文档库 最新最全的文档下载
当前位置:文档库 › 自动控制原理电子教案

自动控制原理电子教案

第一章自动控制原理的基本概念

主要内容:

自动控制的基本知识

开环控制与闭环控制

自动控制系统的分类及组成

自动控制理论的发展

§1.1 引言

控制观念

生产和科学实践中,要求设备或装置或生产过程按照人们所期望的规律运行或工作。

同时,干扰使实际工作状态偏离所期望的状态。

例如:卫星运行轨道,导弹飞行轨道,加热炉出口温度,电机转速等控制

控制:为了满足预期要求所进行的操作或调整的过程。

控制任务可由人工控制和自动控制来完成。

§1.2 自动控制的基本知识

1.2.1 自动控制问题的提出

一个简单的水箱液面,因生产和生活需要,希望液面高度h维持恒定。当水的流入量与流出量平衡时,水箱的液面高度维持在预定的高度上。

当水的流出量增大或流入量减小,平衡则被破坏,液面的高度不能自然地维持恒定。

所谓控制就是强制性地改变某些物理量(如上例中的进水量),而使另外某些特定的物理量(如液面高度h)维持在某种特定的标准上。人工控制的例子。

这种人为地强制性地改变进水量,而使液面高度维持恒定的过程,即是人工控制过程。

1.2.2 自动控制的定义及基本职能元件

1. 自动控制的定义

自动控制就是在没有人直接参与的情况下,利用控制器使被控对象(或过程)的某些物理量(或状态)自动地按预先给定的规律去运行。

当出水与进水的平衡被破坏时,水箱水位下降(或上升),出现偏差。这偏差由浮子检测出来,自动控制器在偏差的作用下,控制阀门开大(或关小),对偏差进行修正,从而保持液面高度不变。

2. 自动控制的基本职能元件

自动控制的实现,实际上是由自动控制装置来代替人的基本功能,从而实现自动控制的。画出以上人工控制与动控制的功能方框图进行对照。

比较两图可以看出,自动控制实现人工控制的功能,存在必不可少的三种代替人的职能的基本元件:

测量元件与变送器(代替眼睛)

自动控制器(代替大脑)

执行元件(代替肌肉、手)

这些基本元件与被控对象相连接,一起构成一个自动控制系统。下图是典型控制系统方框图。

1.2.3 自动控制中的一些术语及方框图

1.常用术语

控制对象控制器系统系统输出操作量参考输入扰动特性2.系统方框图

将系统中各个部分都用一个方框来表示,并注上文字或代号,根据各方框之间的信息传递关系,用有向线段把它们依次连接起来,并标明相应的信息。

§1.3 自动控制系统的基本控制方式

控制方式:开环控制和闭环控制

1.3.1 开环控制

定义:控制量与被控量之间只有顺向作用而没有反向联系。

开环控制系统的典型方框图如图所示。

例如:交通指挥红绿灯,自动洗衣机,自动售货机

1.按给定控制

下图是一个直流电动机转速控制系统。

工作原理:

以上的控制过程,用方框图简单直观地表示出来。

2.按扰动控制

图示是一个按扰动控制的直流电动机转速控制系统。

控制过程可用方框图表示成如图示的形式。

把负载变化视为外部扰动输入,对输出转速产生的影响及控制补偿作用,分别沿箭头的方向从输入端传送到输出端,作用的路径也是单向的,不闭合的。有时我们称按扰动控制为顺馈控制。

开环控制的特点:

结构简单、调整方便、成本低。

给定一个输入,有相应的一个输出。

作用信号是单方向传递的,形成开环。

输出不影响输入。

若系统有外界扰动时,系统输出量不可能有准确

的数值,即开环控制精度不高,或抗干扰能力差

1.3.2 闭环控制

定义:凡是系统输出信号对控制作用有直接影响的系统,都叫做闭环控制系统。常用术语:

反馈控制系统闭合闭环控制系统

◆反馈控制原理:被控变量作为反馈信号,与希望值比较得到偏差输入;根据输入偏差大小,调整控制信号;控制信号通过执行器的操作消除偏差,实现控制目标。

反馈:输出量经测量后的信号回送到输入端。

反馈连接方式有负反馈和正反馈。

负反馈:反馈信号的极性与输入信号相反,使被控对象的输出趋向希望值。

直流电动机转速闭环控制的例子。

闭环控制的特点:

由负反馈构成闭环,利用偏差信号进行控制;

抗干扰能力强,精度高;

存在稳定性问题。系统元件参数配合不当,容易产生振荡,使系统不能正常工作;

自动控制理论主要研究闭环系统。

闭环控制系统的典型方框图如图所示。

一、开环与闭环控制系统的比较

二、复合控制方法

常见的方式有以下两种:

1.附加给定输入补偿

2. 附加扰动输入补偿

§1-4 自动控制系统的分类基本组成

1.4.1 按给定信号的特征划分

1. 恒值控制系统:

系统任务:c(t)=r(t) r(t)常数

分析设计重点:研究干扰对被控对象的影响,克服扰动液位控制系统,直流电动机调速系统等等。

2. 随动控制系统:

系统任务:c(t)=r(t) r(t)随机变化

分析设计重点:系统跟踪的快速性,准确性

跟踪卫星的雷达天线系统

3. 程序控制系统:

系统任务:c(t)=r(t) r(t)按预先规定时间函数变化

分析设计重点:输出按一定的规律变化

机械加工中的程序控制机床等等。

1.4.2 按系统的数学描述划分

1.线性系统

当系统各元件输入输出特性是线性特性,系统的状态和性能可以用线性微分(或差分)方程来描述时,则称这种系统为线性系统。

2.非线性系统

系统中只要存在一个非线性特性的元件,系统就由非线性方程来描述,这种系统称为非线性系统。

1.4.3 按信号传递的连续性划分

1.连续系统

连续系统的特点是系统中各元件的输入信号和输出信号都是时间的连续函数。这类系统的运动状态是用微分方程来描述的。

连续系统中各元件传输的信息在工程上称为模拟量,其输入输出一般用r(t)和c(t)表示。

2.离散系统

控制系统中只要有一处的信号是脉冲序列或数码时,该系统即为离散系统。这种系统的状态和性能一般用差分方程来描述。

1.4.4 按系统的输入与输出信号的数量划分

1.单变量系统(SISO)

2.多变量系统(MIMO)

1.4.5 自动控制系统的基本组成

在形形色色的自动控制系统中,反馈控制是最基本的控制方式之一。一个典型的反馈控制系统总是由控制对象和各种结构不同的职能元件组成的。除控制对象外,其他各部分可统称为控制装置。每一部分各司其职,共同完成控制任务。

下面给出这些职能元件的种类和各自的职能。

给定元件:其职能是给出与期望的输出相对应的系统输入量,是一类产生系统控制指令的装置。

测量元件:其职能是检测被控量,如果测出的物理量属于非电量,大多情况下要把它转换成电量,以便利用电的手段加以处理。

比较元件:其职能是把测量元件检测到的实际输出值与给定元件给出的输入值进行比较,求出它们之间的偏差。

放大元件:其职能是将过于微弱的偏差信号加以放大,以足够的功率来推动执行机构或被控对象。

执行元件:其职能是直接推动被控对象,使其被控量发生变化。

校正元件:为改善或提高系统的性能,在系统基本结构基础上附加参数可灵活调整的元件。工程上称为调节器。常用串联或反馈的方式连接在系统中。

§1.5 对控制系统的要求和分析设计

1.5.1 对系统的要求

各类控制系统为达到理想的控制目的,必须具备以下两个方面的性能(基本要求) :

1.使系统的输出快速准确地按输入信号要求的期望输出值变化。

2.使系统的输出尽量不受任何扰动的影响。

对自控系统性能的要求一般可归纳为三大性能指标:

(1) 稳定性:要求系统绝对稳定且有一定的稳定裕量。

(2) 瞬态质量:要求系统瞬态响应过程具有一定的快速性和变化的平稳性。

(3)稳态误差:要求系统最终的响应准确度,限制在工程允许的范围之内,是系统控制精度的恒量。

1.5.2 控制系统的分析和设计

1.系统分析

系统给定,在规定的工作条件下,对它进行分析研究,其中包括稳态性能和动态性能分析,看是否满足要求,以及分析某个参数变化时对上述性能指标的影响,决定如何合理地选取等。

2.系统的设计

系统设计的目的,是要寻找一个能够实现所要求性能的自动控制系统。因此,在系统应完成的任务和应具备的性能已知的条件下,根据被控对象的特点,构造出适合的控制器是设计的主要任务。应进行的步骤如下:

(1)熟悉对系统性能的要求。

(2)根据要求的性能指标综合确定系统的数学模型。

(3)若控制对象是已知的,根据确定的系统数学模型和已知部分的数学模型,求得控制器的数模和控制规律。

(4)按综合确定的数模进行系统分析,验证它在各种信号作用下是否满足要求。

若不满足,及时修正。

(5)样机设计制造和试验,验证设计结果。

§1-6 自动控制理论的发展概况

三个时期:

早期的自动控制工作

经典控制理论

现代控制理论

作业:1.2 1.3

学习指导与小结 通过示例介绍了控制系统的基本概念

1.反馈控制原理

2.控制系统的基本组成

3.控制系统的基本类型

给出控制系统的基本要求

1.稳

2.准

3.快

第二章控制系统的数学模型

主要内容:

数学模型的概念、建模原则

线性系统的传递函数

系统的结构图

信号流图及梅逊公式

§2-1 引言

什么是数学模型?

所谓的数学模型,是描述系统内部各物理量(或变量)之间关系的数学表达式。

2.1.1 数学模型的特点

1.相似性

2.简化性和准确性

3.动态模型

4.静态模型

静态模型和动态模型

一、静态模型

1.不含时间变量t的代数方程

2.平衡状态下各变量间对应关系

3.变化量不随时间而变化

二、动态模型

1.表达式是含时间变量t的微分方程

2.描述了系统的非平衡过程

3.变量随时间而变化

4.静态模型包含在静态模型中

2.1.2 数学模型的类型

1.微分方程

2.传递函数

3.状态空间表达式

2.1.3 数学模型的建模原则

数学模型的建立方法:

1. 分析法(微分方程和代数方程)

2.实验法

数学模型的建模原则:

1.建模之前,要全面了解系统的自然特征和运动机理,明确研究目的和准确性

要求,选择合适的分析方法。

2.按照所选分析法,确定相应的数学模型的形式。

3.根据允许的误差范围,进行准确性考虑然后建立尽量简化的、合理的数学

模型。

§2.2 系统微分方程的建立

2.2.1 列写微分方程式的一般步骤

1.分析系统运动的因果关系,确定系统的输入量、输出量及内部中间变量,

搞清各变量之间的关系。

2.做出合乎实际的假设,以便忽略一些次要因素,使问题简化。

3.根据支配系统动态特性的基本定律,列出各部分的原始方程式。

4.列写各中间变量与其他变量的因果式。

5.联立上述方程,消去中间变量。

6.将方程式化成标准形。

2.2.2 机械系统举例

例2-1 弹簧-质量-阻尼器串联系统。试列出以外力F(t)为输入量,以质量的位移y(t)为输出量的运动方程式。

解:遵照列写微分方程的一般步骤有:

1.确定输入量为F (t ),输出量为y (t ),作用于质量m 的力还有弹性阻力Fk (t )和粘滞阻力Ff (t ),均作为中间变量。

2.设系统按线性集中参数考虑,且无外力作用时,系统处于平衡状态。

3.按牛顿第二定律列写原始方程,即

4.写中间变量与输出量的关系式

5.将以上辅助方程式代入原始方程,消去中间变量,得

6.整理方程得标准形

令T m 2 = m /k ,T f = f /k ,则方程化为

2.2.3 电路系统举例

例2-2 电阻-电感-电容串联系统。R-L-C 串联电路,试列出以u r(t)为输入量,u c(t)为输出量的网络微分方程式。

L-R-C 网络 C

r

u R i dt

di L u

+?+?

=

c i C u =?

c

c

c u u C R u C L +'??+''??=

∑=++=2

2

)()()()(dt

t y d m

t F t F t F F

f k )

()(t ky t F k -=

dt

t dy f

t F f )()(-=)

()()()(22

t F dt

t dy f

t ky dt

t y d m +--=)

(1)()()(22

t F k

t y dt

t dy k

f dt

t y d k

m =

++

)

(1)()()(2

2

2t F k

t y dt

t dy T dt

t y d T

f

m

=

+

+

11c

c

c r

R u u u u L

L C

L C

'''∴+

+=

── 2阶线性定常微分方程

2.2.4 实际物理系统线性微分方程的一般特征

观察实际物理系统的运动方程,若用线性定常特性来描述,则方程一般具有以下形式:

式中,c (t )是系统的输出变量,r (t )是系统的输入变量。 列写微分方程式时,一般按以下几点来写:

1.输出量及其各阶导数项写在方程左端,输入量写在右端;

2.左端的阶次比右端的高。这是因为实际物理系统均有惯性或储能元件;

3.方程式两端的各项的量纲应一致。利用这点,可以检查微分方程式的正确与否。

4.方程的系数均为实常数,是由物理系统自身参数决定的。 §2.3 非线性数学模型线性化 3.2.1 线性化意义和常用方法 为什么要线性化?

1.实际对象总存在一定的非线性

2.线性系统具有较完整的理论 线性化条件

1.实际工作情况在某平衡点附近(静态工作点)

2.变量变化是小范围的

3.函数值与各阶导数连续,至少在运行范围内如此。

满足上述条件,则工作点附近小范围内各变量关系近似线性 线性化方法 1.泰勒级数展开 2.取线性部分

线性化定义:是指将非线性函数在工作点附近展开成泰勒级数,忽略掉高

)

()

()

()(11

1

1

t c a dt t dc a dt

t c d

a dt

t c d a n n n n n n

++++--- )

()()()(1

1

1

1

t r b dt

t dr b dt

t r d b dt

t r d b m m m m m

m

++++=---

阶无穷小量及余项,得到近似的线性化方程,来替代原来的非线性函数。 假如元件的输出与输入之间关系x 2=f(x 1)的曲线如图,元件的工作点为(x 10,x 20)。将非线性函数x 2= f (x 1)在工作点(x 10,x 20)附近展开成泰勒级数 :

当(x 1-x 10)为微小增量时,可略去二阶以上各项,写成 :

其中 为工作点(x 10,x 20)处的斜率,即此时以工作点处的切线

代替曲线,得到变量在工作点的增量方程,经上述处理后,输出与输入之间就成为线性关系。

例 已知某装置的输入输出特性如下,求小扰动线性化 方程。

解:在工作点(x 0, y 0)处展开泰勒级数

取一次近似,且令

既有

)

(sin 000x x x E -?-≈ )(!21)

()()(2

10110

21

2

10110

1

1012 +-+-+==x x dx f d x x dx df x f x f x x x

)()

()(1012010110

1

102x x K x x x dx df x f x x -+=-+

=101x dx df

K =)]

(cos[)(0t x E x y =

+-''+

-'+=2

00000))((!

21))(()()(x x x y x x x y x y x y )

()()(0x y x y x y -=?x

x E y ??-=?00sin

§ 2-4 线性系统的传递函数 一.复习拉氏变换及其性质 1.定义

记 X (s ) = L [x (t )] 2.进行拉氏变换的条件

(1) t < 0,x (t )=0;当t ≥ 0,x (t )是分段连续;

(2) 当t 充分大后满足不等式 | x (t )| ≤ Mect ,M ,c 是常数。 3.性质和定理 (1)线性性质

L [ ax 1(t ) + bx 2(t )] = aX 1(s ) + bX 2(s )

(2)微分定理

若 , 则:

(3)积分定律

?

-=

)()(dt

e

t x s X st

)0()()(x s sX dt t dx L -=??

????)0()0()()(2

2

2x sx s X s dt t x d L --=??

???? 0)0()0(=== x x )()(s sX dt t dx L =??

????)()(222s X s dt t x d L =??

????)()(s X s dt t x d L n n n =??

????[])

0(1

)(1)()

1(-+=?x

s

s X s dt t x L

[])

0(1)0(1)(1

)()

2()

1(2

2

--+

+

=??x

s

x

s

s X s dt t x L

若x -1(0)= x -2(0) = … = 0,x (t )各重积分在t =0的值为0时,

(4)终值定理

若x (t )及其一阶导数都是可拉氏变换的,lim x (t )存在,并且sX (s )除原点为单极点外,在j ω轴上及其右半平面内应没有其它极点,则函数x (t )的终值为:

(5)初值定理

如果x (t )及其一阶导数是可拉氏变换的,并且 存在,则

(6)延迟定理

L [ x (t - τ)?1(t - τ)] = e τ-sX (s )

L [e -at x (t )] = X (s + a )

(7)尺度变换

(8)卷积定理

()[]()

s X s dt t x L

1=?()[]()

s X s dt t x L

2

1

=??()()s X s

dt t x L n n 1

=???

?

??????? )

(lim )(lim 0

s sX t x s t →∞

→=)(lim s sX s ∞→)

(lim )0(s sX x s ∞

→+=)(as aX a t x L =??

?

?????? ????

?

???-=??t

d x t x L s X s X 02121)()()()(τττ

《自动控制原理》电子教案

第一章自动控制的一般概念 第一节控制理论的发展 自动控制的萌芽:自动化技术学科萌芽于18世纪,由于工业革命的发展,如何进一步降低人的劳动强度和提高设备的可靠性被提到了议程。 特点:简单的单一对象控制。 1. 经典控制理论分类 线性控制理论,非线性控制理论,采样控制理论 2. 现代控制理论 3. 大系统理论 4. 智能控制理论 发展历程: 1. 经典控制理论时期(1940-1960) 研究单变量的系统,如:调节电压改变电机的速度;调整方向盘改变汽车的运动轨迹等。 ?1945年美国人Bode出版了《网络分析与放大器的设计》,奠定了控制理论的 基础; ?1942年哈里斯引入传递函数; ?1948年伊万恩提出了根轨迹法; ?1949年维纳关于经典控制的专著。 特点:以传递函数为数学工具,采用频率域法,研究“单输入—单输出”线性定常控制系统的分析和设计,而对复杂多变量系统、时变和非线性系统无能为力。 2. 现代控制理论时期(20世纪50年代末-60年代初) 研究多变量的系统,如,汽车看成是一个具有两个输入(驾驶盘和加速踏板)和两个输出(方向和速度)的控制系统。空间技术的发展提出了许多复杂的控制问题,用于导弹、人造卫星和宇宙飞船上,对自动控制的精密性和经济性指标提出了极严格的要求。并推动了控制理论的发展。 ?Kalman的能控性观测性和最优滤波理论; ?庞特里亚金的极大值原理; ?贝尔曼的动态规划。 特点:采用状态空间法(时域法),研究“对输入-多输出”、时变、非线性系统等高精度和高复杂度的控制问题。 3. 大系统控制时期(1970s-) 各学科相互渗透,要分析的系统越来越大,越来越复杂。 大系统控制理论是一种过程控制与信息处理相结合的动态系统工程理论,研究的对象具有规模庞大、结构复杂、功能综合、目标多样、因素众多等特点。它是一个多输入、多输出、多干扰、多变量的系统。 如:人体,我们就可以看作为一个大系统,其中有体温的控制、情感的控制、

自动控制原理课程设计报告

成绩: 自动控制原理 课程设计报告 学生姓名:黄国盛 班级:工化144 学号:201421714406 指导老师:刘芹 设计时间:2016.11.28-2016.12.2

目录 1.设计任务与要求 (1) 2.设计方法及步骤 (1) 2.1系统的开环增益 (1) 2.2校正前的系统 (1) 2.2.1校正前系统的Bode图和阶跃响应曲线 (1) 2.2.2MATLAB程序 (2) 3.3校正方案选择和设计 (3) 3.3.1校正方案选择及结构图 (3) 3.3.2校正装置参数计算 (3) 3.3.3MATLAB程序 (4) 3.4校正后的系统 (4) 3.4.1校正后系统的Bode图和阶跃响应曲线 (4) 3.4.2MATLAB程序 (6) 3.5系统模拟电路图 (6) 3.5.1未校正系统模拟电路图 (6) 3.5.2校正后系统模拟电路图 (7) 3.5.3校正前、后系统阶跃响应曲线 (8) 4.课程设计小结和心得 (9) 5.参考文献 (10)

1.设计任务与要求 题目2:已知单位负反馈系统被控制对象的开环传递函数 ()() 00.51K G s s s =+用串联校正的频率域方法对系统进行串联校正设计。 任务:用串联校正的频率域方法对系统进行串联校正设计,使系统满足如下动态及静态性能 指标: (1)在单位斜坡信号作用下,系统的稳态误差0.05ss e rad <; (2)系统校正后,相位裕量45γ> 。 (3)截止频率6/c rad s ω>。 2.设计方法及步骤 2.1系统的开环增益 由稳态误差要求得:20≥K ,取20=K ;得s G 1s 5.0201)s(0.5s 20)s (20+=+=2.2校正前的系统 2.2.1校正前系统的Bode 图和阶跃响应曲线 图2.2.1-1校正前系统的Bode 图

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

重庆大学 自动控制原理课程设计

目录 1 实验背景 (2) 2 实验介绍 (3) 3 微分方程和传递函数 (6)

1 实验背景 在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。自动控制原理是相对于人工控制概念而言的,自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。 在自动控制原理【1】中提出,20世纪50年代末60年代初,由于空间技术发展的需要,对自动控制的精密性和经济指标,提出了极其严格的要求;同时,由于数字计算机,特别是微型机的迅速发展,为控制理论的发展提供了有力的工具。在他们的推动下,控制理论有了重大发展,如庞特里亚金的极大值原理,贝尔曼的动态规划理论。卡尔曼的能控性能观测性和最优滤波理论等,这些都标志着控制理论已从经典控制理论发展到现代控制理论的阶段。现代控制理论的特点。是采用状态空间法(时域方法),研究“多输入-多输出”控制系统、时变和非线性控制系统的分析和设计。现在,随着技术革命和大规模复杂系统的发展,已促使控制理论开始向第三个发展阶段即第三代控制理论——大系统理论和智能控制理论发展。 在其他文献中也有所述及(如下): 至今自动控制已经经历了五代的发展: 第一代过程控制体系是150年前基于5-13psi的气动信号标准(气动控制系统PCS,Pneumatic Control System)。简单的就地操作模式,控制理论初步形成,尚未有控制室的概念。 第二代过程控制体系(模拟式或ACS,Analog Control System)是基于0-10mA或4-20mA 的电流模拟信号,这一明显的进步,在整整25年内牢牢地统治了整个自动控制领域。它标志了电气自动控制时代的到来。控制理论有了重大发展,三大控制论的确立奠定了现代控制的基础;控制室的设立,控制功能分离的模式一直沿用至今。 第三代过程控制体系(CCS,Computer Control System).70年代开始了数字计算机的应用,产生了巨大的技术优势,人们在测量,模拟和逻辑控制领域率先使用,从而产生了第三代过程控制体系(CCS,Computer Control System)。这个被称为第三代过程控制体系是自动控制领域的一次革命,它充分发挥了计算机的特长,于是人们普遍认为计算机能做好一切事情,自然而然地产生了被称为“集中控制”的中央控制计算机系统,需要指出的是系统的信号传输系统依然是大部分沿用4-20mA的模拟信号,但是时隔不久人们发现,随着控制的集中和可靠性方面的问题,失控的危险也集中了,稍有不慎就会使整个系统瘫痪。所以它很快被发展成分布式控制系统(DCS)。 第四代过程控制体系(DCS,Distributed Control System分布式控制系统):随着半导体制造技术的飞速发展,微处理器的普遍使用,计算机技术可靠性的大幅度增加,目前普遍使用的是第四代过程控制体系(DCS,或分布式数字控制系统),它主要特点是整个控制系统不再是仅仅具有一台计算机,而是由几台计算机和一些智能仪表和智能部件构成一个了控制

自动控制原理实验书(DOC)

目录 实验装置介绍 (1) 实验一一、二阶系统阶跃响应 (2) 实验二控制系统稳定性分析 (5) 实验三系统频率特性分析 (7) 实验四线性系统串联校正 (9) 实验五 MATLAB及仿真实验 (12)

实验装置介绍 自动控制原理实验是自动控制理论课程的一部分,它的任务是:一方面,通过实验使学生进一步了解和掌握自动控制理论的基本概念、控制系统的分析方法和设计方法;另一方面,帮助学生学习和提高系统模拟电路的构成和测试技术。 TAP-2型自动控制原理实验系统的基本结构 TAP-2型控制理论模拟实验装置是一个控制理论的计算机辅助实验系统。如上图所示,TAP-2型控制理论模拟实验由计算机、A/D/A 接口板、模拟实验台和打印机组成。计算机负责实验的控制、实验数据的采集、分析、显示、储存和恢复功能,还可以根据不同的实验产生各种输出信号;模拟实验台是被控对象,台上共有运算放大器12个,与台上的其他电阻电容等元器件配合,可组成各种具有不同系统特性的实验对象,台上还有正弦、三角、方波等信号源作为备用信号发生器用;A/D/A 板安装在模拟实验台下面的实验箱底板上,它起着模拟与数字信号之间的转换作用,是计算机与实验台之间必不可少的桥梁;打印机可根据需要进行连接,对实验数据、图形作硬拷贝。 实验台由12个运算放大器和一些电阻、电容元件组成,可完成自动控制原理的典型环节阶跃响应、二阶系统阶跃响应、控制系统稳定性分析、系统频率特性测量、连续系统串联校正、数字PID 、状态反馈与状态观测器等相应实验。 显示器 计算机 打印机 模拟实验台 AD/DA 卡

实验一一、二阶系统阶跃响应 一、实验目的 1.学习构成一、二阶系统的模拟电路,了解电路参数对系统特性的影响;研究二阶系统的两个重要参数:阻尼比ζ和无阻尼自然频率ωn对动态性能的影响。 2.学习一、二阶系统阶跃响应的测量方法,并学会由阶跃响应曲线计算一、二阶系统的传递函数。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验原理 模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟一、二阶系统,即利用运算放大器不同的输入网络和反馈网络模拟一、二阶系统,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。 若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 四、实验内容 构成下述系统的模拟电路,并测量其阶跃响应: 1.一阶系统的模拟电路如图

自动控制原理教学大纲-2017版

《自动控制原理》课程教学大纲 课程代码:060131003 课程英文名称:Automatic Control Principle 课程总学时:64 讲课:56 实验:8 上机:0 适用专业:自动化专业 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 自动控制原理是高等工业学校自动化专业开设的一门培养学生自动控制系统分析设计能力的主干技术基础课,主要讲授自动控制系统基本知识、基本理论和基本方法,在自动化专业培养计划中,它起到由基础理论课向专业课过渡的承上启下的作用。本课程在教学内容方面除基本知识、基本理论和基本方法的教学外,还通过实验学时,来培养学生的设计思维和设计能力。 通过本课程的学习,学生将达到以下要求: 1.掌握自动控制系统的分析原理、设计方法和系统稳定性的一般规律 2.具有设计闭环控制系统的初步能力; 3.了解典型控制系统的实验方法,获得实验技能的基本训练; (二)知识、能力及技能方面的基本要求 1.基本知识:掌握控制系统的一般知识,控制系统的主要类型、性能、结构特点、应用等。 2.基本理论和方法:掌握控制系统设计的基本原则,系统稳定的工作原理、简化的物理模型与数学模型、时域分析、根轨迹分析、频域分析、系统校正、非线性分析等。 3.基本技能:掌握设计计算、结构设计,实验技能等。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加讨论课,调动学生学习的主观能动性。讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于技术基础课,在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 3.计算机辅助学习:提醒学生使用matlab软件,要求学生使用VB编写程序来完成某些计算和绘制。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行。本课程主要的先修课程有高等数学、信号变换等。 (五)对习题课、实践环节的要求 1.对重点、难点章节(如:系统校正、非线性计算等)应安排习题课,例题的选择以培养学生消化和巩固所学知识,用以解决实际问题为目的。 2.课后作业要少而精,内容要多样化,作业题内容必须包括基本概念、基本理论及设计计算方面的内容,作业要能起到巩固理论,掌握计算方法和技巧,提高分析问题、解决问题能力,熟悉标准、规范等的作用,对作业中的重点、难点,课上应做必要的提示,并适当安排课内讲评作业。学生必须独立、按时完成课外习题和作业,作业的完成情况应作为评定课程成绩的一部分。 3.每个学生要完成大纲中规定的必修实验,通过实验环节,学生应掌握典型系统的频率特

自动控制原理及应用教案

第一章自动控制的基本知识 ? 1.1自动控制的一般概念 ? 1.2自动控制系统的组成 ? 1.3自动控制系统的类型 ? 1.4 对控制系统性能的要求 1.1.1自动控制技术 ?自动控制技术被大量应用于工农业生产、医疗卫生、环境监测、交通管理、科研开 发、军事领域、特别是空间技术和核技术。自动控制技术的广泛应用不仅使各种生产设备、生产过程实现了自动化,提高了生产效率和产品质量,尤其在人类不能直接参与工作的场合,就更离不开自动控制技术了。自动控制技术还为人类探索大自然、利用大自然提供了可能和帮助。 1.1.2自动控制理论的发展过程 ?1945年之前,属于控制理论的萌芽期。 ?1945年,美国人伯德(Bode)的“网络分析与放大器的设计”奠定了控制理论的基础, 至此进入经典控制理论时期,此时已形成完整的自动控制理论体系。 ?二十世纪六十年代初。用于导弹、卫星和宇宙飞船上的“控制系统的一般理论”(卡 尔曼Kalman)奠定了现代控制理论的基础。现代控制理论主要研究多输入-多输出、多参数系统,高精度复杂系统的控制问题,主要采用的方法是以状态空间模型为基础的状态空间法,提出了最优控制等问题。 ?七十年代以后,各学科相互渗透,要分析的系统越来越大,越来越复杂,自动控制 理论继续发展,进入了大系统和智能控制时期。例如智能机器人的出现,就是以人工智能、神经网络、信息论、仿生学等为基础的自动控制取得的很大进展。 1.2自动控制系统的组成 1.2.1自动控制系统的结构与反馈控制理论 ?图中为放水阀,为进水阀,水箱希望的液位高度为。当放水使得水箱液位降低而被 人眼看到,人就会打开进水阀,随着液位的上升,人用大脑比较并判断水箱液位达到时,就会关掉。若判断进水使得实际液位略高于,则需要打开放水而保证液位高度。 ?在这个过程中,人参与了以下三个方面的工作:

自动控制原理课程设计

扬州大学水利与能源动力工程学院 课程实习报告 课程名称:自动控制原理及专业软件课程实习 题目名称:三阶系统分析与校正 年级专业及班级:建电1402 姓名:王杰 学号: 141504230 指导教师:许慧 评定成绩: 教师评语: 指导老师签名: 2016 年 12月 27日

一、课程实习的目的 (1)培养理论联系实际的设计思想,训练综合运用经典控制理论和相关课程知识的能力; (2)掌握自动控制原理的时域分析法、根轨迹法、频域分析法,以及各种校正装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标; (3)学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试; (4)学会使用硬件搭建控制系统; (5)锻炼独立思考和动手解决控制系统实际问题的能力,为今后从事控制相关工作打下较好的基础。 二、课程实习任务 某系统开环传递函数 G(s)=K/s(0.1s+1)(0.2s+1) 分析系统是否满足性能指标: (1)系统响应斜坡信号r(t)=t,稳态误差小于等于0.01; (2)相角裕度y>=40度; 如不满足,试为其设计一个pid校正装置。 三、课程实习内容 (1)未校正系统的分析: 1)利用MATLAB绘画未校正系统的开环和闭环零极点图 2)绘画根轨迹,分析未校正系统随着根轨迹增益变化的性能(稳定性、快速性)。 3)作出单位阶跃输入下的系统响应,分析系统单位阶跃响应的性能指标。 4)绘出系统开环传函的bode图,利用频域分析方法分析系统的频域性能指标(相角裕度和幅值裕度,开环振幅)。 (2)利用频域分析方法,根据题目要求选择校正方案,要求有理论分析和计算。并与Matlab计算值比较。 (3)选定合适的校正方案(串联滞后/串联超前/串联滞后-超前),理论分析并计算校正环节的参数,并确定何种装置实现。

自动控制原理课程教学大纲

物理电子工程学院《自动控制原理》课程教学大纲课程编号:04210164 课程性质:专业必修课 先修课程:高等数学、函数变换、模拟电路、电路分析 总学时数:76 学分:4 适合专业:电子信息工程、机械与电子工程、机械自动化、电器自动化、通信、包装工程等专业 (一) 课程教学目标 自动控制理论是电子信息科学与技术专业的一门重要的专业基础课程。它侧重于理论角度,系统地阐述了自动控制科学和技术领域的基本概念和基本规律,介绍了自动控制技术从建模分析到应用设计的各种思想和方法,内容十分丰富。通过自动控制理论的教学,应使学生全面系统地掌握自动控制技术领域的基本概念、基本规律和基本分析与设计方法,以便将来胜任实际工作,具有从事相关工程和技术工作的基本素质,同时具有一定的分析和解决有关自动控制实际问题的能力。 (二) 课程的目的与任务 本课程是电子通信工程、机电一体化、包装工程等专业、工科及相关理科的必修基础课程。通过本课程的学习,使学生掌握自动控制的基础理论,并具有对简单连续系统进行定性分析、定量估算和初步设计的能力,为专业课学习和参加控制工程实践打下必要的基础。学生将掌握自动控制系统分析与设计等方面的基本方法,如控制系统的时域分析法、根轨迹分析法、频域分析法、状态空间分析法、采样控制系统的分析等基本方法等。为各类计算机控制系统设计打好基础。 (三) 理论教学的基本要求 1、熟练掌握自动控制的概念、基本控制方式及特点、对控制系统性能的基本要求。 2、熟练掌握典型环节的传递函数、结构图化简或梅森公式以及控制系统传递函数的建立和表示方法,初步掌握小偏差线性化方法和通过机理分析建立数学模型的方法。

自动控制原理-第三章控制系统的时域分析教案

第三章控制系统的时域分析 1.本章的教学要求 1)使学生掌握控制系统时域分析方法。 2)使学生掌握控制系统稳定性的基本概念、稳定的充分必要条件; 3)使学生学会利用代数稳定性判据判断系统稳定性; 4)掌握稳态误差计算; 5)掌握一阶系统的单位阶跃响应、单位斜坡响应、单位脉冲响应的分析方法; 6)掌握二阶系统的单位阶跃响应、单位脉冲响应的分析方法; 7)掌握二阶系统的单位阶跃响应性能指标计算; 2.本章讲授的重点 本章讲授的重点是稳定性的基本概念、稳定的充分必要条件,应用代数稳定性判据、稳态误差计算、一阶系统的单位阶跃响应、二阶系统的单位阶跃响应性能指标计算。 3.本章的教学安排 本章讲授10个学时,安排了5个教案,实验学时2学时。 学生通过亲自动手实验,掌握一阶系统、二阶系统的单位阶跃响应性能与系统参数之间的关系。

[教案3-1] 1.主要内容: 1)时域分析法的基本概念、时间响应概念及其组成 2)典型输入信号 1)控制系统稳定性的基本概念; 2)控制系统稳定的条件; 2.讲授方法及讲授重点: 本讲首先介绍时域分析的基本概念及其特点,通过二阶系统对单位阶跃输入的响应过程曲线来介绍瞬态响应和稳态响应概念,从而使学生了解时间响应的含义。重点介绍常用的典型输入信号,包括脉冲信号、阶跃信号、斜坡信号和抛物线信号,说明信号的特点、在实际中选用典型输入信号的方法。 强调控制系统稳定性是系统正常工作的首要条件,然后介绍系统稳定性的基本概念、稳定的条件及判定方法。重点介绍控制系统稳定的条件并做简单的推导,得出系统稳定的充分必要条件为系统特征方程无正实根的结论。 在授课过程中,通过讲解各种形式的例题,使学生充分理解并熟练掌握。3.教学手段: Powerpoint课件与黑板讲授相结合。 4.注意事项: 在讲授本讲时,注意讲清楚控制系统稳定的充要条件的推导; 5.课时安排:2学时。 6.作业: 书后p88 习题3-1,3-2。

金陵科技学院自动控制原理课程设计

绪论 (1) 一课程设计的目的及题目 (2) 1.1课程设计的目的 (2) 1.2课程设计的题目 (2) 二课程设计的任务及要求 (3) 2.1课程设计的任务 (3) 2.2课程设计的要求 (3) 三校正函数的设计 (4) 3.1理论知识 (4) 3.2设计部分 (5) 四传递函数特征根的计算 (8) 4.1校正前系统的传递函数的特征根 (8) 4.2校正后系统的传递函数的特征根 (10) 五系统动态性能的分析 (11) 5.1校正前系统的动态性能分析 (11) 5.2校正后系统的动态性能分析 (15) 六系统的根轨迹分析 (19) 6.1校正前系统的根轨迹分析 (19) 6.2校正后系统的根轨迹分析 (21) 七系统的奈奎斯特曲线图 (23) 7.1校正前系统的奈奎斯特曲线图 (23) 7.2校正后系统的奈奎斯特曲线图......... 错误!未定义书签。4 八系统的对数幅频特性及对数相频特性...... 错误!未定义书签。 8.1校正前系统的对数幅频特性及对数相频特性 (25) 8.2校正后系统的对数幅频特性及对数相频特性 (27) 总结................................... 错误!未定义书签。8 参考文献................................ 错误!未定义书签。

在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。校正装置可以补偿系统不可变动部分(由控制对象、执行机构和量测部件组成的部分)在特性上的缺陷,使校正后的控制系统能满足事先要求的性能指标。常用的性能指标形式可以是时间域的指标,如上升时间、超调量、过渡过程时间等(见过渡过程),也可以是频率域的指标,如相角裕量、增益裕量(见相对稳定性)、谐振峰值、带宽(见频率响应)等。 常用的串联校正装置有超前校正、滞后校正、滞后-超前校正三种类型。在许多情况下,它们都是由电阻、电容按不同方式连接成的一些四端网络。各类校正装置的特性可用它们的传递函数来表示,此外也常采用频率响应的波德图来表示。不同类型的校正装置对信号产生不同的校正作用,以满足不同要求的控制系统在改善特性上的需要。在工业控制系统如温度控制系统、流量控制系统中,串联校正装置采用有源网络的形式,并且制成通用性的调节器,称为PID(比例-积分-微分)调节器,它的校正作用与滞后-超前校正装置类同。

自动控制原理电子教案(经典控制部分)

自动控制原理电子教案 经典控制部分 第一章控制理论一般概念3学时 (2) 第二章控制系统的数学模型9学时 (6) 第三章控制系统的时域分析io学时 (15) 第五章频率特性12学时 (26) 第六章控制系统的校正与设计8学时 (36) 第七章非线性系统8学时 (40) 第八章离散控制系统8学时 (45)

第一章控制理论一般概念3 学时 1.本章的教学要求 1)使学生了解控制工程研究的主要内容、控制理论的发展、控制理论在工程中的应用及控制理论的学习方法等内容,认识本学科在国民经济建设中的重要作用,从而明确学习本课程的目的。 2)使学生深入理解控制系统的基本工作原理、开环闭环和复合控制系统、闭环控制系统的基本组成等内容,学会利用所学控制原理分析控制系统。 3)使学生学会控制系统的基本分类方法, 4)掌握对控制系统的基本要求。 2.本章讲授的重点 本章讲授的重点是控制系统的基本概念、反馈控制原理、控制系统的的基本分类方法及对控制系统的基本要求。 3.本章的教学安排 本课程讲授3 个学时,复习学时3 个。 演示《自动控制技术与人类进步》及《自动化的应用举例》幻灯片,加深同学对本课程研究对象和内容的了解,加深对反馈控制原理及系统参数对系统性能影响的理解。

1.教学主要内容 : 本讲主要介绍控制工程研究的主要内容、 中的应用及控制理论的学习方法等内容。 2.讲授方法及讲授重点: 本讲首先介绍控制工程研究的主要内容, 离心调速器为例, 说明需要用控制理论解决控制系 统的稳定、 准确、快速等问题。 其次,在讲授控制理论的发展时, 主要介绍控制理论的发展的三个主要阶段, 重点说明经典控制理论、 现代控制理论研究的范围、 研究的手段, 强调本课程重 点介绍经典控制理论。 另外,在介绍控制理论在工程中的应用时, 应举出控制理论在军事、 数控机 床、加工中心、机器人、机电一体化系统、动态测试、机械动力系统性能分析、 液压系统的动态特性分析、 生产过程控制等方面的应用及与后续课的关系, 激发 同学的学习兴趣。 最后,在介绍控制理论的学习方法时,先说明本门课的特点,起点高、比较 抽象、系统性强, 然后强调学习本门课程应以新的视角分析和考虑问题, 以系统 的而不是孤立的、 动态的而不是静态的观点和方法来思考和解决问题; 掌握控制 理论的基本概念、 基本理论和基本方法并注意结合实际, 为解决工程中的控制问 题打下基础。 3.注意事项: 介绍本门课的参考书及课程总体安排。 4.课时安排: 1 学时。 5.教学手段: Powerpoint 课件。 6.作业及思考题: 借参考书,查阅与本门课有关的文献资料,了解控制理论的 应用及最新发展动态。 [教案 1-2] 第二节 控制系统的基本概念 1.主要内容: 本讲主要介绍控制系统的基本工作原理、 开环闭环和复合控制系统、 闭环控 制系统的基本组成等内容。 [教案 1-1] 第一节 概述 控制理论的发展、 控制理论在工程 给出定义,并以瓦特发明的蒸汽机

自动控制原理课程设计

物理科学与工程技术学院 课程设计说明书 课题名称:自动控制原理 设计题目:自动控制与检测原理 专业班级:11级自动化 学生姓名:袁 学号:1134307138

自动控制系统 为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。 自动检测 检测是指为确定产品、零件、组件、部件或原材料是否满足设计规定的 质量标准和技术要求目标值而进行的测试、测量等质量检测活动。检测有3个目标:①实际测定产品(含零、部件)的规定质量特性及其指标的量值。② 根据测得值的偏离状况,判定产品的质量水平(等级),确定废次品。③认定测量方法的正确性和对测量活动简化是否会影响对规定特征的控制 自动检测是指在计算机控制的基础上,对系统、设备进行性能检测和故障诊断。他是性能检测、连续监测、故障检测和故障定位的总称。现代自动检测技术是计算机技术、微电子技术、测量技术、传感技术等学科共同发展的产物。凡是需要进行性能测试和故障诊断的系统、设备,均可以采用自动检测技术

课程内容——设计一个雷达天线伺服控制系统 1 雷达天线伺服控制系统简介 1.1 概述 用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。它是由若干元件和部件组成的并具有功率放大作用的一种自动控制系统。位置随动系统的输入和输出信号都是位置量,且指令位置是随机变化的,并要求输出位置能够朝着减小直至消除位置偏差的方向,及时准确地跟随指令位置的变化。位置指令与被控量可以是直线位移或角位移。随着工程技术的发展,出现了各种类型的位置随动系统。由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,并成功应用在雷达天线。伺服系统的精度主要决定于所用的测量元件的精度。此外,也可采取附加措施来提高系统的精度,采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。因此可根据这个特征将它划分为两个类型,一类是模拟式随动系统,另一类是数字式随动系统。本设计——雷达天线伺服控制系统实际上就是随动系统在雷达天线上的应用。系统的原理图如图1-1 所示。

自动控制原理实验1-6

实验一 MATLAB 仿真基础 、实验目的: (1) 熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2) 掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3) 掌握使用MATLAB 命令化简模型基本连接的方法。 (4) 学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1 ?计算机;2. MATLAB 软件 三、实验原理 函数tf ()来建立控制系统的传递函数模型,用函数printsys ()来输出控制系 统的函数,用函数命令zpk ()来建立系统的零极点增益模型,其函数调用格式 为:sys = zpk ( z, p, k 零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用 feedback ()函数求得。 则 feedback ()函数调用格式为: sys = feedback (sysl, sys2, sigh 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign = -1;正反馈时, sig n = 1;单位反馈时,sys2= 1,且不能省略。 四、实验内容: 1. 已知系统传递函数,建立传递函数模型 2 2 5(s 2) (s 6s 7) 3 3 s(s 1) (s 2s 1) 2. 已知系统传递函数,建立零极点增益模型 s 3 飞 2~ s 2s 2s 1 3 ?将多项式模型转化为零极点模型 5(s 2)2(s 2 6s 7) G(s) s 3 s 3 2s 2 2s 1 G(s) G(s)

自动控制原理课程设计 频率法设计串联滞后——超前校正装置

目录 设计任务 (3) 设计要求 (3) 设计步骤 (3) 未校正前系统的性能分析 (3) 1.1开环增益 K (3) 1.2校正前系统的各种波形图 (4) 1.3由图可知校正前系统的频域性能指标 (7) 1.4特征根 (7) 1.5判断系统稳定性 (7) 1.6分析三种曲线的关系 (7) 1.7求出系统校正前动态性能指标及稳态误差 (7) 1.8绘制系统校正前的根轨迹图 (7) 1.9绘制系统校正前的Nyquist图 (9) 校正后的系统的性能分析 (10) 2.1滞后超前校正 (10) 2.2校正前系统的各种波形图 (11) 2.3由图可知校正前系统的频域性能指标 (15) 2.4特征根 (15) 2.5判断系统稳定性 (15) 2.6分析三种曲线的关系 (15) 2.7求出系统校正前动态性能指标及稳态误差 (15) 2.8绘制系统校正前的根轨迹图和Nyquist图 (16) 心得体会 (18) 主要参考文献 (18)

一、设计任务 已知单位负反馈系统的开环传递函数0 ()(0.11)(0.011) K G S S S S =++,试用频率 法设计串联滞后——超前校正装置。 (1)使系统的相位裕度045γ> (2)静态速度误差系数250/v K rad s ≥ (3)幅值穿越频率30/C rad s ω≥ 二、设计要求 (1)首先,根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T ,α等的值。 (2)利用MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统是否稳定,为什么? (3)利用MATLAB 作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系?求出系统校正前与校正后的 动态性能指标σ%、tr 、tp 、ts 以及稳态误差的值,并分析其有何变化? (4)绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴交 点的坐标和相应点的增益K *值,得出系统稳定时增益K * 的变化范围。绘制系统校正前与校正后的Nyquist 图,判断系统的稳定性,并说明理由? (5)绘制系统校正前与校正后的Bode 图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由? 三、设计步骤 开环传递函数0 ()(0.11)(0.011) K G S S S S = ++ 1、未校正前系统的性能分析 1.1开环增益0K 已知系统中只有一个积分环节,所以属于I 型系统 由静态速度误差系数 250/v K rad s ≥ 可选取 v K =600rad/s s rad K S S S K S S H S SG K s s V /600) 101.0)(11.0(lim )()(lim 00 ==++==→→

自动控制原理实验报告73809

-150-100 -50 50 实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=15 20

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 1 TS K )s (R )s (C +-=

自动控制原理电子教案

第一章自动控制原理的基本概念 主要内容: 自动控制的基本知识 开环控制与闭环控制 自动控制系统的分类及组成 自动控制理论的发展 §1.1 引言 控制观念 生产和科学实践中,要求设备或装置或生产过程按照人们所期望的规律运行或工作。 同时,干扰使实际工作状态偏离所期望的状态。 例如:卫星运行轨道,导弹飞行轨道,加热炉出口温度,电机转速等控制 控制:为了满足预期要求所进行的操作或调整的过程。 控制任务可由人工控制和自动控制来完成。 §1.2 自动控制的基本知识 1.2.1 自动控制问题的提出 一个简单的水箱液面,因生产和生活需要,希望液面高度h维持恒定。当水的流入量与流出量平衡时,水箱的液面高度维持在预定的高度上。 当水的流出量增大或流入量减小,平衡则被破坏,液面的高度不能自然地维持恒定。

所谓控制就是强制性地改变某些物理量(如上例中的进水量),而使另外某些特定的物理量(如液面高度h)维持在某种特定的标准上。人工控制的例子。 这种人为地强制性地改变进水量,而使液面高度维持恒定的过程,即是人工控制过程。 1.2.2 自动控制的定义及基本职能元件 1. 自动控制的定义 自动控制就是在没有人直接参与的情况下,利用控制器使被控对象(或过程)的某些物理量(或状态)自动地按预先给定的规律去运行。 当出水与进水的平衡被破坏时,水箱水位下降(或上升),出现偏差。这偏差由浮子检测出来,自动控制器在偏差的作用下,控制阀门开大(或关小),对偏差进行修正,从而保持液面高度不变。

2. 自动控制的基本职能元件 自动控制的实现,实际上是由自动控制装置来代替人的基本功能,从而实现自动控制的。画出以上人工控制与动控制的功能方框图进行对照。 比较两图可以看出,自动控制实现人工控制的功能,存在必不可少的三种代替人的职能的基本元件: 测量元件与变送器(代替眼睛) 自动控制器(代替大脑) 执行元件(代替肌肉、手)

相关文档
相关文档 最新文档