文档库 最新最全的文档下载
当前位置:文档库 › 化工原理——浮头式列管式换热器设计

化工原理——浮头式列管式换热器设计

化工原理——浮头式列管式换热器设计
化工原理——浮头式列管式换热器设计

化工原理课程设计任务书

设计题目:列管式换热器的设计选型

班级:生物工程专业2010级本科班

指导教师:蒋玉梅李霁昕

设计时间:2012.05.25~2012.06.02

甘肃农业大学食品科学与工程学院

二O一二年五月

目录

任务书 (3)

1. 设计题目 (3)

2. 设计条件 (3)

3. 设计任务 (3)

设计方案简介 (3)

设计原则 (3)

1. 满足工艺和操作要求 (3)

2. 满足经济上的要求 (3)

3. 保证安全生产 (4)

工艺计算及主体设备设计计算选型 (4)

1. 流体定性温度的确定 (4)

2. 估算传热面积 (4)

3. 选定换热器的概略尺寸 (5)

4. 折流板 (5)

5. 总传热系数 (6)

(1)管侧传热系数 (6)

(2)壳侧传热系数 (7)

(3)污垢系数 (7)

(4)总传热系数 (8)

化工原理课程设计任务书

甘肃农业大学食品科学与工程学院

一、化工原理课程设计的重要性

化工原理课程设计是学生学完基础课程以及化工原理课程以后,进一步学习工程设计的基础知识,培养学生工程设计能力的重要教学环节,也是学生综合运用化工原理和相关选修课程的知识,联系生产实际,完成以单元操作为主的一次工程设计的实践。通过这一环节,使学生掌握单元操作设计的基本程序和方法,熟悉查阅技术资料、国家技术标准,正确选用公式和数据,运用简洁文字和工程语言正确表述设计思想和结果;并在此过程中使学生养成尊重实际问题向实践学习,实事求是的科学态度,逐步树立正确的设计思想、经济观点和严谨、认真的工作作风,提高学生综合运用所学的知识,独立解决实际问题的能力。

二、课程设计的基本内容和程序

化工原理课程设计的基本内容有:

1、设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。

2、主要设备的工艺计算:物料衡算、能量衡算、工艺参数的选定、设备的结构设计和

工艺尺寸的设计计算。

3、辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备规格型号的选定。

4、工艺流程图:以单线图的形式描绘,标出主体设备与辅助设备的物料方向、物流量、

主要测量点。

5、主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。

6、编写设计说明书:可按照以下几步进行:

⒈课程设计准备工作

①有关生产过程的资料;

②设计所涉及物料的物性参数;

③在设计中所涉及工艺设计计算的数学模型及计算方法;

④设备设计的规范及实际参考图等。

⒉确定设计方案

⒊工艺设计计算

⒋结构设计

⒌工艺设计说明书

⑴封面:课程设计题目、学生班级及姓名、指导教师、时间。

⑵目录

⑶设计任务书

⑷概述与设计方案的简介

⑸设计条件及主要物性参数表

⑹工艺设计计算

⑺辅助设备的计算及选型

⑻设计结果汇总表

⑼设计评述

⑽工艺流程图及设备工艺条件图

⑾参考资料

⑿主要符号说明

以上即为我们在课程设计中所涉及的主要内容。

三、列管式换热器设计内容

1、确定设计方案

(1)选择换热器的类型;(2)流程安排

2、确定物性参数

(1)定性温度;(2)定性温度下的物性参数

3、估算传热面积

(1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量

4、工艺结构尺寸

(1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)传热管排列和分程方法;(5)壳体内径;(6)折流板;(7)其它附件;(8)接管

5、换热器核算

(1)传热能力核算;(2)壁温核算;(3)换热器内流体的流动阻力

四、设计任务和操作条件

某厂用井水冷却从反应器出来的循环使用的有机液。欲将6000kg/h的植物油从140℃冷却到40℃,井水进、出口温度分别为20℃和40℃。若要求换热器的管程和壳程压强降均不大于35kPa,试选择合适型号的列管式换热器。定性温度下有机液的物性参数列于附表中。

附表

项目密度,kg/m3 比热,KJ/(k g·℃)粘度,P a·s热导率,kJ/(m·℃)

植物油950 2.261 0.7420.172

五、主要设备结构图(示例)

根据设计结果,可选择其它形式的列管换热器。

六、设计进度

1. 设计动员,下达设计任务书;搜集资料,阅读教材,拟定设计进度 1天;

2. 设计计算(包括电算,编写说明书草稿)2-3天;

3. 绘图2天;5. 整理,抄写说明书 1天;6. 设计小结及答辩 1天。

七、设计成绩评分体系

考核成绩分为五档:优秀(90-100分)、良好(80-89分)、中等(70-79分)、及格(60-69分)、不及格(<60分)。

三.列管式换热器设计内容1.确定设计方案

(1).由于T m?t m=(140?40)

20?40?20

20

=60>50℃,两流体间的温差

较大,需要温度补偿,同时便于污垢清洗。所以采用浮头式换热器。

(2).流程安排

与植物油相比,水易结垢且给流体的给热系数一般较大,而且植物油的粘度大。所以,井水走换热器的管程,植物油走换热器的壳程。

2.确定物性参数

(1).定性温度

井水的定性温度为(20+40)/2=30℃,植物油的定性温度为(140+40)/2=90℃.

(2).定性温度下的物性参数

3.估算传热面积

(1).热负荷

Q=m s2c p2(T1-T2)=6000*2.216*10?3*(140-40)/3600=376833w

井水用量

W=Q

c p?(t2?t1)=376833?3600

4.174?20?10

=16250.6kg h

(2).计算两流体的平均温差先计算逆流平均温差

△t m逆=△t2?△t1

ln△t2

△t1=140?40?(40?20)

ln(140?40)

40?20

=49.7℃

再按照单壳程,多管程进行计算,对逆流传热温差进行校正

P=t2?t1

T1?t1=40?20

140?20

=0.167,

R=T1?T2

t2?t1=140?40

40?20

=5

由P,R得校正系数φ=0.88>0.80,可行

所以校正后的传热温度为

△t m=φ△t m=0.88?49.7=43.7℃

(3).估算传热面积并初选换热器型号

参照列管式换热器中K值大致范围,根据两流体的具体情况。初选总传导系数K=350w(m2·k),于是,换热器的传热面积便可初步确定

A=Q

K△t m =376833

350?43.7

=24.6m2

取管内井水流速u=1.1m s

换热器选用普通无缝钢管?25mm?2.5mm,管内径d=0.025-0.0025*2=0.02.于是单程管数

N=

16250.6

995.7

π?0.022?1.1?3600

=13.2

取n=14根,又由传热面积A=nπd0l,=24.6m2可以求得单程管长

l,=24.6

14?3.14?0.025

=22.4m

若选用6m长的管,4管程。则一台换热器的总管程为4*14=56根。则查表可得

初选换热器的主要参数

4.工艺尺寸结构

(1).管径与管内流速

选用普通无缝钢管?25mm?2.5mm,管内径d=0.025-0.0025*2=0.02m.

取管内流速u1=1.1m s.

(2).管程数

该换热器管程数为4

(3).平均传热温差校正及壳程数

P=t2?t1

T1?t1=40?20

140?20

=0.167,

R=T1?T2

t2?t1=140?40

40?20

=5

由查表得平均传热温差系数φ=0.88>0.80.同时壳程流体流

量大,取单壳程。

(4).传热管排列和分程方法

采用组合排列法,即每程内安正三角形排列,隔板两侧采用正方形排列。

取管心距t=1.25d0,则t=1.25*25=32mm.

隔板中心离其最近一排的中心距离

S=t2+6=22mm

各程相邻管心距为44mm。

(5).壳体内径

估算,取利用率η=0.65 采用多管程结构,壳体内径D=1.05a

η

=343.7mm.所以可取所以壳体内径D=1.05*32*68

0.65

D=400mm.。

(6).折流挡板

采用圆缺型折流挡板,在折流圆缺高度为壳径25%。则切去高度为h=0.25*400=100mm.

?1=39

折流板数目N B=6

0.15

(7).其他附件

拉杆数及直径选取

本换热器壳体内径为400mm,故其拉直径为?16mm,拉杆数量为8根。由下表可知

拉杆直径

拉杆数量

(8).接管

壳程流体进出口接管,取植物油流速u i=0.14m s

d1=4v

πu =4?6000/(3600?950)

3.14?0.14

=0.126m

圆整后取管内径为120mm.

管程流体进出口接管取井水流速u2=1.1m s

d2=4?16250.6/(3600?995.7)

3.14?1.1

=0.072m

圆整后取管内径为70mm.

五.换热器核算

1.传热功能核算

(1).计算管程对流体核算

该型号换热器总管数为68根,由于是4管程,所以管程的流通面积A1为

A1=π

4?0.022?68

4

=5.338?10?3m2

这样,管内井水的实际流速

u1=16250.6

995.7?3600?5.338?10?3

=0.85m s

R e1=du1ρ

μ=0.02?0.85?995.7

0.801?10

=21132.3

P R1=C p1u1

λ=4.174?103?0801?10?3

0.618

=5.41

对流传热导数

α1=0.023λ

d

R e0.8P r n

=0.023*0.618

0.02

?21132.30.8*5.410.4 =4026.4w(m2?k)

注:当流体被加热时,n=0.4

当流体被冷却时,n=0.3. (2).计算壳程对流传热导数α0

Α0=0.36d e u0ρ

μ00.55C

p1u0

λ

1

3μ0

μw0

0.14

换热器列管中心距t=32mm(与固定板相同),且取h=0.15m.

流体通过管间的最大面积,

A=hD(1-d0

l

)

=0.15*0.4*(1-0.025

0.032

) =0.013m2

壳程中植物油的流速

u0=6000

3600?950?0.013

0.135m2

当量直径

d e=4(t2?π

4

d02)

πd

=4?(0.0322?π

4

?0.0252)

π?0.025

=0.027m

R e0=d0u0ρ

μ

=0.027?0.135?950

0.742?10?3

=4666.8

P r0=C pμ

λ

=2.261?103?0.742?10?3

0.172 =9.75

由于壳程流体被冷却,所以(μ

μw )

0.14

=0.95,于是壳程流

体的传热系数α0为

Α0=0.36λ

d R e00.55P r013μ

μw

0.14

污垢热阻

管程与壳程污垢热阻分别取

R s1=0.00058(m2?k)/w

R s0=0.00018(m2?k)/w

核算总传热系数k 0值 K 0=1

1α0+R s0+R s1d 0d 1+d 0α1d 1

=

1

1+0.00018+0.00058?1.25+1.25

=308.1w m ?k 完成换热任务所需传热面积A 0为 A 0=Q k △t m

=

376833308.1?43.7

=28.0m 2 换热面积裕度

31.6?28.031.6

?100%=11.4%

从换热面积核算可知,所选换热器可用。 2.壁温核算

由于换热器的换热管内侧热阻较大,会使传热管壁为你升高,减低了传热管的壁温之差,但在操作初期,污垢热阻较小,壳体和传热管壁温差可能较大,计算应按最不利的换热条件考虑,因此,去两侧污垢热阻为零计算传热管壁温。 壁温可由下式的 t w =

T m c +t m h 1c +1h

式中,已知

αc =α1=4026.4w (m 2?k) αh =α0=492.5w (m 2?k)

且,液体的温度

T m=0.4T1+0.6T2

T m=0.4t2+0.6t1

换热管平均壁温

t w=80/4026.4+28/492.5

1/4026.4+1/429.5

=29.8℃

壳体壁温可近似取为壳程流体的平均数温差,即t w=80℃壳体壁温与传热管壁温之差为

△t=80-29.8=50.2℃

由于换热器壳程流体的温差较大,故需要设置温度补偿,由于换热器壳程压力较大,因此,需选用浮头式换热器较为适宜。

3.核算压力降

(1).计算壳程压力降

壳程压力降通式

∑△p1=(△p i+△p r)N s N p

此式中,壳程数为1,管程数为4.

R ei=d i u iρ

μ

=0.02?0.85?995.7

0.801?10.?3

21132.2

可知,管程流体呈湍流状态。

取管壁粗糙度?=0.1mm,相对粗糙度ε

d1=0.1

20

=0.005,查图可摩擦

因数λ=0.035,所以。

△P i=λL

d ρu2 2

=0.035*

6

0.02

?

995.7?0.852

2

=3776.8Pa △P r =3?ρu 22

=3*

995.7?0.852

2

=1097.1Pa

于是,∑△P i = 3776.8+1097.1 ?1?4 =19423.6Pa<30KPa (2).计算壳程压力降 壳程计算通式:

∑△P 0=(△P 1+△P 2)F S N S 式中 △P 1——流体横过管束的压力将 △P 2——流体通过折流挡板缺口压力将

F s ——壳程压力的垢层校正系数,无因此,对于液体取1.15.对气体取1.0

N s ——壳程数

而 2

)

1(2

001u N n Ff p B c ρ+=?

2

)25.3(2

02u

D h N p B ρ-=?

F ——管子排列方法对压力降的校正系数,对正方形斜转45o 排列,F=0.4,

f o ——壳程流体的摩擦系数,当Re ﹥500时,228.0)(Re 5-=o fo c n ——横过管束中心线的管子数 n n c 19.1=

N B ——折流挡板数 h ——折流挡板间距,m

D ——壳径,m d o ——换热器外径,m

0u ——按壳程流通截面积S 计算的流速,而A=h (D-0d n c )=0.02252m 391-==

折流板间距

传热管长

B N

代入数值得:

A=h (D-0d n c )=0.15(0.4-10×0.025)=0.02252m u 0=60003600?950?0.0225=0.078m s

R e0=

d 0u 0ρμ

=

0.025?0.078?9500.742?10

=2496.6>500

f 0=5.0 R e0 ?0.228=5.0?2496.6?0.228 =0.84 则

2

)1(2

001u N n Ff p B c ρ+=?=0.4×0.84×10×40×950×*

0.0782

2

=388.4Pa

2)25.3(2

02u D h N p B ρ-=? =39×(3.5-0.4

15

.02?)×950?0.07822

=309.9Pa

FsNs p p p s )(21?+?=?∑

= 1.15×1×(388.4+309.9)

=803.05Pa<30kpa

经过以上的核算,管程压力降和壳程压力降都符合要求。 六.工艺流程图

.

换热器主要结构尺寸和计算结果表

符号说明

设计评述

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,它们也是这些行业的通用设备,并占有十分重要的地位。随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。列管式换热器是最典型的管壳式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。

列管式换热器是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,内部装有管束,管束两端固定在管板上。进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。换热管在管板上可按等边三角形或

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

化工原理课程设计

绪论 1.1换热器在工业中的应用 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可或缺的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化元件诞生。随着研究的深入,工业应用取得了令人瞩目的成就,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T型翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张情况。 换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。 随着环境保护要求的提高,近年来加氢装置的需求越来越多,如加氢裂化,煤油加氢,汽油、柴油加氢和乳化油加氢装置等建设量增加,所需的高温、高压换热器数量随之加大。螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器、蜜蜂盖板式换热器技术发展越来越快,不仅在承温、承压上满足装置运行要求,而且在传热与动力消耗上发展较快,同时亦适用于乙烯裂解、化肥中合成氨、聚合和天然等场合,可满足承压高达35MPa,承温达700℃的使用要求。在这些场合,换热器占有的投资占50%以上。 1.2换热器的研究现状 20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型、高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展、私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张、全球环境气温的不断升高、环境保护要求的提高和换热器及空冷式换热器及高温、高压换热器带来了日益广阔的应用前景。在地热、太阳能、核能、余热回收、风能的利用上,各国政府都加大了投入资金力度。 国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面华南理工

化工原理课程设计最终版

青岛科技大学 化工课程设计 设计题目:乙醇-正丙醇溶液连续板式精馏塔的设计指导教师: 学生姓名: 化工学院—化学工程与工艺专业135班 日期:

目录一设计任务书 二塔板的工艺设计 (一)设计方案的确定 (二)精馏塔设计模拟 (三)塔板工艺尺寸计算 1)塔径 2)溢流装置 3)塔板分布、浮阀数目与排列 (四)塔板的流体力学计算 1)气相通过浮阀塔板的压强降2)淹塔 3)雾沫夹带 (五)塔板负荷性能图 1)雾沫夹带线 2)液泛线 3)液相负荷上限 4)漏液线 5)液相负荷上限 (六)塔工艺数据汇总表格 三塔的附属设备的设计 (一)换热器的选择 1)预热器 2)再沸器的换热器 3)冷凝器的换热器 (二)泵的选择 四塔的内部工艺结构 (一)塔顶 (二)进口 ①塔顶回流进口 ②中段回流进口 (三)人孔 (四)塔底 ①塔底空间 ②塔底出口 五带控制点工艺流程图 六主体设备图 七附件 (一)带控制点工艺流程图 (二)主体设备图 八符号表 九讨论 十主要参考资料

一设计任务书 【设计任务】设计一板式精馏塔,用以完成乙醇-正丙醇溶液的分离任务 【设计依据】如表一 表一 【设计内容】 1)塔板的选择; 2)流程的选择与叙述; 3)精馏塔塔高、塔径与塔构件设计; 4)预热器、再沸器热负荷及加热蒸汽消耗量,冷凝器热负荷及冷却水用量,泵的选择; 5)带控制点工艺流程图及主体设备图。 二塔板的工艺设计 (一)设计方案的确定 本设计的任务是分离乙醇—正丙醇混合液,对于二元混合物的分离,应采用连续精馏流程,运用Aspen软件做出乙醇—正丙醇的T-x-y 相图,如图一:

图一:乙醇—正丙醇的T-x-y相图 由图一可得乙醇—正丙醇的质量分数比为0.5:0.5时,其泡点温度是84.40o C (二)精馏塔设计模拟 1.初步模拟过程 运用Aspen软件精馏塔Columns模块中DSTWU模型进行初步模拟,并不断进行调试,模拟过程及结果如下:

化工原理课程设计样板

课程设计 课程名称化工原理课程设计 题目名称热水泠却器的设计 专业班级XX级食品科学与工程(X)学生姓名XXXX 学号XXXXXXXX 指导教师 二O一年月日

锯齿形板式热水冷却器的设计任务书一、设计题目: 锯齿形板式热水冷却器的设计 二、设计参数: (1)处理能力:7.3×104t/Y热水 (2)设备型式:锯齿形板式热水冷却器 (3)操作条件: 1、热水:入口温度80℃,出口温度60℃。 2、冷却介质:循环水,入口温度30℃,出口温度40℃。 3、允许压降:不大于105Pa。 4、每年按330天,每天按24小时连续运行。 5、建厂地址:蚌埠地区。

目录 1 概述 (1) 1. 1 换热器简介 (1) 1. 2 设计方案简介 (2) 1. 3 确定设计方案 (2) 1. 3. 1 设计流程图 (3) 1. 3. 2 工艺流程简图 (4) 1. 3. 3 换热器选型 (4) 1. 4 符号说明 (4) 2 锯齿形板式热水冷却器的工艺计算 (5) 2.1 确定物性数据 (5) 2.1.1 计算定性温度 (5) 2.1.2 计算热负荷 (6) 2. 1. 3 计算平均温差 (6) 2. 1. 4 初估换热面积及初选板型 (6) 2. 1. 5 核算总传热系数K (7) 2. 1. 6 计算传热面积S (9) 2. 1. 7 压降计算 (10) 2.2 锯齿形板式热水冷却器主要技术参数和计算结果 (10) 3 课程设计评述 (11) 参考文献 (12) 附录 (13)

1 概述 1.1 换热器简介 换热器,是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。换热器种类很多,若按换热器传热面积形状和结构可分为管式换热器和特殊形式换热器。由于生产规模、物料的性质、传热的要求等各一相同,故换热器的类型很多,特点不一、可根据生产工艺要求进行选择。 1.2 设计方案简介 根据设计要求:用入口温度30 ℃,出口温度40℃的循环水冷却热水(热水的入口温度80℃,出口温度60℃),通过传热量、阻力损失传热系数、传热面积的计算,并结合经验值确定换热器的工艺尺寸、设备型号、规模选定,然后通过计算来确定各工艺尺寸是否符合要求,符合要求后完成工艺流程图和设备主体条件图,进而完成设计体系。 设计要求:选择一台适宜的锯齿形换热器并进行核算。下图中左面的为板式换热器外形,右边的是板式换热器工作原理图。

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

化工原理课程设计报告样本

化工原理课程设计报告样本

《化工原理课程设计》报告 48000吨/年乙醇~水精馏装置设计 年级 专业 设计者姓名 设计单位 完成日期年月日 7

目录 一、概述 (4) 1.1 设计依据 (4) 1.2 技术来源 (4) 1.3 设计任务及要求 (5) 二:计算过程 (6) 1. 塔型选择 (6) 2. 操作条件的确定 (6) 2.1 操作压力 (6) 2.2 进料状态 (6) 2.3 加热方式 (7) 2.4 热能利用 (7) 3. 有关的工艺计算 (7) 3.1 最小回流比及操作回流比 的确定 (8) 3.2 塔顶产品产量、釜残液量及 7

加热蒸汽量的计算 (9) 3.3 全凝器冷凝介质的消耗量9 3.4 热能利用 (10) 3.5 理论塔板层数的确定 (10) 3.6 全塔效率的估算 (11) 3.7 实际塔板数P N (12) 4. 精馏塔主题尺寸的计算 (12) 4.1 精馏段与提馏段的体积流 量 (12) 4.1.1 精馏段 (12) 4.1.2 提馏段 (14) 4.2 塔径的计算 (15) 4.3 塔高的计算 (17) 5. 塔板结构尺寸的确定 (17) 5.1 塔板尺寸 (18) 5.2 弓形降液管 (18) 5.2.1 堰高 (18) 5.2.2 降液管底隙高度h019 7

5.2.3 进口堰高和受液盘 19 5.3 浮阀数目及排列 (19) 5.3.1 浮阀数目 (19) 5.3.2 排列 (20) 5.3.3 校核 (20) 6. 流体力学验算 (21) 6.1 气体通过浮阀塔板的压力 降(单板压降) h (21) p 6.1.1 干板阻力 h (21) c 6.1.2 板上充气液层阻力1h (21) 6.1.3 由表面张力引起的阻 (22) 力h 6.2 漏液验算 (22) 6.3 液泛验算 (22) 6.4 雾沫夹带验算 (23) 7. 操作性能负荷图 (23) 7.1 雾沫夹带上限线 (23) 7

最新《化工原理课程设计-年产量112000吨NaOH水溶液蒸发装置的设计》

湖南师范大学 《化工原理》课程设计说明书 设计题目年产量112000吨NaOH水溶液蒸发装置的设计学生姓名周鹏 指导老师罗大志 学院树达学院 学号 200721180135 专业班级 07制药工程1班 完成时间2009年10月

《化工原理》课程设计成绩评定栏 评定基元评审要素评审内涵 满 分指导教师 实评分 评阅教师 实评分 设计说明书,40% 格式规范 设计说明书是否符 合规定的格式要求 5 内容完整 设计说明书是否包 含所有规定的内容 5 设计方案 方案是否合理及符 合选定题目的要求 10 工艺计算 过程 工艺计算过程是否 正确、完整和规范 20 设计图纸, 40% 图纸规范图纸是否符合规范 5 标注清晰标注是否清晰明了 5 与设计吻合 图纸是否与设计计 算的结果完全一致 10 图纸质量 设计图纸的整体质 量的全面评价 20 平时成绩, 10% 上课出勤上课出勤考核 5 制图出勤制图出勤考核 5 答辩成绩, 10% 内容表述答辩表述是否清楚 5 回答问题回答问题是否正确 5 100 综合成绩成绩等级

指导教师评阅教师答辩小组负责人 (签名) (签名) (签名) 年月日年月日年月日 说明: 评定成绩分为优秀(90-100),良好(80-89),中等(70-79),及格(60-69)和不及格(<60) 目录 1前言 (1) 2设计任务 (2) 2.1设计任务 (2) 2.2操作条件 (2) 3设计条件及设计方案说明 (3) 4物性数据及相关计算 (3) 4.1估计各效蒸发量和完成液浓度 (3) 4.2估计各效蒸发溶液的沸点和有效总温度差 (4) 4.3加热蒸汽消耗量和各效蒸发水量的初步计算 (7) 4.4蒸发器传热面积的估算 (8) 4.5有效温度的再分配 (8) 4.6重复上述计算步骤 (9) 4.7计算结果列表 (12) 5主体设备计算和说明 (12) 5.1加热管的选择和管数的初步估计 (13) 5.2循环管的选择 (13) 5.3加热管的直径以及加热管数目的确定 (13)

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

化工原理课程设计

化工原理课程设计 设计题目:列管式换热器的设计 指导教师 专业班级 学生姓名 学 号 2009 年 1 月 5 日 目录 1.设计任务书及操作条件 2.前言 2.1 设计方案简介 2.2工艺流程草图及说明 3 工艺设计及计算 3.1、铺助设备计算及选型 3.2、设计结果一览表 4.设计的评述 5、主要符号说明

6、参考文献 7.主体设备条件图及生产工艺流程图(附后) 1.设计任务书及操作条件 (1)处理能力:1×104吨/年正己烷。 (2)设备型式:列管式换热器 (3)操作条件 1 正己烷(含水蒸汽20%):入口温度1000C, 出口温度350C。 2 冷却介质:循环水,入口温度250C,出口温 度350C。

3 允许压降:不大于105Pa。 4 每年按330天计。 5 建厂地址广西 (三)设计要求 1.选择适宜的列管式换热器并进行核算。 2.要进行工艺计算 3.要进行主体设备的设计(主要设备尺寸、衡算结果等) 4.编写任务设计书 5.进行设备结构图的绘制(用420*594图纸绘制装置图一张) 2.前言

2.1 设计方案简介 固定管板式换热器 换热管束固定在两块管板上,管板又分别焊在外壳的两端,管子、管板和壳体都是刚性连接。当管壁与壳壁的壁温相差大于50℃时,为减小或消除温差产生的热效应力,必须设有温差补偿装置,如膨胀节。 固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。因壳侧不易清洗,故不适宜较脏或有腐蚀性的物流的换热,适用于壳壁与管壁温差小于70℃、壳程压力不高、壳程结垢不严重、并可用化学方法清洗的场合。 本设计任务为正己烷冷却器的设计,两流体在传热过程中无相的变化,且冷、热流体间的温差不是太大或温差较大但壳程压力不高的场合。当换热器传热面积较大,所需管子数目较多时,为提高管流速,常将换热管平均分为若干组,使流体在管内依次往返多次,即为多管程,从而增大了管内对流传热系数。固定管板式换热器的优点是结构简单、紧凑。在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。 2.2工艺流程草图及说明 工艺流程草图附后 流程图说明: 正己烷和循环冷却水经泵以一定的流速(由泵来调控)输入换热器中经换热器进行顺流换热。正己烷由100℃降到35℃,循环冷水由25℃升到35℃,且35℃的冷水回到水槽后,由于冷水的量多,回槽的水少,且流经管路时也有被冷凝,因此不会引起槽中水温太大的变化从而使水温保持25℃左右。 3 工艺设计及计算 (1) 确定设计方案 1. 选择换热器的类型 两流体温度变化情况:热流体进口温度100℃,出口温度35℃;冷

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

化工原理课程设计

化工原理课程设计设计题目:空气中丙酮的回收工艺操作 学院:化学化工学院 班级:化工 0902 姓名(学号):侯祥祥 3091303039 朱晓燕 3091303036 熊甜甜 3091303035 周利芬 3091303033 指导教师:吴才玉 2012年01月

化工原理课程设计 目录 一、前言 (3) 二、设计内容 (5) (一)设计对象 (5) (二)工艺路线设计 (5) 1.路线选择 (5) 2.流程示意图 (8) 3.流程说明 (9) (三)工艺的设计计算 (10) 1.物料衡算 (10) 2.热量衡算 (12) (四)设备的设计计算 (21) 1.主要参数 (21) 2.直径 (21) 3.附加条件 (21) (五)设备示意图 (23) 三、总结体会 (24) 四、参考文献 (29) 五、附录 (31)

江苏大学化学化工学院

化工原理课程设计 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设 计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使 用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画 出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还 要考虑生产上的安全性、经济合理性。 在化工生产中,常常需要进行混合物的分离以达到提纯或回收有用组分的 目的,吸收和精馏两个单元操作为此提供了重要措施。气体吸收过程是化工生 产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在 特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。精馏是常用 的液体混合物的分离操作,它利用液体混合物中各组分挥发度的不同并借助于 多次部分汽化和部分冷凝,从而达到轻重组分分离的目的。 塔设备是一种重要的单元操作设备,其作用实现气—液相或液—液相之间 的充分接触,从而达到相际间进行传质及传热的过程。它广泛用于吸收、精馏、萃取等单元操作,随着石油、化工的迅速发展,塔设备的合理造型设计将越来 越受到关注和重视。塔设备一般分为连续接触式和阶跃接触式两大类。前者的 代表是填料塔,后者的代表则为板式塔。在本次课程设计中,吸收操作采用的 是填料塔,而精馏操作采用的则为板式塔。 填料塔的基本特点是结构简单,压力降小,传质效率高,便于采用耐腐蚀 材料制造等,对于热敏性及容易发泡的物料,更显出其优越性。过去,填料塔 多推荐用于0.6~0.7m以下的塔径。近年来,随着高效新型填料和其他高性能 塔内件的开发,以及人们对填料流体力学、放大效应及传质机理的深入研究, 使填料塔技术得到了迅速发展。 筛板塔是1932年提出的,当时主要用于酿造,其优点是结构简单,制造 维修方便,造价低,气体压降小,板上液面落差较小,相同条件下生产能力高 于浮阀塔,塔板效率接近浮阀塔。其缺点是稳定操作范围窄,小孔径筛板易堵塞,不适宜处理粘性大的、脏的和带固体粒子的料液。但设计良好的筛板塔仍

化工原理课程设计样本

成绩 化工原理课程设计 设计说明书 设计题目:万吨/年苯—甲苯连续精馏装置工艺设计 。 姓名陈端 班级化工07-2班 学号 006 】 完成日期 2009-10-30 指导教师梁伯行

化工原理课程设计任务书 (化工07-1,2,3,4适用) 一、设计说明书题目: — (万吨/年) 苯 - 甲苯连续精馏装置工艺设计说明书 二、设计任务及条件 (1).处理量: (3000+本班学号×300) Kg/h (每年生产时间按7200小时计); (2). 进料热状况参数:( 2班)为, (3). 进料组成: ( 2班) 含苯为25%(质量百分数), (4).塔底产品含苯不大于2%(质量百分数); (5). 塔顶产品中含苯为99%(质量百分数)。 装置加热介质为过热水蒸汽(温度及压力由常识自行指定), 装置冷却介质为25℃的清水或35℃的循环清水。 三、【 四、设计说明书目录(主要内容) 要求 1)前言(说明设计题目设计进程及自认达到的目的), 2)装置工艺流程(附图) 及工艺流程说明 3)装置物料衡算 4)精馏塔工艺操作参数确定 5)适宜回流比下理论塔板数及实际塔板数计算 6)精馏塔主要结构尺寸的确定 7)精馏塔最大负荷截面处T-1型浮阀塔板结构尺寸的确定 8)、 9)装置热衡算初算确定全凝器、再沸器型号及其他换热器型号 10)装置配管及机泵选型 11)适宜回流比经济评价验算(不少于3个回流比比较) 12)精馏塔主要工艺和主要结构尺寸参数设计结果汇总及评价 13)附图 : 装置工艺流程图、装置布置图、精馏塔结构简图(手绘图)。 五、经济指标及参考书目 1)6000元/(平方米塔壁)(塔径~乘, 塔径~乘, 塔径以上乘, 2)4500元/(平方米塔板), 3)# 4)4000元/(平方米传热面积), 5)16元/(吨新鲜水), 8元/(吨循环水), 6)250元/(吨加热水蒸汽), 设备使用年限10年, 7)装置主要固定资产年折旧率为10% , 银行借贷平均年利息%。 8)夏清陈常贵主编《化工原理》(上. 下) 册修订本【M】天津; 天津大学 出版社2005 9)贾绍文《化工原理课程设计》【M】天津; 天津大学出版社2002

化工原理课程设计

《化工原理》课程设计 设计(论文)题目:板式精馏塔的设计 学院名称:材料与化学工程学院 专业:化学工程与工艺 班级:化工151 姓名:学号 指导教师:职称 定稿日期:2018年1月7日

目录 1设计任务书 (4) 1.1设计任务 (4) 1.2工艺操作条件 (4) 1.3设计内容要求 (4) 2精馏塔设计 (5) 2.1塔设备设计思路 (5) 2.2乙醇—水溶液的分析 (5) 2.2.1乙醇—水溶液的性质 (5) 2.2.2乙醇—水溶液气液平衡数据的获取 (5) 2.3工艺操作条件的确定 (7) 2.3.1压力的确定 (7) 2.3.2进料热状态的确定 (7) 2.3.3回流比的确定 (8) 2.3.4塔盘类型与选择 (9) 2.3.5塔釜加热、塔顶冷凝方式 (12) 2.3.6工艺流程图 (12) 3精馏塔的工艺计算 (13) 3.1物料衡算 (13) 3.2操作线的计算 (13) 3.3精馏塔工艺条件及有关物性数据 (14) 3.3.1Aspen plus简捷计算法 (14) 3.3.2AspenPlus严格计算法 (14) 3.4塔径计算 (16) 3.5溢流装置计算 (17) 3.6塔板布置及浮阀数目与排列 (20) 3.7塔板流体力学校验 (21) 3.7.1气相通过浮阀塔板的压强降 (21) 3.7.2液泛 (21) 3.7.3雾沫夹带 (22) 3.8塔板负荷性能图 (23) 3.8.1雾沫夹带线 (23) 3.8.2液泛线 (24)

3.8.3液相负荷上限线 (24) 3.8.4漏液线 (25) 3.8.5液相负荷下限线 (25) 3.9水力学校核 (26) 4计算结果汇总 (30) 5Aspen软件验算 (31) 5.1达到目标要求回流比的计算 (31) 5.2最佳进料位置的计算 (31) 5.3塔径验算 (32) 6参考文献 (34)

化工原理课程设计说明书.doc

前言 化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。本次设计任务为设计一定处理量的分离四氯化碳和二硫化碳混合物精馏塔。 板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,板式精馏塔具有下列优点:生产能力(2 0%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 本课程设计的主要内容是过程的物料衡算,工艺计算,结构设计和校核。 【精馏塔设计任务书】 一设计题目 精馏塔及其主要附属设备设计 二工艺条件

化工原理课程设计任务书

化工原理课程设计任务书 一、设计题目:年产万吨苯冷却器的工艺设计 二、设计条件 1.生产能力(2、、3、、4、、5、、6)4 吨每年粗苯 10 2.设备型式:列管换热器 3.操作压力:常压 4.苯的进出口温度:进口 80℃,出口35℃ 5.换热器热损失为热流体热负荷的% 6.. 7.每年按330天计,每天24小时连续生产 8.建厂地址:兰州地区 9.要求管程和壳程的阻力都不大于104Pa, 10.非标准系列列管式换热器的设计 三、设计步骤及要求 1.确定设计方案 (1)选择列管换热器的类型 (2)选择冷却剂的类型和进出口温度 ! (3)查阅介质的物性数据 (4)选择冷热流体流动的空间及流速 (5)选择列管换热器换热管的规格 (6)换热管排列方式 (7)换热管和管板的连接方式 (8)选择列管换热器折流挡板的形式 (9)材质的选择 2.初步估算换热器的传热面积A 3.{ 4.结构尺寸的计算 (1)确定管程数和换热管根数及管长 (2)平均温差的校核 (3)确定壳程数 (4)确定折流挡板,隔板规格和数量 (5)确定壳体和各管口的内径并圆整 5. 校核 (1)核算换热器的传热面积,要求设计裕度不小于10%,不大于20%. · (2)核算管程和壳程的流体阻力损失 (3)管长和管径之比为6~10 如果不符合上述要求重新进行以上计算. 6. 附属结构如封头、管箱、分程隔板、缓冲板、拉杆和定距管、人孔或手孔、法兰、 补强圈等的选型 7. 将计算结果列表(见下表) 四、设计成果 1. 设计说明书(A4纸)

(1)内容包括封面、任务书、目录、正文、参考文献、附录 ^ (2)格式必须严格按照兰州交通大学毕业设计的格式打印。 2. 换热器工艺条件图(2号图纸)(手绘) 五、时间安排 (1)第十九周~第二十二周 (2)第二十二周的星期五(7月20日)下午两点本人亲自到指定地点交设计成果,最迟不得晚于星期五的十八点钟. 六、设计考核 (1)设计是否独立完成; (2)设计说明书的编写是否规范 " (3)工艺计算与图纸正确与否以及是否符合规范 (4)答辩 七、参考资料 1、《化工原理课程设计》贾绍义柴诚敬天津科学技术出版社 2、《换热器设计手册》化学工业出版社 3、化工原理夏清天津科学技术出版社

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

化工原理课程设计范例

专业:化学工程与工艺 班级:黔化升061 姓名:唐尚奎 指导教师:王瑾老师 设计时间: 2007年1月 前言 在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。 筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次设计就是针对水乙醇体系,而进行的常压二元筛板精馏塔的设计及其辅助设备的选型。由于此次设计时间紧张,本人水平有限,难免有遗漏谬误之处,恳切希望各位老师指出,以便订正。 目录 一、设计任务 二、方案选定 三、总体设计计算-------------------------------05 3.1气液平衡数据------------------------------ 05 3.2物料衡算------------------------------------- 05 3.3操作线及塔板计算------------------------- 06 3.4全塔Et%和Np的计算----------------------06 四、混合参数计算--------------------------------07 4.1混合参数计算--------------------------------07 4.2塔径计算--------------------------------------08 4.3塔板详细计算-------------------------------10 4.4校核-------------------------------------------12 4.5负荷性能图----------------------------------14 五、筛板塔数据汇总-----------------------------16 5.1全塔数据-------------------------------------16 5.2精馏段和提馏段的数据-------------------17 六、讨论与优化-----------------------------------18 6.1讨论-------------------------------------------18 6.2优化--------------------------------------------18

相关文档