2 温度测量仪表和精度 2.3.2.1 仪表:玻璃水银温度计、热电偶、电阻温度计、半导体温度计和温差计。 2.3.2.2 精度: a. 量热器的加热或冷却介质和制冷剂的进、出口温度:准确度±0.1℃; b. 冷凝器用于校核试验时的冷却水温度:准确度±0.1℃; c. 压缩机吸气温度、流量节流装置前温度:准确度±0.1℃; d. 其它温度:准确度±0.2℃; 2.3.2.3 温度测量的规定:

岩石力学实验方案

实验方案 实验一单轴压缩试验 一、实验得目得 以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,并测定其冻融前后得单轴抗压强度与杨氏弹性模量,且绘出应力—应变曲线。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受得载荷称为岩石得单轴抗压强度,即式样破坏时得最大载荷与垂直与加载方向得截面积之比. 本次试验主要测定饱与状态下试样得单轴抗压强度。 二、试样制备 (1)样品可用钻孔岩芯或在坑槽中采取得岩块,在取样与试样制备过程中,不允许发生人为裂隙。 (2)试样规格:经过钻取岩芯、岩样尺寸切割、岩样打磨几道工序制备成直径5cm、高10cm得圆柱体。 (3)试样制备得精度应満足如下要求: a沿试样高度,直径得误差不超过0.03cm; b试样两端面不平行度误差,最大不超过0.005cm; c端面应垂直于轴线,最大偏差不超过0、25°; d方柱体试样得相邻两面应互相垂直,最大偏差不超过0、25°。 三、主要仪器设备 1、制样设备:钻石机、切石机及磨石机. 2、测量平台、角尺、游标卡尺、放大镜、低温箱等。

3、压力试验机。 四、实验步骤 1、取加工好得岩石试样15块,放入抽真空设备中进行饱水处理,浸泡24h; 2、a.(1)从饱水后得试样中取3块,进行冻结前常温(+20℃)条件下岩石得单轴压缩试验,并记录应力—应变曲线等信息;(2)从剩下得饱水岩样中取出6块放入低温箱中,在恒温—10℃条件下冻结48h;(3)取出冻结后得3块岩样,进行冻结-10℃条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息;(4)取出冻结后另外3块岩样,在室内常温环境下自然解冻后,进行岩石冻结解冻后恢复到常温条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息; b、以剩余得6块试样为对象,把冻结温度设置为—30℃,重复a中步骤(2)~(4); 3、通过试验数据分析在两种冻结温度下,岩样冻结前、冻结中与冻结解冻后三种状态下三种岩石单轴压缩下强度、应力-应变曲线及弹性模量等参数得变化情况. 五.成果整理与计算 1、按下式计算岩石得单轴抗压强度: -———-岩石单轴抗压强度,MPa; ———-最大破坏荷载,N; -—-—垂直于加载方向得试样横截面积,mm2。 2、固体材料得弹性模量就是指弹性范围内应力与应变得比值,反映材料得坚固性.计算割线弹性模量E50,即应力应变曲线零荷载点与单

常温单轴拉伸实验、压缩实验、扭转实验

实验1 常温单轴拉伸实验 马 杭 编写 单轴拉伸实验是研究材料机械性能的最基本、应用最广泛的实验。由于试验方法简单而且易于得到较为可靠的试验数据,在工程上和实验室中都广泛利用单轴拉伸实验来测取材料的机械性能。多数工程材料拉伸曲线的特性介于低碳钢和铸铁之间,但其强度和塑性指标的定义与测试方法基本相同,因此通过单轴拉伸实验分析比较两种材料的拉伸过程,测定其机械性能,在机械性能的试验研究中具有典型的意义,掌握其拉伸和破坏过程的特点有助于正确合理地认识和选用材料,了解静载条件下结构材料的许用应力的内涵。 一、实验目的 1.通过单轴拉伸实验,观察分析典型的塑性材料(低碳钢)和脆性材料(铸铁)的拉伸过程,观察断口,比较其机械性能。 2.测定材料的强度指标(屈服极限S σ、强度极限b σ)和塑性指标(延伸率δ和面缩率ψ)。 二、实验设备 1.电子万能材料试验机WDW-100A(见附录一)。 2.计算机、打印机。 3.游标卡尺。 图1-1 圆棒拉伸试样简图 三、试样 材料性能的测试是通过试样进行的,试样制备是试验的重要环节,国家标准GB6397-86对此有详细的规定。本试验采用圆棒试样,如图1-1所示。试样的工作部分(即均匀部分,其长度为C l )应保持均匀光滑以确保材料的单向应力状态。均匀部分的有效工作长度0l 称为标距,0d 和0A 分别为工作部分的直径和面积。试样的过渡部分应有适当的圆角以降低应力集中,两端的夹持部分用以传递载荷,其形状与尺寸应与试验机的钳口相匹配。 材料性能的测试结果与试样的形状、尺寸有关,为了比较不同材料的性能,特别是为了使得采用不同的实验设备、在不同的实验场所测试的试验数据具有可比性,试样的形状与尺寸应符合国家标准(GB6397-86)。例如,由于颈缩局部及其影响区的塑性变形在断后延伸

制冷压缩机性能测试实验

制冷压缩机性能测试实验 试验台简介 本试验台采用图1所示系统,通过阀门的转换,可进行制冷压缩机性能测试实验、冷水机组性能实验、水-水换热器性能实验和水泵性能实验。 制冷压缩机性能实验系统由压缩机、冷凝器、蒸发器、电子膨胀阀、恒温器电参数仪等设备组成。压缩机吸气压力、吸气温度、排气压力分别控制在国家标准规定的状态下。吸气温度由恒温器2调节蒸发器冷媒水进口温度T9控制,吸气压力由电子膨胀阀控制,排气压力由恒温器1调节冷凝器冷却水进口温度T7控制。压缩机的实际制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。由此得到压缩机的主辅测质量流量,进而计算出标准工况下的主辅侧制冷量。压缩机的输入功率由电参数仪测得。在制冷系统内部安装多个压力和温度测点,可以方便地确定系统内部的状态。 冷水机组性能实验系统,由压缩机、冷凝器、蒸发器、热力膨胀阀、恒温器等设备组成。实验时,可以设置不同的冷媒水和冷却水温度。冷水机组冷媒水进口温度通过调节恒温器2中的电加热器控制,冷却水进口温度通过调节恒温器1中的电加热器控制,而出口温度则通过阀门调节。冷水机组的输入功率通过电参数仪表测得。冷水机组的制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。同时在系统中加入了相应的温度和压力测点,可以使学生能更加深入地了解冷水机组的工作特性。 水-水换热器性能实验系统,由冷水机组、恒温器、流量计、水泵等设备组成。冷热侧流体分别通过冷水机组和恒温器1获得。换热器冷侧和热侧流体进口温度分别通过恒温器2和恒温器1控制。通过测量换热器两侧流体进出口温度和两侧的流量,可以求出换热量,在已知换热面积的前提下,可以求出换热器的换热系数K。 水泵性能实验系统,由水泵、流量计、电参数仪等设备组成。水泵的流量通过流量计测得,水泵的扬程通过水泵进出口压力变送器测得。在水泵的出口处设立调节阀,通过改变阀门的开度来改变水泵进口处的参数,获得水泵变工况运行特性曲线。

单轴压缩

单轴压缩 单轴压缩软件包提供圆柱形岩石和混凝土试件的压缩和变形试验运行用的所有硬件和软件附件。该压缩软件包包括: 力传感器 对低载荷试验--一个661型力传感器。一个把该力传感器附着 到载荷框架上的附着件。对高载荷试验-一个660.23P型元件。 直接安装到作动缸口。一个信号调节器-供每个力传感器用。2 档标定。一个从力传感器到调节器的电缆0到10个间隔片-取 决于载荷序列的构形和附带的硬件。 一个643型压盘夹具 应变传感器 ?一个轴向应变测量元件一个周向应变测量元件一个信号调节器和各传感器的电缆 790.61型岩石力学软件 ?按照ASTM D2938-86, D-3148-86, 4341-84 和4405-84的岩石单轴压缩试验ISRM建议的确定岩石单轴压缩强度和单轴压缩中岩石材料的变形能力的方法。

子。设计高刚度载荷力链,以使脆性 材料试验时贮存在框架和载荷力链 部分的变形能量减到最小。在进行关 于试件破坏后性状的试验时,这特别 关键。对于要求大于1000 kN (220 kip)的压缩试验,可以卸除载荷传感 器,并可用适合框架载荷的差压(P) 传感器测量力。由于作动器摩擦力, 要求的力小于1000 kN (220 kip) 的试验,应当使用一个力传感器。请 注意,315型载荷框架试用的载荷, 超过了该力传感器的范围。该试验区 域前、后的Lexan板(未示出),在 进行单轴压缩强度试验时,确保防护 试件碎片伤人。除了单轴压缩试验的 机械夹具外,提供了790.61型单轴 岩石力学软件,以便执行某些最普通 的压缩试验,并分析得到的数据。这 软件包通过一系列预定步骤,指导你 进行标准的ASTM试验和TSRM建 议的试验方法。该软件在鼠标驱动和点击环境中运行,并使用下拉菜单和图标,提供方便和直观的操作界面。该软件也包括:运行时间率控制(它使你在试验期间增加或减少加载率或应变率,以更好地控制破坏后试验,并充分改进)和实时显示所选择的反馈的运行时间图(使你在运行时监控试验进程)。该分析特 征自动地分析收集的数据,并产生一个完整的专业试验报告。

往复压缩机性能综合测试实验指导书综述

实验一往复压缩机性能综合测试 一、实验目的 1.通过实验掌握压缩机压力、温度、功率、排气量,转速等有关性能参数的测 量方法。研究空气压缩机在转速一定时各状态参数之间的相互关系,并给出压缩机在不同压力比时,压缩机的容积系数,等温效率以及轴功率的变化曲线。 2.指示图的录取方法(即气缸内变化压力的测量方法),并对录取的指示图进 行分析研究,深入了解单级压缩机实际工作过程的物理本质。利用录取的指示图计算压缩机的指示功率,压缩机的容积系数和气阀功率损失。通过实验分析影响气量、功率的各个因素。 3.熟悉位移传感器的特性要求和使用方法,掌握气阀运动规律的测试方法;对 所录取的气阀阀运动规律进行分析研究并计算提前和延后关闭角。 二、实验原理 1.压缩机性能实验 依据GB/T 3853-1998的附录A《一般用容积式空气压缩机性能试验》(规范性附录)的要求进行。对于移动式小型空气压缩机,多为风冷、单级压缩,被测系统只有压缩机和储气罐,没有独立的冷却器(储气罐兼作后冷器)。性能试验应在规定的保证工况(规定的环境压力、温度)下进行,最终测定或计算出空压机的排气压力、排气温度、标准容积流量、转速、轴功率、比功率和效率等7个指标。为此需对整个空压机系统的多个热力学参数和机械参数进行测量。其中空压机热力学参数包括:吸气温度、排气温度、吸气压力、排气压力、储气罐压力和出口容积流量。有些参数需要多个测点。其中,压力测量仪表的误差应在±0.4%以内,大气压力在±0.15%以内;吸排气温度和冷却水温度测量的绝对误差应在±0.2℃以内,由于空压机最高排气温度不高于200℃,相当于±0.1%。2.排气量的测定 我国多采用喷咀截流法测量压缩机的排气量,其测试装置和喷咀均应符合国家标准GB15478-1995的规定。

单轴抗压试验

实验三、岩石单轴抗压强度的测定 一、实验目的 岩石在单轴压缩荷载作用下所能承受的最大压应力称为单轴抗压强度。岩石的单轴抗压强度实验是研究岩石性质的最基本的方法。通过本实验, 要了解标准试件的加工机械、加工过程及检测程序,掌握岩石单向抗压强 度的测试过程及计算方法。 二、实验仪器及工具 (1)试件加工机械。钻石机或车床、锯石机、磨石机或磨床。 (2)检验工具。水平检测台、百分表架及百分表、游标卡尺(精度0.02mm)、直角尺。 (3)材料试验机。 三、实验原理

垂直或平行岩层层理方向对试块进行加载,试件的破坏载荷与试件的横载面积之比即为岩石的单向抗压强度。 四、实验步骤 (1)测定前核对岩石名称和岩样编号,对试件颜色、颗粒、层理、节理、裂隙、风化程度、含水状态以及加工过程中出现的问题等进行描述,并填入记录表内。 (2)检查试件加工精度,测量试件尺寸(应在试件高度中部两个互相垂直的方向测量其直径,取算术平均值)填入记录表内。 (3)选择材料实验机度盘时,一般应满足下式: 0.2P0

相关文档
相关文档 最新文档