文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线与方程章节复习总结

圆锥曲线与方程章节复习总结

圆锥曲线与方程章节复习总结
圆锥曲线与方程章节复习总结

圆锥曲线与方程章节复习总结

【本讲教育信息】

一. 教学内容:

期末复习专题:圆锥曲线与方程

二. 知识分析:

【本章知识网络】

【学法点拨】

圆锥曲线是解析几何的重点,也是高中数学的重点内容.圆锥曲线试题的类型、特点与学习的方法主要归结如下:

1. 求动点的轨迹方程问题,从来都是高考的热点,试题有一定的难度,学习时应注意一些求轨迹方程的基本方法。

2. 求指定的圆锥曲线的方程是高考命题的重点,试题一般涉及量较多,计算量大。要求较强的运算能力.在计算中,首先要明确运算方向,还要注意运算合理,运算的技巧,使运算简练。

3. 试题注重对解析几何基本方法的考查,要求会建立适当的直角坐标系,把平面几何问题转化为代数问题。

4. 注意用圆锥曲线的定义解题.有关圆锥曲线上的点到焦点的距离,到准线的距离,离心率的问题都可能用到圆锥曲线的定义去解。

5. 对称问题是高考的热点,注意关于原点、x轴、y轴,关于直线y=±x对称的两曲线方程的特点。

6. 在有关直线与圆锥曲线的问题中,注意韦达定理、弦长公式在解题中的应用。

7. 一些试题将解析几何问题与数列问题、极限问题、不等式问题、函数问题综合在一起,对解决数学综合问题的能力要求更高,此时要充分利用解析几何的特点,运用数形结合,用代数的方法解决几何的问题。

【备考建议】

在复习过程中抓住以下几点:

1. 在高考命题中,有关圆锥曲线的试题主要考查两大类问题。

一是根据题设条件,求出圆锥曲线的方程;二是通过方程,研究圆锥曲线的性质。本章考题大多数是课本的变式题,即源于课本,因此掌握双基、精通课本是关键。

2. 加强直线与圆锥曲线的位置关系问题的复习

由于直线与圆锥曲线的位置关系一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想来设。

3. 重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程的目的,如下列思想和方法:(1)方程思想;(2)用好函数思想方法;(3)掌握坐标法;(4)对称思想;(5)参数思想;(6)转化思想。

4. 在注重解题方法、数学思想的应用的同时注意一些解题技巧,椭圆、双曲线、抛物线的定义揭示了各自存在的条件、性质及几何特征与圆锥曲线的焦点、准线、离心率有关量的关系问题,若能用定义法,可避免繁琐的推理与运算.涉及到原点和焦点距离问题用极坐标的极径表示.关于直线与圆锥曲线相交弦则结合韦达定理采用设而不求法.利用引入一个参数表示动点的坐标x、y,间接把它们联系起来,减少变量、未知量采用参数法.有些题目还常用它们与平面几何的关系,利用平面几何知识会化难为易,化繁为简,收到意想不到的解题效果。

第一讲椭圆

一. 椭圆及其标准方程

1. 平面内与两个定点F1,F2的距离的和等于常数(大于|F1 F2|)的点的轨迹叫做椭圆,这两个定点叫椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

一般的:集合,其中,且a、c为常数:

(1)若a>c,则集合P为椭圆;

(2)若a=c,则集合P为线段;

(3)若a<c,则集合P为空集。

2. 椭圆的两种标准方程

焦点在x轴上,焦点为;

焦点在y轴上,焦点为。

都有:(1)a>b>0;(2)。

【典例分析】

例1. 已知椭圆及直线y=x+m。

(1)当直线和椭圆有公共点时,求实数m的取值范围;

(2)求被椭圆截得的最长弦所在的直线的方程。

解:解方程组消去y,整理得

(2)由韦达定理得

∴弦长L==

,当m=0时,L取得最大的值为,此时直线方程为y=x。

点评:设两曲线交点M(x1,y1),N(x2,y2),直线MN的斜率为k,则弦长

或。

例2. 若椭圆与直线x+y=1交于A、B两点,M为AB的中点,直线OM (O为原点)的斜率为,且OA⊥OB,求椭圆的方程。

解:设A(x1,y1),B(x2,y2),M()。

由。

点评:直线与椭圆相交的问题,通常采取设而不求,即设出A(x l,y l),B(x2,y2),但不是真的求出x l,y l,x2,y2,而是借助于一元二次方程根与系数的关系来解决问题,由OA⊥OB得x l x2+y l y2=0是解决本题的关键。

例3. 如图所示,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且它的长轴端点A及短轴的端点B的连线AB∥OM。

(1)求椭圆的离心率e;

(2)设Q是椭圆上任意一点,F2是右焦点,求∠F1QF2的取值范围;

(3)设Q是椭圆上一点,当QF2⊥AB时,延长QF2与椭圆交于另一点P,若△F1PQ 的面积为,求此时椭圆的方程。

解:(1)∵MF1⊥x轴,

∴x M=-c,代入椭圆方程,得,

∵OM∥AB,∴。

从而

(2)设,则

由余弦定理,得:

当且仅当上式成立,

(3),设椭圆方程,

又PQ⊥AB,∴,

则PQ的方程为,代入椭圆方程,

得,由弦长公式,得,

而F1到PQ之距为。

,,

故所求椭圆的方程为。

第二讲双曲线

一. 双曲线的定义

平面内动点P与两个定点F1,F2()的距离之差的绝对值为定值2a。

(1)当时,P点的轨迹是双曲线。

(2)当时,P点的轨迹是两条射线。

(3)当时,P点不存在。

(4)当a=0时,P点轨迹是线段F1F2的中垂线。

二. 双曲线的几何性质

【典例分析】

例1. 求渐近线方程为与,焦点为椭圆的一对顶点的双曲线方程。

解:(1)当双曲线的焦点为椭圆的长轴顶点,即()与()时,

设双曲线方程为(其中)。由,得,

,∴所求的双曲线方程为,

(2)当双曲线的焦点为椭圆短轴顶点,即(0,)与(0,)时,

设双曲线方程为(其中),即,

,故所求的双曲线方程为,

综上,所求的双曲线方程为或。

点评:当已知双曲线的渐近线方程为(或)时,可设双曲线的方程

为(或),其中为不等于零的待定常数,以简化运算过程,

这里方程称之为双曲线的共渐近线的双曲线系。

例2. 设双曲线上两点A、B,AB中点N(1,2)。

(1)求直线AB的方程;

(2)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D是否共圆,为什么?

(1)解法一:显然AB斜率存在,设AB:y-2=k(x-1),

由得。

当△>0时,设A(x1,y1),B(x2,y2),

则。

∴直线AB:y=x+1。

解法二:设A(x1,y1),B(x2,y2),

则两式相减得。

,代入满足△>0,

∴直线AB:y=x+1。

(2)解:设A、B、C、D共圆于⊙M,因AB为弦,故M在AB垂直平分线即CD上;又CD为弦,故圆心M为CD中点,因此只需证CD中点M满足|MA|=|MB|=|MC|=|MD|。

由得A(-1,0),B(3,4)

又CD方程y=-x+3,由得。

设C(x3,y3),D(x4,y4),CD中点M(x0,y0),

则∴M(-3,6)。

,又。

∴A、B、C、D在以CD中点,M(-3,6)为圆心,为半径的圆上。

第三讲 抛物线

一. 抛物线的定义

平面内与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。

的距离相等的点的轨迹,叫抛物线,即

【典例分析】

例1. A 、B 是抛物线y 2=2px (p >0)上的两点,且OA ⊥OB , (1)求A 、B 两点的横坐标之积和纵坐标之积; (2)求证:直线AB 过定点;

(3)求弦AB 中点P 的轨迹方程; (4)求△AOB 面积的最小值。

(1)解:设A (x 1,y 1),B (x 2,y 2),中点P (x 0,y 0),

∵。

(2)证明:。

∴直线AB:。

,∴AB过定点(2p,0),设M(2p,0)。

(3)

解:设OA∶y=kx,代入y2=2px得x=0,。

,同理,以代k得。

即,∴中点M的轨迹方程。

(4)解:

当且仅当|y1|=|y2|=2p时,等号成立。

例2. 设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴。证明:直线AC经过原点O。

证法一:设直线方程为,

即k也是直线OA的斜率,∴AC经过原点O。

当k不存在时,AB⊥x轴,同理可得k OA=k OC。

证法二:

连结AC与EF相交于点N,过A作AD⊥l,D为垂足,

∴AD∥EF∥BC,

由抛物线的定义可知:|AF|=|AD|,|BF|=|BC|,

∴O点与N点重合,∵N是AC上的一点,∴AC经过原点O。

点评:该题的解答既可采用常规的坐标法,借助代数推理进行,又可采用圆锥曲线的几何性质,借助平面几何的方法进行推理。解题思路宽,而且几何方法较之解析法比较快捷便当。从审题与思维深度上看,几何法的采用,源于思维的深刻。

例3. 已知抛物线y2=4ax(a>0)的焦点为A,以B(a+4,0)为圆心,|AB|长为半径画圆,在x轴上方交抛物线于M、N不同的两点,若P为MN的中点。

(1)求a的取值范围;

(2)求|AM|+|AN|的值;

(3)问是否存在这样的a值,使|AM|、|AP|、|AN|成等差数列?

解:(1)设M(x1,y1),N(x2,y2),P(x0,y0)

则,

∴代入y2=4ax(a>0)得。

由得。

(2)∵A为焦点,

∴。

(3)△AMN中,AP为MN边上的中线,由平面几何知识,|AM|+|AN|>2|AP|,

∴不存在实数a,使|AM|,|AP|,|AN|成等差数列。

点评:(1)根据定义解题,能化难为易;(2)巧用平面几何和三角知识解题,能简化运算过程,简约思维过程。

第四讲直线与圆锥曲线

一. 直线与圆锥曲线的三种位置关系——相交、相切、相离

直线l方程为,圆锥曲线方程F(x,y)=0。

消元(如y)后得。

若F(x,y)=0表示椭圆,则上述方程中a≠0,为此有:

1. 若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行(或重合);当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行(或重合)。

2. 若a≠0,设

(1)△>0时,相交于两点;

(2)△=0时,相切于一点;

(3)△<0时,无公共点。

二. 直线与圆锥曲线相交所产生的问题

1. 弦长

直线与圆锥曲线相交于A、B,,直线斜率为k。

(1)一般弦长公式:

(2)焦点弦长公式:可用焦半径公式来表示弦长,简化运算,如:椭圆(中心在原点,焦点在坐标轴上)

(过右焦点)

(过左焦点)

(过上焦点)

(过下焦点)

2. 弦的中点问题

多数问题可合理、准确地运用韦达定理来解决.但弦的中点坐标与其斜率可由曲线方程得到关系,合理使用此关系,可简化解决有关问题的过程,如:

设是椭圆上不同两点且,M是其中点,则

两式作差可得

其中可以看作是斜率,而是中点M纵横坐标比,这种方法叫做代点法,最后需检验直线与曲线是否相交。

说明:

(1)直线与圆锥曲线的位置关系可通过对直线方程与圆锥曲线方程组成的二元二次方程组的解的情况来讨论.

①若方程组消元后得到一个一元二次方程,根据△来讨论.

②若方程组消元后得到一个一元一次方程,则相交于一个公共点,值得注意的是,直线与圆锥曲线只有一个公共点时,未必一定相切,还有其他情况,如抛物线与平行(或重合)于其对称轴的直线,双曲线与平行于其渐近线的直线,它们都只有一个公共点,但不相切,而是相交!

③直线与圆锥曲线的位置关系,还可以利用数形结合,以形助数的方法解决.

④若讨论一线段与圆锥曲线或一直线与圆锥曲线的一部分(如双曲线的一支)的公共点个数,则应注意根的范围限制.

(2)与弦有关的问题内容十分丰富,基本类型有弦长、弦中点、有关最值、有关轨迹等问题,但解题思想都很一致,即由直线方程与圆锥曲线方程联立、消元、判别式、韦达定理转化为方程的问题求解,在解题过程中,一定要形成常规的通解通法,形成规范的解题步骤.

(3)焦点弦问题,要注意圆锥曲线定义的应用.

(4)代点法可将弦中点与弦所在直线的斜率相互转化.

(5)在分析直线与圆锥曲线的问题时,要注重函数思想、方程思想、转化思想、分类讨论思想的应用,注重待定系数法、判别式法、代点法、数形结合法等数学方法的培养,提高综合运用能力和创新探索能力.

【典例分析】

例1. 过双曲线的右焦点F作倾斜角为的弦AB,求弦长|AB|及弦中点C到F的距离。

解:由双曲线的方程得,半实轴长a=3,半虚轴长b=4,半焦距c=5,

∴双曲线的右焦点为F(5,0),直线AB的方程为。

代入,消去y得。

设A(x1,y1),B(x2,y2),C(x0,y0),

又,

例2. 抛物线的顶点在坐标原点,焦点在x轴正半轴上,A、B、C、D是抛物线上的四点,

已知线段AB的中点的纵坐标为3,线段CD的中点的纵坐标为,且直线CD的倾斜角是直线AB的倾斜角的2倍,求此抛物线方程.

解法一:设抛物线方程为。①

由于直线AB与y轴不平行,故可设AB方程为。②

由①②消去x,得。

∵弦AB中点纵坐标为3,∴,∴直线AB的斜率。

同样地,直线CD与y轴不平行,设其方程为。

由弦CD中点纵坐标为,可得直线CD的斜率。

∵直线CD倾斜角是AB倾斜角的2倍,

∴直线CD的斜率,即,解得p=2。

∴所求的抛物线方程为。

解法二:设,则有,

两式相减得。

,∴直线AB的斜率。

同理可得直线CD的斜率。

∵CD倾斜角是AB倾斜角的2倍,

即,解得p=2。

∴所求的抛物线方程为。

点评:上述两种方法求抛物线弦所在直线的斜率,是研究圆锥曲线与直线位置关系的过程中常用的两种方法,一般来说,解法二比解法一的计算量要小,应熟练掌握、应用.

例3. 已知双曲线C:与点P(1,2)。

(1)求过点P(1,2)的直线l的斜率k的取值范围,使l与C分别有一个交点,两个交点,没有交点。

(2)是否存在过点P的弦AB,使AB的中点为P?

(3)若Q(1,1),试判断以点Q为中点的弦AB是否存在。

解:(1)设直线l的方程为,

代入双曲线C的方程,整理得。(*)

①当,即时,直线与双曲线的渐近线平行,此时只有一个交点。

②当时,令△=0,得。

又点(1,2)与双曲线右顶点(1,0)在直线x=1上,而x=1为双曲线的一条切线。

∴当k不存在时,直线与双曲线只有一个公共点。

综上所述,当或或k不存在时,l与C只有一个交点;

当或或时,l与C有两个交点;

当时,l与C没有交点。

(2)假设以P为中点的弦AB存在,设,则x1、x2是方程(*)的

两根,则由韦达定理,得。

∴这样的弦存在,方程为,即。

(3)假设弦AB以Q为中点,且,

两式相减,得:。

。由(1)知,此时AB与C无交点,∴假设不正确,即以Q为中点的弦不存在。

点评:题(1)处理过程中,考虑了渐近线斜率,进而得到时,两交点在左支;时,两交点在右支;时,两交点分布在左、右支.题(2)(3)则均为存在性问题,对此类问题,一般采用“假设反证法”或“假设验证法”来解决.

例4. 已知直线与双曲线的左支交于A、B两点,若另一条直线l过点P(-2,0)及线段AB的中点Q。求直线l在y轴上的截距的取值范围。

解:由方程,消去y,整理得:。

由题设得解得:

设A、B两点坐标分别为

则。

∴直线l的方程为,

令x=0,得直线l在y轴上载距。

∴截距b的取值范围是:。

点评:直线与双曲线的一支公共点个数的讨论一定要注意条件转化的充要性:即所得一元二次方程根是有范围的,除判别式△外,还要加强限制.当然本例中k的范围也可用数形结合求解。

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12 22 2 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 2002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

圆锥曲线与方程练习题

《圆锥曲线与方程》单元测试 姓名_____________ 学号__________ 成绩____________ 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.直线过抛物线24y x =的焦点,与抛物线交于A(x 1, y 1)、B(x 2, y 2)两点,如果x 1 + x 2 = 6,那么AB 等于 ( ) A.10 B.8 C.7 D.6 2.已知双曲线12222=-b y a x 的一条渐近线方程为x 43 y =,则双曲线的离心率为 ( ) A.35 B.34 C.45 D.23 3.以(-6,0),(6,0)为焦点,且经过点(-5,2)的双曲线的标准方程是( ) A. 1201622=-y x B.1201622=-x y C.1162022=-y x D.116 2022=-x y 4.方程 22 125-16x y m m +=+表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) A.1625m -<< B.9162m -<< C.9252m << D.92 m > 5.过双曲线22149 x y -=的右焦点F 且斜率是32的直线与双曲线的交点个数是( ) A.0个 B.1个 C.2个 D.3个 6.抛物线2y x =上的点到直线24x y -=的最短距离是( ) A.35 B.553 C.552 D.105 3 7.抛物线x y 122=截直线12+=x y 所得弦长等于( ) A. 15 B.152 C. 2 15 D.15 8.设12,F F 是椭圆164942 2=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则 21F PF ?的面积为( ) A.4 B.6 C.22 D.24 9.如图,圆O 的半径为定长r ,A 是圆O 外一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

高考数学圆锥曲线与方程总结题型详解

高考数学圆锥曲线与方程章总结题型详解 圆锥曲线与方程 题型一 定义运用 1..(2017·湖南高考模拟(理))已知抛物线2 2x y = 上一点P 到焦点F 的距离为1,,M N 是直线2 y =上的两点,且2MN =,MNP ?的周长是6,则sin MPN ∠=( ) A . 4 5 B . 25 C . 23 D . 13 【答案】A 【解析】由题意,22p = ,则 122p = ,故抛物线22x y = 的焦点坐标是10,2?? ??? ,由抛物线的定义得,点P 到准线1 2y =- 的距离等于PF ,即为1 ,故点P 到直线2y =的距离为132122d ??=---= ??? . 设 点P 在直线MN 上的射影为P' ,则3 '2 PP = . 当点,M N 在P'的同一侧(不与点P'重合)时,35 2=622 PM PN MN ++> ++ ,不符合题意;当点,M N 在P'的异侧(不与点P'重合)时,不妨设()'02P M x x =<<,则'2P N x =- ,故由 2=6PM PN MN ++= ,解得0x = 或2 ,不符合题意,舍去, 综上,M N 在两点中一定有一点与点P'重合,所以 24552 sin MPN <= = ,故选A. 2.(2017·河南高考模拟(文))已知直线()()20y k x k =+>与抛物线2 :8C y x =相交于A ,B 两点, F 为C 的焦点,若2FA FB =,则点A 到抛物线的准线的距离为( ) A .6 B .5 C .4 D .3 【答案】A 【解析】由题意得,设抛物线2 8y x =的准线方程为:2l x =-,直线()2y k x =+恒过定点()2,0-, 如图过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB ,

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

高中数学人教A版选修1-1 第二章圆锥曲线与方程 11

学业分层测评 (建议用时:45分钟) [学业达标] 一、选择题 1.抛物线的焦点是? ?? ??-14,0,则其标准方程为( ) A .x 2=-y B .x 2=y C .y 2=x D .y 2=-x 【解析】 易知-p 2=-14,∴p =12,焦点在x 轴上,开口向左, 其方程应为y 2=-x . 【答案】 D 2.(2014·安徽高考)抛物线y =14x 2的准线方程是( ) A .y =-1 B .y =-2 C .x =-1 D .x =-2 【解析】 ∵y =14x 2,∴x 2=4y .∴准线方程为y =-1. 【答案】 A 3.经过点(2,4)的抛物线的标准方程为( ) A .y 2=8x B .x 2=y C .y 2=8x 或x 2=y D .无法确定 【解析】 由题设知抛物线开口向右或开口向上,设其方程为y 2 =2px (p >0)或x 2=2py (p >0),将点(2,4)代入可得p =4或p =12,所以 所求抛物线的标准方程为y 2=8x 或x 2=y ,故选C. 【答案】 C

4.若抛物线y 2=ax 的焦点到准线的距离为4,则此抛物线的焦点坐标为( ) A .(-2,0) B .(2,0) C .(2,0)或(-2,0) D .(4,0) 【解析】 由抛物线的定义得,焦点到准线的距离为???? ??a 2=4,解得a =±8.当a =8时,焦点坐标为(2,0);当a =-8时,焦点坐标为(-2,0).故选C. 【答案】 C 5.若抛物线y 2 =2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( ) A .-2 B .2 C .-4 D .4 【解析】 易知椭圆的右焦点为(2,0),∴p 2=2,即p =4. 【答案】 D 二、填空题 6.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =________. 【解析】 由题意知圆的标准方程为(x -3)2+y 2=16,圆心为(3,0), 半径为4,抛物线的准线为x =-p 2,由题意知3+p 2=4,∴p =2. 【答案】 2 7.动点P 到点F (2,0)的距离与它到直线x +2=0的距离相等,则P 的轨迹方程是________. 【解析】 由题意知,P 的轨迹是以点F (2,0)为焦点,直线x +2

2020年高考理科数学原创专题卷:《圆锥曲线与方程》

原创理科数学专题卷 专题 圆锥曲线与方程 考点40:椭圆及其性质(1-5题,13,14题) 考点41:双曲线及其性质(6-10题,15题) 考点42:抛物线及其性质(11,12题) 考点43:直线与圆锥曲线的位置关系(17-22题) 考点44:圆锥曲线的综合问题(16题,17-22题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.【来源】2017届湖南省长沙市高三上学期统一模拟考试 考点40 易 椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E 的标准方程为( ) A. 2212x += B. 22 12x y += C. 22142x y += D. 22142y x += 2.【2017课标3,理10】 考点40 易 已知椭圆C :22 2 21x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的 圆与直线20bx ay ab -+=相切,则C 的离心率为( ) A . B . C . D .13 3.【来源】重庆市第一中学2016-2017学年高二月考 考点40 中难 已知椭圆 2 21(0)1 x y m m +=>+的两个焦点是12,F F , E 是直线2y x =+与椭圆的一个公共点,当12EF EF +取得最小值时椭圆的离心率为( ) A. 2 3 4.【来源】湖南省湘潭市2017第三次高考模拟 考点40 难 如图, 12,A A 为椭圆22 195 x y +=长轴的左、右端点, O 为坐标原点, ,,S Q T 为椭圆上不同于12,A A 的三点,直线12,,,QA QA OS OT 围成一个平行四边形OPQR ,则

(完整word)19圆锥曲线与方程(中职数学春季高考练习题)

学校______________班级______________专业______________考试号______________姓名______________ 数学试题 圆锥曲线与方程 . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟, 考试结束后,将本试卷和答题卡一并交回. . 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01. 第Ⅰ卷(选择题,共60分) 30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项 . 设12F F 、 为定点,126F F =,动点M 满足128MF MF +=,则动点M 的轨迹是 A .椭圆 B .直线 C .圆 D .线段 . 若抛物线焦点在x 轴上,准线方程是3x =-,则抛物线的标准方程是 A .2 12y x = B .2 12y x =- C .2 6y x = D .2 6y x =- . 已知椭圆方程为 22 1916 x y +=,那么它的焦距是 A .10 B .5 C .7 D .27 . 抛物线2 6y x =-的焦点到准线的距离为 A .2 B .3 C .4 D .6 . 若椭圆满足4a =,焦点为()()0303-,,, ,则椭圆方程为 A . 22 1167 x y += B . 22 1169x y += C . 22 1167y x += D . 22 1169 y x += . 抛物线2 40y x +=上一点到准线的距离为8,则该点的横坐标为 A .7 B .6 C .7- D .6- . 一椭圆的长轴是短轴的2倍,则其离心率为 A .34 B . 32 C . 22 D .12 8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是 A . 12 B . 32 C . 2 D . 14 9. 椭圆 22 1164 x y +=在y 轴上的顶点坐标是 A .()20±, B .()40±, C .()04±, D .()02±, 10. 若双曲线的焦点在x 轴上,且它的渐近线方程为3 4 y x =± ,则双曲线的离心率为 A . 54 B . 53 C . 7 D . 7 11. 椭圆 22 1169 x y +=与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,则AB 等于 A .5 B .7 C . 5 D .4 12. 如果椭圆22 221x y a b +=经过两点()()4003A B ,、,,则椭圆的标准方程是 A . 221259 x y += B . 22 1163x y += C . 22 1169x y += D . 22 1916 x y += 13. 双曲线2 2 44x y -=的顶点坐标是 A .()()2020-,、, B .()()0202-,、, C .()()1010-,、, D .()()0101-,、, 14. 若双曲线22 221x y a b -=的两条渐近线互相垂直,则该双曲线的离心率是 A .2 B . 3 C . 2 D .32 15. 双曲线 22 1169 x y -=的焦点坐标为 A .()40±, B .()30±, C .()50±, D .()

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

人教版高中数学圆锥曲线与方程教案

基础巩固强化 一、选择题 1.椭圆2x 2+3y 2=12的两焦点之间的距离是( ) A .210 B.10 C. 2 D .2 2 [答案] D [解析] 椭圆方程2x 2 +3y 2 =12可化为:x 26+y 2 4=1, a 2=6, b 2=4, c 2=6-4=2,∴2c =2 2. 2.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 的值为( ) A .-1 B .1 C. 5 D .- 5 [答案] B [解析] 椭圆方程5x 2+ky 2=5可化为:x 2+y 25k =1, 又∵焦点是(0,2),∴a 2 =5k ,b 2=1,c 2 =5k -1=4, ∴k =1. 3.已知方程x 225-m +y 2 m +9=1表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .-98 [答案] B

[解析] 由题意得???? ? m +9>025-m >0 m +9>25-m ,解得8

圆锥曲线与方程复习资料

高中数学选修2-1 第二章 圆锥曲线与方程 知识点: 一、曲线的方程 求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化 ①建立适当的直角坐标系; (),M x y 及其他的点; ③找出满足限制条件的等式; ④将点的坐标代入等式; ⑤化简方程,并验证(查漏除杂)。 二、椭圆 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12 F F )的点的轨迹称为椭圆。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。()12222MF MF a a c +=> 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 第一定义 到两定点21F F 、 的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >) 第二定义 到一定点的距离和到一定直线的距离之比为常数e ,即 (01)MF e e d =<< 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c

3、设M 是椭圆上任一点,点M 到F 对应准线的距离为1d ,点M 到F 对应准线的距离为2d ,则121 2 F F e d d M M ==。 常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标和离心率. 【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离=________ 【变式2】椭圆 125 162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. 【变式3】已知椭圆的方程为11622 2=+m y x ,焦点在x 轴上,则m 的取值范围是( )。

[高中数学]圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式. 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用解 析法解决相应的几何问题. 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD 与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 , F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例 5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆心 的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

曲线与方程知识点及题型归纳总结 (2)

曲线与方程知识点及题型归纳总结 知识点精讲 一、曲线的方程和方程的曲线 在直角坐标系中,如果是某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程 (),0f x y =的实数解建立了如下的关系: (1) 曲线上的点的坐标都是这个方程的解(完备性) (2) 以这个方程的解为坐标的点都是曲线上的点(纯粹性) 那么,这个方程叫做曲线的方程,这条曲线叫方程的曲线。事实上,曲线可以看作一个点集C ,以一个二元方程的解作为坐标的点也组成一个点集F ,上诉定义中C F ????=????条件(1)C F 条件(2)F C 二、直接法求动点的轨迹方程 利用直接法求动点的轨迹方程的步骤如下: (1) 建系-----建立适当的坐标系 (2) 设点-----设轨迹上的任一点(),P x y (3) 列式-----列出有限制关系的几何等式 (4) 代换-----将轨迹所满足的条件用含,x y 的代数式表示,如选用距离和斜率公式等将其转化为 ,x y 的方程式化简 (5) 证明(一般省略)-----证明所求方程即为符合条件的动点轨迹方程(对某些特殊值应另外补 充检验)。 简记为:建设现代化,补充说明。 注:若求动点的轨迹,则不但要求出动点的轨迹方程,还要说明轨迹是什么曲线。 题型归纳及思路提示 题型1 求动点的轨迹方程 思路提示: 动点的运动轨迹所给出的条件千差万别,因此求轨迹的方法也多种多样,但应理解,所求动点的轨迹方程其实质即为其上动点的横纵坐标,x y 所满足的等量关系式,通常的方法有直译法,定义法,相关点法(代入法),参数法。 一、直译法 如果动点满足的几何条件本身就是一些几何量的等量关系且这些几何简单明了且易于表达,那么只需把这些关系“翻译”成含,x y 的等式,就可得到曲线的轨迹方程,由于这种求轨迹方程的过程不需要其他步骤,也不需要特殊的技巧,所以被称为直译法。 例10.30 在平面直角坐标系xOy 中,点B 与点()1,1A -关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于1 3 -,求动点P 的轨迹方程。 分析 设点(),P x y ,将题设中直线AP 与BP 斜率之积等于1 3 - 翻译成含,x y 的等式。 解析:因为点B 与点()1,1A -关于原点O 对称,所以点B 的坐标为()1,1-,设点(),P x y ,由题意得 111 113 y y x x -+=-+-g ,化简得()22341x y x +=≠± ,故动点P 的轨迹方程为()22341x y x +=≠± 变式1 已知动圆过定点()4,0A ,且在y 轴上截得的弦的长为8,求动圆圆心的轨迹C 的方程

专题-圆锥曲线与方程(教师)

专题-圆锥曲线与方程 抓住3个高考重点 重点1 椭圆及其性质 1.椭圆的定义:椭圆的第一定义:对椭圆上任意一点M 都有1212||||2||2MF MF a F F c +=>= 椭圆的第二定义:对椭圆上任意一点M 都有 || ,(01)MF e e d =<< 2.求椭圆的标准方程的方法 (1)定义法:根据椭圆定义,确定2 2 ,a b 的值,再结合焦点位置,直接写出椭圆的标准方程. (2)待定系数法:根据椭圆焦点是在x 轴还是在y 轴上,设出相应形式的标准方程,然后根据条件确定关于,,a b c 的方程组,解出2 2 ,a b ,从而写出椭圆的标准方程. 3.求椭圆的标准方程需要注意以下几点? (1)如果椭圆的焦点位置不能确定,可设方程为2 2 1(0,0,)Ax By A B A B +=>>≠或22 221x y m n += (2)与椭圆2222 221()x y m n m n +=≠共焦点的椭圆方程可设为22222 21(,)x y k m k n m k n k +=>->-++ (3)与椭圆22221(0)x y a b a b +=>>有相同离心率的椭圆方程可设为22 122x y k a b +=(10k >,焦点在x 轴上)或 22 222 y x k a b +=(20k >,焦点在y 轴上) 4.椭圆的几何性质的应用策略 (1)与几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形:若涉及顶点、焦点、长轴、短轴等椭圆的基本量,则要理清它们之间的关系,挖掘出它们之间的联系,求解自然就不难了. (2)椭圆的离心率2 21c b e a a ==-当e 越接近于1时,椭圆越扁,当e 越接近于0时, 椭圆越接近于圆, 求椭圆的标准方程需要两个条件,而求椭圆的离心率只需要根据一个条件得到关于,,a b c 的齐次方程,再结合2 2 2 a b c =+即可求出椭圆的离心率 [高考常考角度] 角度1若椭圆12222=+b y a x 的焦点在x 轴上,过点)2 1,1(作圆12 2=+y x 的切线,切点分别为A ,B ,直线AB 恰好 经过椭圆的右焦点和上顶点,则椭圆方程是 14 52 2=+y x . 解析:方法一:设过点)21,1(的直线方程为:当斜率存在时,1 (1)2 y k x =-+,即22120kx y k -+-=

圆锥曲线与方程练习题及答案解析

圆锥曲线与方程练习题及答案解析 一、选择题 1.(2013?呼和浩特高二检测)椭圆x225+y2169=1的焦点坐标为( ) A.(5,0),(-5,0) B.(0,5),(0,-5) C.(0,12),(0,-12) D.(12,0),(-12,0) 【解析】由c2=a2-b2求出c 的值.因为169>25,所以焦点在y轴上.因为c2=169-25=144,所以c=12,所以焦点坐标为(0,12),(0,-12).故选C. 【答案】C 2.已知椭圆的两个焦点的坐标分别是(0,-3)和(0,3),且椭圆经过点(0,4),则该椭圆的标准方程是( ) A.x216+y27=1 B.y216+x27=1 C.x225+y216=1 D.y225+x29=1 【解析】∵椭圆的焦点在y轴上,∴可设它的标准方程为y2a2+x2b2=1(a>b>0).∵2a=++-=8,∴a=4,又c=3,∴b2=a2-c2=16-9=7,故所求的椭圆的标准方程为y216+x27=1. 【答案】 B 3.(2013?福州高二检测)已知A(0,-1)、B(0,1)两点,△ABC 的周长为6,则△ABC的顶点C的轨迹方程是( ) A.x24+y23= 1(x≠±2) B.y24+x23=1(y≠±2) C.x24+y23=1(x≠0) D.y24 +x23=1(y≠0) 【解析】∵2c=|AB|=2,∴c=1,∴|CA|+|CB|=6-2=4=2a,∴顶点C的轨迹是以A、B为焦点的椭圆(A、B、C 不共线).因此,顶点C的轨迹方程y24+x23=1(y≠±2).【答案】 B 4.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) 【解析】椭圆方程可化为x22+y22k=1,依题意2k>2,∴0

相关文档
相关文档 最新文档