文档库 最新最全的文档下载
当前位置:文档库 › PPARγ研究新进展

PPARγ研究新进展

PPARγ研究新进展
PPARγ研究新进展

PPARγ研究新进展

过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor, PPAR)是调节目标基因表达的核内受体转录因子超家族成员[1],1990 年Issemann 等[2]首先发现了这种能被一类脂肪酸样化合物过氧化物酶体增殖剂(peroxisome proliferators, PP) 激活, 而被命名为PP 激活受体( peroxisome proliferator activated receptor, PPAR)。根据结构的不同,PPAR可分为α、β(或δ)和γ三种类型,其中PPARγ主要表达于脂肪组织及免疫系统,与脂肪细胞分化、机体免疫及胰岛素抵抗关系密切,是胰岛素增敏剂噻唑烷二酮类药物(troglitazone, TZDs)作用的靶分子,成为近年来研究热点

1.PPARγ的结构及特征

PPARγ基因位于3号染色体短臂上[3],含有9个外显子。由于基因转录时所用的启动子和接拼方式的不同,PPARγ可以分为γ1、γ2和γ3三种亚型,其中γ3和γ1编码的蛋白质相同[4,5]。PPARγ2编码的蛋白质由505个氨基酸组成,比PPARγ1在氨基端多30个氨基酸。进一步研究发现[6],PPARγ1mRNA是由8个外显子编码,而PPARγ2mRNA由7个外显子编码,编码的氨基酸数量虽有不同,但两者PPARγ的结构域、DNA结合域及配体结合域等完全相同,作用基本相同。

研究发现,不同种属间PPARγcDNA具有高度同源性,如人与小鼠的PPARγ1的一致性达91%[7]。在啮齿类动物中,PPARγ主要在脂肪组织中表达,而在人体,除脂肪组织外,在巨噬细胞以及其他脂肪贮存细胞,如肝、肾、肺及直肠中均有表达,并且人肝组织比鼠肝表达更为丰富,而肌肉组织基本不表达。PPARγ1是PPARγ的主要形式,表达范围相对广泛,PPARγ2表达范围较窄,主要在脂肪组织中表达,PPARγ3仅表达于巨噬细胞和大肠中[8,9]。

2. PPARγ的配基和功能

PPARγ的配基(又称激动剂) 有两种,生理性配基和药理性配基。生理性配基有15-脱氧前列腺素J2 (15d-PGJ2)及其代谢产物和不饱和脂肪酸等,药理性配基有胰岛素增敏剂噻唑烷酮类化合物(TZDs),它是PPARγ的高效配基。随着研究的不断深入,越来越多的配基不断被发现,Lehmann等报道吲哚美辛等非甾体类抗炎药也能与PPARγ结合并使之活化[10],此外胰岛素可活化PPARγ,大鼠脂肪细胞经胰岛素处理30min后,能使其磷酸化水平增加3倍,显示PPARγ活性升高[11]。配基与PPARγ结合后,可激活PPARγ并调节目标基因的转录活性。

PPARγ的N 端功能区含有一个能被有丝分裂原激活的蛋白激酶磷酸化位点, 若该区域突变或在磷蛋白磷酸酶共同作用下则不能产生磷酸化而使其活化[12]。配体与PPARγ结合并使之激活后, 与视黄醛X受体α(retinoid X receptor α,RXRα)形成异二聚体, 再结合于特异性DNA 序列而使靶基因活化, 此序列称为PPAR特异性反应元件(peroxisome proliferator responsive element,,PPRE)[13,14]。PPARγ还能影响NFκB、信号转录子、激活蛋白-1介导的信号通路,通过抑制这些途径的激活达到抑

制靶基因启动子激活和转录的目的。含有PPRE结构的基因包括已酰辅酶A合成酶、脂蛋白脂肪酶(LPL)、胰岛素受体底物-2(IRS-2)、瘦素以及肿瘤坏死因子-α(TNF-α)等

[15]。PPARγ通过调节相关基因的表达,在脂肪形成、糖脂代谢,以及在免疫系统中

发挥重要作用,并与多种疾病如糖尿病、肥胖、高血压、癌症等的发生、发展有关。尤其是PPARγ是脂肪细胞分化过程中的关键因子,近年来备受关注。

3. PPARγ和成脂细胞的分化

PPAR的三种亚型参与脂肪细胞分化作用的时相及程度各有不同,通过转染具有分化成脂肪细胞潜能的多种细胞系进行评价,PPARγ的成脂作用最强[16]。PPARγ具有脂肪组织特异性,能被脂肪酸及外源性过氧化物酶体增殖剂激活,而调控某些参与脂质代谢的酶的表达。PPARγ在许多脂肪细胞基因转录激活前被诱导,对细胞分化有重要作用[17]。胰岛素、糖皮质激素以及胞内CAMP的诱导剂可使前脂肪细胞分化成脂肪细胞,而表皮生长因子(EGF)、转化生长因子可抑制原代培养及前脂肪细胞系的分化同时有丝分裂原活化的蛋白激酶可以使PPARγ磷酸化,抑制了配体的转录活化功能,提示PPARγ的转录活化作用可受到参与脂肪细胞分化过程中细胞因子的信号传导途径的调节[12]。在体外研究中, 胚胎干细胞诱导分化为脂肪细胞依赖于PPARγ的参与,通过对PPARγ阳性嵌合体小鼠和野生型小鼠研究证明,PPARγ为皮脂腺细胞的分化所必需。在PPARγ的三种亚型中,PPARγ2与脂肪和皮脂腺细胞的分化尤其相关[18]。PPARγ2是脂肪细胞分化过程中重要的调节因子,它可促使成纤维细胞或骨髓间充质干细胞向脂肪细胞分化[19]。Ren[20]等通过基因敲除的方法研究表明是PPARγ2而非PPARγ1在脂肪分化的过程中起着至关重要的作用。有研究认为PPARγ1和PPARγ2均能有效刺激脂肪细胞的分化,但在低配体浓度的情况下,PPARγ2刺激脂肪组织形成的能力明显强于PPARγ1[21]。PPARγ在皮脂腺细胞分化过程中同样扮演极为重要的角色[22,23]。在体外用雄激素诱导皮脂腺分化很难达到预期效果,其原因可能在于缺乏促分化因子, Rosenfield等[24]发现PPARγ激活剂和DHT能促使皮脂腺细胞分化,两者作用叠加,但是单纯使用雄激素诱导皮脂腺分化效果不佳,添加PPARγ激动剂后,皮脂腺细胞出现明显分化。进一步研究发现PPARγ与RXR(retinoid X receptor)协同作用能促进皮脂腺细胞的发育和分化[25,26]。

4. PPARγ与肿瘤

过氧化物酶体增殖物激活受体PPAR是细胞核激素受体,它转录水平影响脂肪酸及其衍生物的功能。通过以上的方式,PPAR可以调节细胞的分化、增殖和生存,从而在不同组织中控制癌症的发生。但是每种PPAR亚型和癌发生有何关系呢?并且这些发现和人体病理学及治疗有何关系呢?PPARγ具有抗增殖及预调亡和促分化的功能[27],因而具有较全面的抗癌活性。PPARγ参与了前脂肪细胞分化成脂肪细胞以及单核细胞分化为巨噬细胞。当有PPARγ和RXR 配体存在时,骨髓细胞前分化为静息巨噬细胞,当两者持续存在时,PPARγ可消退脂肪瘤细胞分化同时触发瘤细胞向脂肪细胞分化[28]。

实验发现PPARγ在正常结肠细胞、高分化及低分化肠癌细胞中均高表达[29]。PPARγ选择性配体曲格列酮可抑制人结肠癌细胞及乳腺癌细胞等肿瘤细胞的增殖、诱导其分化,并可使裸鼠模型中肿瘤体积缩小50%,减少平均荷瘤数[30]。溃疡性结肠炎与结肠癌的发生密切相关,NSAIDS可作为PPARγ配体发挥作用PPARγ激动剂可抑制COX-2

的表达,同时PPARγ激动剂可抑制巨噬细胞的激活、炎性细胞因子的生成,可抑制炎症及致瘤损伤的进展[31]。目前曲格列酮已进行II期临床用于乳腺癌和前列腺癌的治疗,临床研究发现PPARγ激动剂对胰腺癌有较强的抑制作用,已完成I期临床试验[32]。He等[33]研究发现,体外正常培养的大鼠角朊细胞不表达PPARγ,但是PPARγ的激动剂TZD能够通过抑制细胞的Cyclin D1的表达,从而抑制其增殖并促其分化,作者认为,TZD可能作为一种有效的药物参与皮肤癌的治疗。关于PPARγ抗肿瘤作用机制,目前认为PPARγ能降低凋亡抑制因子NF-κB的活性;减少凋亡抑制基因的c-myc的表达;调控与细胞迁移有关的因子的表达:E-粘连蛋白、桥粒芯糖蛋白、p27、β-连环蛋白;调节促血管生长因子VEGF的表达。在将来,PPARγ可能还有PPARβ/δ能成为肿瘤治疗的诱人的靶点。但是在临床和科学方面的还需作进一步研究。

5. PPARγ和免疫

PPARγ的配体15d-PGJ2 在许多免疫应答中起调节作用,PPARγ存在的情况下,极低浓度的15d-PGJ2就可以抑制脂多糖诱导的经由AP-1 (Active protein21) 、NF-κB、STAT1(signal transducer and activator of transcription 1) 介导的转录效应。PPARγ通过与NF-κB 间蛋白-蛋白相互作用,阻止NF-κB 与炎症因子基因启动子区的同源顺式元件结合[34]。Yang 等发现15d-PGJ2 与格列酮类均能通过活化的PPARγ而抑制PHA 诱导的人T细胞增殖及IL-2 基因表达,抑制活化的T 细胞与IL-2 启动子中同源顺式元件相结合。PPARγ在调节诸如单核P巨噬细胞、T 细胞及NK细胞等免疫细胞的分化中有重要意义[35]。PPARγ 配体通过PPARγ依赖P非依赖途径抑制T 细胞及NK 细胞产生IFN2γ[36]。基因芯片技术结果显示PPARγ在2 型T 细胞中表达要明显强于1 型T 细胞(大约5~8 倍) 。2型免疫细胞在培养条件下(加用IL-4 及IFN-γ抗体) 可诱导人NK细胞表达PPARγ[37]。活化的PPARγ可介导抑制单核细胞炎症因子TNF-α, IL-1 , IL-2 和IL-6 的生成, 产生抗炎症作用。T 淋巴细胞活化的关键是控制淋巴细胞早期分化反应的IL-2 基因的表达。PPARγ活化后可抑制IL-2 基因表达从而抑制人T 淋巴细胞的早期活化[38]。提示PPARγ配基可通过IL-2 基因表达治疗T 细胞介导的疾病,并具有临床潜力[39]。

有关PPARγ的研究报道已经有很多,但仍有许多问题尚待深入研究,如PPARγ在脂肪细胞增殖和分化中的确切作用,以及该受体如何同辅助因子相互作用激活转录,如何有选择性地控制PPARγ介导的生物学效应等。目前人们正致力于探讨干预PPARγ基因转录和影响PPARγ蛋白功能的药物及其作用机制,若能全面地揭示PPARγ功能,则将对肥胖、糖尿病、肿瘤等疾病的治疗大有益处。

转基因研究的现状及发展

转基因研究的现状及发展 转基因作物是当今世界各国现代生物技术产业研究的热点,中国的转基因生物技术发展一、我国转基因作物的发展现状迅速,由于科学界对转基因作物对人类及生态环世界上最早的转基因作物诞生于年,是一境利与弊的争论,措政府应制定相应的政策、施对到种含有抗生素药类抗体的烟草。世纪年代,其进行安全管理。本文论述了转基因作物在国际农业生物技术已逐渐成为各国现代生物技术产业研国内的发展现状,分析了转基因作物对人类及生态环境的利与弊以及关于我国转基因作物安全管究的热点。 转基因技术的应用 1.在畜牧兽医中的应用 应用于动物抗病育种转基因技术可以用于动物抗病育种,通过克隆特定基因组中的某些编码片段,对之加以一定形式的修饰以后转入畜禽基因组,如果转基因在宿主基因组能得以表达,那么畜禽对该种病毒的感染应具有一定的抵抗能力,或者应能够减轻该种病毒侵染时对机体带来的危害。(其用于遗传育种,不仅可以加速改良的进程,使选择的效率提高,改良的机会增多,并且不会受到有性繁殖的限制。)例如Clements等将绵羊髓鞘脱落病毒的表壳蛋白基因转入绵羊,获得的转基因动物抗病力明显提高;丘才良把一种寒带比目鱼抗冻基因成功地转移到大西洋鲑中,为提高某些鱼类的抗寒能力做了积极的尝试。 2.在医学领域中的应用 用于生产药用蛋白用转基因动物的乳腺生产重组蛋白(乳腺生物反应器)可能是转基因动物的最大应用,这也是世界范围内转基因研究的热点之一。Swamdom (1992)用β-球蛋白的4个核酸酶I的高敏位点与人的两个基因相连,融合基因产生的转基因猪与鼠的原型相似。目前,把转基因动物当作生物反应器来生产药用蛋白已经受到国际社会的极大关注,不仅各国政府投资,一些私人集团也不惜投入大量资金加以研究和开发。 3.转基因的应用存在的问题及展望 (1)转基因表达水平低,许多转基因的表达强烈地位受着其宿主染色体上整合位点的影响,往往出现异位表达和个体发育不适宜阶段表达,影响转基因表达能力或基因表达的组织特异性,从而使大部分转基因表达水平极低,极少部分基因表达水平过高。 (2)难以控制转基因在宿主基因组中的行为,转基因随机整合于动物的基因组中,可能会引起宿生细胞染色体的插入突变,还会造成插入位点的基因片段丢失,插入位点周围序列的倍增及基因的转移,也可能激活正常状态下处于关闭状态的基因。 (3)不了解哪些基因控制多数生理过程,不了解基因表达的发育控制和组织特异性控制的机制。 (4)制作转基因动物的效率低,这是目前几乎所有从事转基因动物研究的实验室都面临的问题,也是制约着这项技术广泛应用的关键。 (5)对传统伦理是一种挑战,对人类的生存有一定的负面作用等。 当然,我们不能因为这些缺点的存在就否定转基因技术的研究价值。因为它作为一种新兴的生物技术,配合其他相关的生物技术将具有广阔的应用前景。随着这一技术日趋成熟,许多问题有望逐步得到解决。

金属缓蚀剂及其研究进展

金属缓蚀剂及其研究进展 课程:腐蚀与材料保护 主讲老师: 陈存华 院系:化学学院 专业:应用化学 学号: 2010214131 姓名:张伟 华中师范大学化学学院 2012年12月

金属缓蚀剂及其研究进展 摘要:金属的缓蚀一直是人们极为关注的重要课题,本文综合近十年来文献简述了缓蚀剂的机理,常见的分类,重点叙述了金属缓蚀剂的前沿发展和技术缓蚀剂的应用,总结了缓蚀剂的研究意义,并对未来缓蚀剂的发展方向做展望。 关键词:金属缓蚀剂分类前沿应用意义 一、前言: 金属腐蚀,就是指金属在外界环境的作用下引起的破坏或变质。它不仅影响了原有金属的光泽,而且带来了很大的经济损失。据报道2000年美国由于金属腐蚀造成的直接经济损失约为1300 多亿美元,在2005年我国由于腐蚀所造成的直接经济损失约占国民经济总产值的2%-4%,而间接损失几乎无法估量。金属腐蚀不但限制了科学技术的发展,破坏了工艺过程和生产节奏,而且污染环境,影响人类的身体健康。所以,怎样防止金属腐蚀已成为世界性的问题。 缓蚀剂(Corrosion Inhibitor)是一种无机物或有机物,加到腐蚀介质中,借助于这种物质在金属和腐蚀介质的界面上的物理和化学作用,可以防止或降低金属的腐蚀速度,减少金属在所在介质中的腐蚀。缓蚀剂在金属防护中的应用,是腐蚀科学与表面工程学科发展的一项重要成就。百余年来,缓蚀剂的开发、应用在化工、石油、电力、机械、金属加工、交通运输、核能及航天等领域中,起着极其重要的作用。近半个世纪以来,缓蚀剂的品种、质量得到了进一步扩大和提高。30年代以前,缓蚀剂的品种只有百余种。到80年代中期,仅酸性介质缓蚀剂的品种就已超过5000 余种。这种发展速度是其他化学助剂、添加剂类无以伦比的。当前,世界各国相关的科技界、企业界对它的开发和应用前景极为关注。 二、缓蚀剂的机理研究简述 金属的缓蚀有多种机理,其中主要的作用有:(1) 屏蔽效应。这主要是由于缓蚀剂的存在阻碍了金属颜料与腐蚀介质的接触,降低了腐蚀速度,同时也可能因为缓蚀剂分子上的基团与腐蚀介质的分子基团形成了螯合作用,减低了腐蚀介质对金属颜料的侵害。(2) 电化学防护:当缓蚀剂、金属颜料与腐蚀介质之间由于电化学反应形成了一层保护膜,这层膜的形成减少了介质对颜料的腐蚀,从而保护了金属颜料。大多数的有效保护作用都是这些效应相互结合得到的。 三、金属缓蚀剂的分类 1.按化学组成分类 (1)无机缓蚀剂—无机化合物。多用于氧作为腐蚀物质的中性水介质体系中,也叫中性缓蚀剂。如铬酸盐,磷酸盐,硝酸盐,硅酸盐等。无机缓蚀剂的特征是能是金属表面氧化,并是金属的腐蚀电位向高电位方向移动,即具有是金属钝化的作用。 (2)有机缓蚀剂—有机化合物。多用于酸性腐蚀介质中,化合物种类很多。有机缓蚀剂对腐蚀电位几乎无影响,主要是以分子状态在金属表面进行吸附,从

转基因技术的研究进展

作物转基因技术的研究进展 摘要:作为生物技术领域的前沿,转基因技术已在多种植物上取得重大进展。本文主要介绍了当前作物转基因技术的三大主流方法:农杆菌介导法、基因枪介导法和花粉管通道法,并阐述了这几种转基因技术在水稻、小麦、棉花、玉米、大豆,甘薯等几种主要农作物的应用进展状况。 关键词:转基因技术、农作物、应用 Genetically Modified---转基因,简称GM,是指运用科学手段从某种生物体中提取所需要的基因,将其转入另一种生物中,使与另一种生物的基因进行重组,再从结果中进行数代的人工选育,从而获得特定的具有变异遗传性状的物质。而其衍生出的转基因技术就是将人工分离和修饰过的基因导入到目的生物体的基因组中,从而达到改造生物的目的,即把一个生物体的基因转移到另一个生物体DNA中的生物技术。 1983年比利时科学家Montagu 等人和美国Monsanto 公司Fraley等人分别将T- DNA上的致瘤基因切除并代之以外源基因,获得了世界上第一株转基因植株———转基因烟草。自此之后,作物转基因技术得到了迅速发展.截至目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效兼抗性及多用途等诸多方面.一批抗病、抗虫、抗逆、抗除草剂等转基因作物已进入商品化生产阶段. 国际农业生物技术应用服务组织2 月13 日在京发布的1 份报告显示,全球27 个国 家超过1800 万农民,2013 年种植转基因作物,种植面积比2012 年增加了500 万公顷。此外,首个具有耐旱性状的转基因玉米杂交品种亦于2013 年在美国开始商业化。 据该报告显示,全球转基因作物的种植面积于转基因作物商业化的18 年中增加了100 倍以上,从1996 年的170 万公顷增加到2013 年的1.75 亿公顷,其中美国仍是全球转基因作物的领先生产者,种植面积达7010 万公顷,占全球种植面积的40%。国际农业生物技术应用服务组织创始人兼荣誉主席、本年度报告作者Clive James 表示,目前排名前10 位的国家种植转基因作物的面积均超过100 万公顷,这为将来转基因作物的多样化持续发展打下了广泛基础。在种植转基因作物的国家中,有19 个为发展中国家,8 个为发达国家;发展中国家的种植面积连续2 年超越发达国家。 目前,作物遗传转化的方法有农杆菌介导法、基因枪法、电激法、PEG 法、脂质体法、低能离子束法、超声波介导法、显微注射法、花粉管通道法等.但在当前作物基因工程研究中,主要采用农杆菌介导法、基因枪法、花粉管通道法,这三种转基因技术也相对较为成熟. 一、农杆菌介导法 农杆菌介导法是指农杆菌侵染植物时,受到植物受伤后释放的酚类物质的刺激,活化质粒上Vir 区基因的表达,将质粒上的另一段DNA(T-DNA)共价整合到植物基因组上,在植物体内表达而改变植物的遗传特性。农杆菌介导法的转化效率受众多因素影响,如农杆菌侵染外植体的影响因素、外植体再生能力的内在因素和环境条件(pH、温度和光照条件)等[32],此法具有流程简单、仪器设备便宜、拷贝数低[33],且基因沉默少,转移的基因片段长等优点。 农杆菌介导法是获得第一个转基因植物的方法,迄今为止,农杆菌介导法获得的转基因植物占转基因植物总数85%,已成为植物基因转化首选方法。 二、基因枪介导法 基因枪法又称微弹轰击法,是将外源基因包裹在直径1~2 nm的钨或金颗粒表面,加速轰击植物外植体靶组织,穿过植物细胞壁和细胞膜而将外源基因带入植物细胞。因此,通过该方法进行DNA的转移过程不受外植体基因型的限制,可以将外源基因转移至几乎所有的植物细胞、组织器官和原生质体中。 最早的基因枪是由美国Cornel 大学的Sanford 等在1987 年研制成功的。目前基因枪介

高通量SNP基因分型技术研究进展

10 Sheng W et al.J Virol,2003;77(6):3859 11 C ohen J I,et al.J Virol,1999;73(9):7627 12 Wei MX et al.Cancer Res,1994;54(7):1843 13 G ao Y et al.Oncogene,2002;21(5):825 14 T anner J E et al.J In fect Dis,1997;175(1):3815 Decaussin G et al.Cancer Res,2000;60(19):5584 16 Brink AA et al.J Clin M icrobiol,1998;36(11):3164 17 Hayes DP et al.M ol Pathol,1999;52(2):97 18 zur Hausen A et al.Cancer Res,2000;60(10):2745 (2002211201 收稿) 高通量SNP基因分型技术研究进展 方唯意综述 姚开泰审阅 中南大学湘雅医学院肿瘤研究所(长沙,410078) 摘要 在后基因组时代,单核苷酸多态性研究已迅速成为了生物医学许多领域的焦点。发展可靠、敏感、经济、稳定、高通量的S NP基因分型技术已迫在眉睫。本文主要着重于高通量S NP基因分型技术的原理、利弊以及这些技术在这个领域过去几年中的进展。 关键词 高通量;单核苷酸多态性;基因分型 单核苷酸多态性(S NPs)是最普遍的遗传变异形式。通过开展具有明显表型特征的S NPs基因分型大规模相关研究,有助于鉴定许多复杂疾病原因,了解个体对各种药物的耐受性和对环境因子的反应。人类基因组测序的完成和142万个S NPs在基因组上的定位[1],为首次在全基因组水平上进行S NPs研究打开了方便大门。经典的S NPs分析方法是PCR 扩增后用凝胶电泳检测,虽然可靠性好,但缺乏效率。寡核苷酸微阵列和其他高通量筛选技术效率有了明显的提高,但临床应用绝非可靠,因此,有必要改进和发展新的可靠、敏感、高通量、经济、稳定的S NPs基因分型技术。在本文中,我们主要阐述高通量S NPs基因分型方法,包括一步均质法、焦磷酸测序、DNA芯片/阵列分析法、微球法、MA LDI2T OF质谱基因分型分析法等,讨论这些技术的目前状态和将来潜力。 1 一步均质法 T aqman、Scorpion分析和分子灯塔组成了微滴定平板荧光阅读系统。T aqman和分子灯塔都依赖于等位基因特异性寡核苷酸杂交在PCR期间对等位基因进行区分。而Scorpion分析能使用等位基因特异性PCR或是等位基因特异性杂交反应[2]来区分等位基因。它们作为一个末端分析能在一个完全均质的反应条件下进行分析。在反应起始,所有试剂和基因组DNA都混合在一起,经热循环步骤后,荧光信号能被检测到。该反应既没有单独的预扩增步骤,也没有中间的处理过程,因此它们是一种最简单的分析方法。由于没有适合这些方法的384孔荧光检测器,以及荧光标记探针的价格过高和缺乏可靠的自动化基因型呼叫软件,因此阻碍了这些方法的发展。最近,Applied Biosystems公司新开发的7900HT型高通量荧光定量PCR仪,使得进行384孔微滴定平板荧光检测成为了可能,这主要归因于高通量能力的增加和反应容积的减少。当如果要发展更高的基因分型通量时,一个可靠的自动化等位基因呼叫能力是必须的,它不只是纠正基因型呼叫信号更快,而且在处理和加工数据上必须更迅速,更准确。近来研究表明,自动化基因型呼叫在无阳性对照情况下进行聚类分析是可行的[3]。 2 焦磷酸测序Pyrosequencing 焦磷酸测序是对短到中等长度的DNA序列样品进行高通量、精确和重复性好的分析方法。其反应原理是当测序引物与PCR扩增的,单链DNA模板杂交,和各种酶包括DNA聚合酶、ATP硫酸化酶、荧光素酶、三磷酸腺苷双磷酸酶、以及底物、荧光素一起共同孵育。4种dNTP之一被加入反应体系,如与模板配对,该dNTP与引物的末端形成共价键,dNTP 的焦磷酸基团释放出来。ATP硫酸化酶在APS存在的情况下催化焦磷酸生成ATP,ATP驱动荧光素酶介导的荧光素向氧化荧光素的转化,氧化荧光素发出的可见光信号与ATP量成正比。ATP和未掺入的dNTP由三磷酸腺苷双磷酸酶降解,光信号淬灭,并再生反应体系,然后再加另一种dNTP继续反应。焦磷酸测序最初作为DNA测序方法而发展起来的,其化学反应与Sanger双脱氧二核苷酸法完全不同。它无需灌胶、毛细管电泳,也无需同位素或荧光染料

缓蚀剂研究进展

缓蚀剂的研究、开发与应用经历了不同阶段。最初, 由于冶金工业的发展, 为钢铁材料酸洗除锈和设备的除垢, 研制了酸洗缓蚀剂。随后, 因石油工业油井酸化技术的需要, 研究开发了油井酸化缓蚀剂和油气田缓蚀剂。此后, 随着石油化工、电力、交通运输工业的发展, 海水、工业用水等冷却系统用的中性介质无机缓蚀剂迅速发展。二次世界大战期间和战后, 由于武器军械的防锈, 促进了气相和油溶性缓蚀剂的迅猛发展。19 43 年美国S hel lDev el o pmen t C o . 研制生产了亚硝酸二环己胺, 次年又推出亚硝酸二异丙胺产品, 用于军事工业, 取得很好的防锈效果。5 0 年代初, 苯三唑( BT A ) 对铜及其合金的优异防锈性能, 引起科技界和企业人员广泛重视, 缓蚀剂研究引起人们极大兴趣和关心。随着工业技术和高新技术的迅猛发展, 缓蚀剂得到较快发展。 6 0 年代是腐蚀科学技术发展最活跃的时期, 重要的腐蚀与防护方面的国际学术会议( 世界金属腐蚀会议、欧洲缓蚀剂会议等) 均在6 0 年代初举行首届会议; 一批腐蚀专业刊物( M at er i alPer f or man ce ( 美) , C or r os i o n S ci en ce ( 英) , Br i t i s h C o rr os i o nJ ou rn al ( 英) , !? # ?? % %& ?( 俄) , 材料保护( 中) , C o rr os i o nA bs t r act s ( 美) , ! ?# ?% & ?() ! % ?+ . ! ?# . 66 . ! ?# ! ? # ??# % % # & !! ( 俄) ) 亦均于60 年代创刊发行。这些学术活动及专业刊物的出版发行, 对促进缓蚀剂学科的学术交流和发展起着重要的作用。 Hacker man . N 在第一届欧洲缓蚀剂会议( 1 96 1) 上宣读了关于“软硬酸碱( HS A B ) 原则”的论文, 对缓蚀剂分子设计、筛选和应用有重要意义, 引起参会各国代表的重视和兴趣。日本荒牧国次等人对软硬酸碱理论在缓蚀剂研究中的应用做了系统的工作, 取得了卓有成效的成绩, 推动了缓蚀剂理论发展。 Br oo k M于19 62 年, 收集整理了3 0 ~5 0 年代期间, 海外期刊、专利上发表的约15 0 种缓蚀剂的名称、组成及应用范围( 金属及腐蚀介质) 等资料, 其中大部分为单一组分。 同年, M err i ck . R . D 等人在美国国家腐蚀工程师协会( N A C E ) 主办的学术年会上, 详尽地介绍了美国投放市场的一批商品缓蚀剂( 如: Ro di n e- 93 、Ro di n e- 1 15、Ro di ne- 21 3、Ar mo hi t -25 、Ar moh i b - 28 、DoW el l - A 1 2、DoW el l - A 73 、……) 的牌号、组成、物化性质及在几种酸溶液( H2S O 4、HC l 、HN O 3、H3PO 4、……) 中的缓蚀剂效果。 吉野努于1 96 3 年采用有机化合物与无机化合物复配, 有效地解决了盐酸、硫酸、氨基磺酸等对低碳钢的腐蚀问题。这种复合型缓蚀剂由硫脲- 乌洛托品- C u2+三组分组成。 加藤正义于196 4 年研究了阿拉伯胶、可溶性淀粉、琼脂等高分子多糖类化合物作为碱液中铝用缓蚀剂的问题, 试验结果表明, 大多数试样的缓蚀效率在80 % 以上。但多糖类一旦水解为单糖类时, 则会促进铝的腐蚀。 60 ~70 年代, 印度的Des ai . M . N 教授等先后在A nt i c o r ro si on 及其他专业刊物上, 连续发表数十篇论文, 阐述有关铜、铝及其合金在工业冷却水、盐酸、硫酸、硝酸、碱液及盐类溶液中, 各种有机缓蚀剂的缓蚀性能的研究结果。缓蚀剂的品种涉及广泛, 有硫脲、苯胺、苯甲酸、苯酚、醛类及其各种衍生物。此外,还有天然高分子化合物等。 Wal k er . R指出苯三唑( BT A ) 在一定条件下, 可以作为铜在盐酸、硝酸、硫酸、磷酸及盐类溶液中的缓蚀剂。J . V os t a对氢氟酸用缓蚀剂进行了试验研究, 提出苄基亚砜、二苯基硫脲、二苯胍等 1 0 余种有机化合物可以作为氢氟酸用缓蚀剂的有效成分。中国科学院长春应用化学研究所为引进的大型电厂锅炉氢氟酸酸洗缓蚀剂提

创伤性颅脑损伤治疗新进展

创伤性颅脑损伤治疗新进展 急性颅脑外伤的治疗目标,围绕降低颅内压、维护脑血流灌注为中心,绝非为单纯升压。治疗相当复杂,临床处理中常常难以得到确切的指导指标和数据。 我院在较长一段时间中,急性颅脑损伤病例很多,出现脑疝需要紧急开颅减压的手术不少,都是脑外科医生直接送病人入手术室的,术前情况麻醉者确实一点不明白,所以,多年来我始终没有摸清麻醉处理规律,但目标都是以围绕降低颅内压、维护脑血流灌注为中心的,没有指导数据硬着头皮干,至今还未能取得具体规律,但很少集中在使用大剂量强力升压药的,好像这是规律。术毕大多数病人可以送回病房,但极少数还是死亡在手术台上。 有一篇综述,较老年代发表的,是神经外科院士王忠诚教授具名的,姑且贴出供大家阅读思索,可能还是有助的: 创伤性颅脑损伤治疗新进展 中华神经外科杂志1999年1月第15卷第1期 作者单位:100050北京市神经外科研究所 李小勇王忠诚 关键词:颅脑损伤治疗原则 一、颅脑损伤以及损伤机制 创伤性颅脑损伤,仍是影响健康的主要问题。美国每年就诊病人达200万以上,其中约7500人致死,125000人致残。英国每年达100万以上,死亡率为9/10万,占住院全部死亡数的1%;15%~20%的死亡者年龄,在5~35岁之间。损伤的原因大多为坠落伤,其次为斗殴和交通事故。目前脑损伤的严重程度不断加重,交通事故在其中有主要作用:虽然其引起的颅脑损伤占住院病人的13%,但死亡率却高达58%[1]。 目前认为创伤性脑损伤,起初仅为部分性损伤,但以后数小时至数天内会有许多继发性损害[1]。graham等发现,创伤性脑损伤(tBI)死亡病人的90%,有缺血性改变,是继发损伤的主要机制。颅内压(iCP)增高的原因,在没有血肿的损伤后24~36小时内的急性期,大多为细胞毒性水肿,少数为血脑屏障损害引起的血管源性水肿,而血管充血引起的脑肿胀比以往认为的作用要小得多[2,3];在急性损伤的后期,或在第3天终末或第4天开始,iCP升高的原因又可能是血管充血,因为脑血流(cBF)第2或3天已有增加,而血脑屏障的完整性在损伤后12~24小之内也已经恢复[2]。当iCP升高时,颅内缓冲最快的是脑内血液体积,其次是脑脊液。当缓冲能力耗竭时,iCP就会急剧增加。当iCP在增加到20~25mmHg(1mmHg=0.13kPa)以上时,便可以迅速升高至很高的水平。如果iCP增加超过平均动脉血压(mAP),就会对脑灌注产生液体静力学性阻塞,数分钟便可引起脑的死亡[2]。 二、颅脑损伤治疗原则的进展 轻型颅脑损伤的数量远远多于中、重型,其中仍包括一些需要神经外科处理的危险病人。1993年stein和ross首次提出,将轻型颅脑损伤进一步分为轻微型和轻型,目的是将危险性增加的患者鉴别出来并给予有效处理,这样可以为很多国家减少严重的资源负担。(1)轻微型病人:没有意识丧失或健忘,gCS为15分,机敏反应和记忆力正常,没有局灶性神经系统功能障碍,且没有可触摸到的凹陷性骨折。一般可以在告知有关颅脑损伤注意事项后,准其回家。但应收住院的适应证为:有颅脑以外损伤;年龄很小或很大;家中没有可靠的照看人;有潜在严重的内科性疾病需要治疗等。(2)轻型病人具备下述一个以上特点:小于5分钟的短暂意识丧失;对出事情况有健忘;gCS为14分;机敏反应和记忆力受损;可触摸到凹陷骨折。轻型病人都

课程论文 转基因作物的研究进展

生物与环境工程学院课程论文 转基因作物的研究进展 学生姓名: 学号: 专业/班级: 课程名称:生物工程原理 指导教师:教授 生物与环境工程学院 2011年5月

转基因作物的研究进展 摘要:人们将所需要的外源基因(如高产、抗病虫害优质基因) 定向导入作物细胞中, 使其在新的作物中稳定遗传和表现,产生转基因作物新品种, 是大幅度提高作物产量的一项新技术。本文先描述了转基因作物的发展进程,对其基因问题的研究作了讨论,并列出转基因作物目前存在的主要问题并作分析,最后对此项技术作出展望。 关键词:转基因作物;DNA技术;基因导入;安全性 前言 转基因植物(transgenic plant),是指基因工程中运用DNA 技术将外源基因整合于受体植物基因组、改变其遗传组成后产生的植物及其后代。转基因植物的研究主要在于改进植物的品质,改变生长周期等提高其经济价值或实用价值。[ 1 ]其主要范围是在作物方面,如可食用的大豆、玉米等,或者可投入生产的棉花等作物。 从表面上看来,转基因作物同普通植物似乎没有任何区别,它只是多了能使它产生额外特性的基因。从1983年以来,生物学家已经知道怎样将外来基因移植到某种植物的脱氧核糖核酸中去,以便使它具有某种新的特性:抗除莠剂的特性,抗植物病毒的特性,抗某种害虫的特性。[ 2 ]这个基因可以来自于任何一种生命体:细菌、病毒、昆虫等。这样,通过生物工程技术,人们可以给某种作物注入一种靠杂交方式根本无法获得的特性,这是人类9000年作物栽培史上的一场空前革命。[ 3 ] 1 转基因作物的发展进程 转基因作物的研究最早始于20世纪80年代初期。1983年,全球第一例转基因烟草在美国问世。1986年,首批转基因抗虫和抗除草剂棉花进入田间试验。1996年,美国最早开始商业化生产和销售转基因作物(包括大豆、玉米、油菜、

超广谱β-内酰胺酶的基因分型及研究进展

综述 超广谱β-内酰胺酶的基因分型及研究进展超广谱β-内酰胺酶(Extended spectrum beta-lactamases, ESBLs)是由质粒介导的能水解青霉素类、头孢菌素类、单环内酰胺类抗生素的耐药性酶,由于作用底物广泛而称之,并可在菌株间转移和传播[1、2]。ESBLs主要由革兰氏阴性杆菌产生,尤其以肺炎克雷伯菌和大肠埃希菌为代表。肺炎克雷伯菌是呼吸道感染最常见的病原菌,由产ESBLs肺炎克雷伯菌引起的医院感染爆发流行时有发生[3]。自1983年在德国首次报道分离出SHV-2型ESBLs以来,全世界许多地方不断有新的ESBLs检出[4]。目前,产ESBLs细菌在临床标本中的分离率有增加的趋势,产ESBLs菌对氨基糖苷类、喹诺酮类和磺胺类交叉耐药也呈逐年上升趋势,这给临床感染的治疗带来了新的难题。 1.ESBLs的定义 超广谱β-内酰胺酶(ESBLs)是由质粒介导的能水解青霉素类、头孢菌素类、单环酰胺类抗生素的耐药性酶,由于作用底物广泛而称之[5]。有人将ESBLs 理解为以下几条:主要由肺炎克雷伯菌和大肠埃希菌等肠杆菌科细菌产生;在体外试验中可使三代头孢菌素和氨曲南的抑菌圈缩小,但并不一定在耐药范围;加入克拉维酸可使其抑菌圈扩大;临床对β-内酰胺类药物(包括青霉素和头孢类)耐药,但对碳青霉素类药物敏感;由质粒介导,往往由普通的β-内酰胺基因(TEM-1、TEM-2、SHV-1)突变而来。 2.ESBLs的耐药机制 细菌对抗生素的耐药机制可分为以下几点:细胞膜通透性的改变,使抗生素不能或很少透入细菌体内到达作用靶位;灭活酶或钝化酶的产生,如β-内酰胺酶使抗生素的作用下降;与抗生素结合靶位(亲和力)的改变,使抗生素的作用下降;其他,如主动外排系统等。对于ESBLs的近年来发现,其多种耐药性的产生与其质粒编码的ESBLs有直接关系。随着第三代头孢菌素及其他β-内酰胺类抗生素的广泛使用,产ESBLs菌增加很快。世界上许多国家和地区都有ESBLs菌流行的报道,国内也有许多地区产ESBLs菌的报道[6]。因此国内外专家一致认为广谱头孢菌素类尤其是第三代头孢菌素的广泛使用产生的选择性压力是导致产生ESBL革兰阴性杆菌增加的主要原因。由于ESBLs是质粒编码的,能通过接合、转化和转导形式,使耐药基因在菌间扩散,使敏感菌变成耐药菌

绿色缓蚀剂的研究现状及举例

绿色缓蚀剂的研究现状及举例 总结国内外缓蚀剂的发展不难发现,虽然各种介质中缓蚀剂的研究成果层出不穷,但其在实际运用中却不够完善和成熟。尤其是绿色环保型缓蚀剂研究仍处于实验探索阶段,在该领域仍需要在提高缓蚀作用效果、机理研究和低成本低污染等方面做得更深入的研究。 我国近10年对各类缓蚀剂的研究和应用发展很快,部分产品性能达到国际领先水平, 但总体水平与国外还有很大差距。研究人员认为今后应着重从以下几个方面探索绿色缓蚀剂的发展: 1从天然植物、海产植物中,提取、分离、加工新型绿色缓蚀剂有效成分的方法。 2利用医药、食品、工农业副产品提取有效缓蚀剂组成,并进行复配或改性处理,开发新型绿色缓蚀剂。 3运用量子化学理论、灰色关联分析、人工神经网络方法等科学技术合成高效低毒多功能新工艺型绿色缓蚀剂和低聚体新型绿色缓蚀剂。 4对钼酸盐、钨酸盐、稀土元素金属等无机缓蚀剂深入进行研究,研制出新型高效绿色缓蚀剂。 5利用先进的分析测试仪器和新的研究方法,研究缓蚀剂的作用机理及协同作用机理,指导新型绿色缓蚀剂的开发。 以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓材料的化学物质或复合物. (1)根据产品化学成分,可分为无机缓蚀剂、有机缓蚀剂、聚合物类缓蚀剂。 ①无机缓蚀剂无机缓蚀剂主要包括铬酸盐、亚硝酸盐、硅酸盐、钼酸盐、钨酸盐、聚磷酸盐、锌盐等。 ②有机缓蚀剂有机缓蚀剂主要包括膦酸(盐)、膦羧酸、琉基苯并噻唑、苯并三唑、磺化木质素等一些含氮氧化合物的杂环化合物。 ③聚合物类缓蚀剂聚合物类缓蚀剂只要包括聚乙烯类,POCA,聚天冬氨酸等一些低聚物的高分子化学物。 (2)根据缓蚀剂对电化学腐蚀的控制部位分类,分为阳极型缓蚀剂,阴极型缓蚀剂和混合型缓蚀剂。 ①阳极型缓蚀剂阳极型缓蚀剂多为无机强氧化剂,如铬酸盐、钼酸盐、钨酸盐、钒酸盐、亚硝酸盐、硼酸盐等。它们的作用是在金属表面阳极区与金属离子作用,生成氧化物或氢氧化物氧化膜覆盖在阳极上形成保护膜。这样就抑制了金属向水中溶解。阳极反应被控制,阳极被钝化。硅酸盐也可归到此类,它也是通过抑制腐蚀反应的阳极过程来达到缓蚀目的的。阳极型缓蚀剂要求有较高的浓度,以使全部阳极都被钝化,一旦剂量不足,将在未被钝化的

缓蚀剂及其发展现状

缓蚀剂及其发展现状 在很久以前,人们就发现往腐蚀介质中添加少到不至于改变介质性质的某化学物质能够明显抑制腐蚀的发生。这就是缓蚀剂(英文:Corrosioninhibitor)。按照其应用的环境,缓蚀剂可分为酸性介质缓蚀剂、中性介质缓蚀剂。本论文主要研究中性盐水介质中的缓蚀剂,故仅对中性介质用缓蚀剂的发展作以回顾和展望。中性介质中使用的缓蚀剂又分为无机缓蚀剂、有机缓蚀剂、聚合物缓蚀剂等。 1.3.1无机缓蚀剂 较早应用的无机缓蚀剂有铬酸盐、重铬酸盐、硅酸盐、亚硝酸盐、钼酸盐、锌盐、磷酸盐。这些无机缓蚀剂在应用中被证明是有效的,而今有的仍被广泛的应用,后来又发展应用了聚磷酸盐。但是,无机缓蚀剂的应用有很多缺点。例如,无机缓蚀剂的用量一般较大,这就增加了应用的成本。并且,多数无机缓蚀剂对环境是不友好的,其应用从而受到制约。目前,无机缓蚀剂的使用多数是与有机缓蚀剂复配。这样,不但大大减少了其用量,而且由于两者之间的协同效应也提高了其缓蚀效果。 1.3.2有机缓蚀剂 有机缓蚀剂是含N 、P 、S 等杂原子的有机化合物。根据所含杂原子的不同有机缓蚀剂又可分为以下几类。 (1)含氮类有机缓蚀剂 这类缓蚀剂应用最早,最广。盐水体系中常用的是有机胺类吸附型缓蚀剂,该类缓蚀剂是通过氮原子吸附到钢铁表面而疏水基团伸展于水相形成一种致密的物理膜,阻挡介质与钢铁表面的接触,从而降低腐蚀速度。正是由于起作用的是物理膜,其应用有很大的局限性。如高温会发生物理膜脱附而失去缓蚀效果,它也阻挡不了氯离子的穿透。这类缓蚀剂的代表是季 铵盐、胺类、酰胺类。包括直链及环状化合物。 (2)含硫类缓蚀剂 作为盐水体系用的含硫类缓蚀剂的发展是近十几年的事情。这类缓蚀剂的代表是硫氰酸盐及硫脲类化合物。据资料介绍,该类缓蚀剂主要应用在高温环境中,而在低温(低于120"C)盐水中,其缓蚀效果不超过50%。该类缓蚀剂的作用机理尚不清楚。一般认为,硫原子在一定的温度下与金属发生化学反应(是腐蚀过程)。形成一层致密的保护膜。这层保护膜较致密,在高温条件下稳定性很好,所以,在高温下才能显示其优良的缓蚀效果。但是,硫的化合物对环境的影响也是不用忽视的问题。例如,含硫的化合物排放到土壤中,能使土壤酸化结块影响植物的生长。

转基因动物技术应用研究进展汇总

转基因动物技术应用研究进展 摘要:本文主要对动物转基因技术发展状况作了概述,重点是近年发展的提高转基因效率的非定点整合转基因方法, 如睾丸转基因法和卵巢转基因法; 提高转基因精确性的定点整合转基因的基因打靶法作了介绍。然后对转基因技术的应用作了论述,最后对转基因技术的发展前景作了展望。 关键字:动物转基因技术;应用;展望 Progress on Techniques for Producing Transgenic Animals And their Application Abstract: This review describes the recently developed animal gene transfer techniques, including gene transfer into the testis and ovary for easily making non-site specific methods; gene targeting in embryonic stem cells, somatic cells and primordial germ cells for site specific methods.The application and prospect of transgenic technology was also discussed. Key words: animal gene transfer technique; application;prospect 动物转基因技术是将外源基因移入动物细胞并整合到基因组中, 从而使其得以表达。自Palmiter等[1] (1982)把大鼠生长激素基因导入小鼠受精卵获得超级巨鼠以来,世界各国科学家对转基因技术应用于动物生产的研究产生了极大的兴趣,并相继在兔、羊、猪、牛、鸡、鱼等动物上获得转基因成功。转基因动物研究是近年来生命科学中最热门、发展最快的领域之一,其应用已广泛渗透于分子生物学、发育生物学、免疫学、制药及畜牧育种等各个研究领域中。这项技术正在对动物生产产生一场新的革命,在提高生长速度、生产性能,改善产品品质、抗病育种、基因治疗等方面取得了可喜的进展,显示出诱人的应用前景。 1 转基因动物技术 1.1 显微注射法 这一方法是发展最早,目前应用最广泛和最为有效的制作转基因动物的方法,创始人是Jaenisch和Mintz等,Gorden等[2]和最先通过此法获得转基因动物。其基本原理是:通过显微操作仪将外源基因直接用注射器注入受精卵,利用受精卵繁殖过程中DNA的复制过程,将外源基因整合到DNA中,发育成转基因动物。 1.2 逆转录病毒载体导入法 将目的基因重组到逆转录病毒载体上,制成高滴度的病毒颗粒,人为感染着床前后的胚胎,

缓蚀剂的作用原理、研究现状及发展方向_7942.docx

缓蚀剂的作用原理、研究现状及发展方向 1缓蚀剂概述 在美国材料与实验协会《关于腐蚀和腐蚀试验术语的标准定义》中,缓蚀剂 是“一种以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓腐蚀的 化学物质或几种化学物质的混合物” 。 缓浊剂是具有抑制金属锈蚀性质的一类无机物质和有机物质的总称。某些有 机物质,被有效地吸附在金属的表面上,从而明显地影响表面的电化学行为。其作用机理有抑制表面的阳极反应和抑制阴极反应两种,结果都是使腐蚀电流降 低。 缓蚀剂的作用不仅如此,它作为金属的溶解抑制剂还有许多实用价值。如用 在化学研磨、电解研磨、电镀和电解冶炼中的阳极解、刻蚀等。总之,在同时发 生金属溶解的工业方面,或县为了抑制过度溶解或是为了防止局部浸蚀使之均匀 溶解。缓蚀剂都起着重要的作用。另外,电镀中的整平剂,从其本来的定义备不 属于缓蚀剂的畴;但是,其作用机理( 吸附 ) 和缓蚀剂的机理类似。具有整平作 用的物质,同时有效地作为该金属的缓蚀剂的情况也是常的。下图给出了有无缓 蚀剂的不同效果:

图 1 缓蚀剂的效果 2不同类型的缓蚀剂及其作用原理 2.1阳极型缓蚀剂及其作用原理 阳极型缓蚀剂也称阳极抑制型缓蚀剂,主要是抑制阳极过程而使腐蚀速度减缓。如中性介质中的亚硝酸盐、铬酸盐、磷酸盐、硅酸盐、苯甲酸钠等,它们能 增加阳极极化,从而使腐蚀电位正移。通常是缓蚀剂的阴离子移向金属阳极使金属钝化。该类缓蚀剂属于“危险型”缓蚀剂,用量不足会加快腐蚀。 作用过程:(a)具有强氧化作用的缓蚀剂,使金属钝化(亚硝酸钠,高铬酸等);(b)具有阴极去极化性的钝化剂,在阴极被还原,加大阴极电流,使体系的氧化还原电位向正方移动,超过钝化电位,而使腐蚀电流达到很低的值。(亚硝酸盐、硝酸盐与高价金属盐属于此类;铬酸盐、磷酸盐、钼酸盐、钨酸盐等在 酸性溶液中也属于此类。) 图 2 阳极型缓蚀剂作用原理 2.2阴极型缓蚀剂及其作用原理 阴极型缓蚀剂也称阴极型抑制,其主要包括:酸式碳酸钙、聚磷酸盐、硫酸

小麦转基因研究进展

转基因小麦研究进展及前景 摘要:自第一株转基因小麦报道以来,小麦转基因育种研究发展迅速,通过转基因技术实现的小麦遗传转化弥补了经典小麦育种的不足,突破了可利用基因库的限制,取得了可喜的进展。简要介绍了基因枪法、农杆菌介导法和花粉管通道法等基因转化方法在小麦遗传转化中的应用,讨论了转基因技术在获得抗除草剂、抗病虫、抗逆、改良品质和雄性不育转基因小麦植株等方面的应用现状及其存在的主要问题与对策。 关键词:小麦;转基因;分子育种;进展 采用远缘杂交技术将小麦野生近缘物种中的有益外源基因导入小麦栽培品种,对其抗性、品质、产量的提高发挥了重要作用。但由于双亲亲缘关系较远造成杂交不结实、杂种不育、杂种后代长期分离、预见性差,使该技术在小麦遗传改良上的应用受到一定限制。 植物转基因技术被证明是进行外源基因定向转移独特而有力的手段,一定程度上补充或改进了传统的育种方法。通过植物遗传转化技术,可以按照需要,将有遗传信息的DNA 片段即目的基因进行人工重组,在离体条件下转入宿主细胞进行复制、表达,定向改造植物,可以打破基因流的界限,而且大大缩短育种周期。小麦是举世公认的最难转化的重要农作物之一,且转基因研究起步较晚,经过许多学者十几年的不懈努力,取得了长足的进展。目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效、兼抗性及多用途等诸多方面,一批抗逆性(如抗病、抗虫、抗除草剂)转基因作物已进入商品化生产阶段。美国研制成功的世界第一例抗草甘磷除草剂转基因小麦已经通过安全性试验;抗草胺膦转基因小麦、抗咪唑啉酮转基因小麦、高蛋白转基因小麦、抗虫和耐镇草宁除草剂转基因小麦、抗蚜虫转基因小麦、抗小麦黄花叶病毒转基因小麦,以及抗白粉病、赤霉病和黄矮病的转基因小麦正在田间释放[1,2];高分子量谷蛋白亚基转基因小麦[3]、转Trx-S 基因抗穗发芽小麦新品系已进入中试阶段[4]。近年来,中国在小麦转基因方面也取得了初步的进展,并获得了一批具有抗病虫、抗逆境及改善品质的转基因小麦新材料,部分品系已经进入环境释放阶段。本文概述了小麦转基因研究常用遗传转化技术及其在小麦遗传改良中的应用,讨论了存在的主要问题及采取的应对措施。 1 小麦转基因技术 小麦转基因技术是指用人工方法将外源基因或DNA 导入小麦细胞,使之稳定地整合、表达并遗传的综合技术。小麦转基因技术可根据转化目的基因否需要通过组织培养再生植株分为两大类,第一类需要通过组织培养,常用的方法有农杆菌介导法、基因枪介导法、花粉管通道法等;第二类不需要通过组织培养,如PEG法、电激法等。在小麦遗传改良中应用最广泛的是第一类方法。 1.1 花粉管通道法 中国学者周光宇1974 年提出的DNA 片段杂交假说是花粉管通道法的理论基础,他于1983 年建立了花粉管通道法,该技术利用植物授粉后花粉萌发形成的花粉管,将外源DNA 送入胚囊中尚不具备正常细胞壁的合子。利用该法进行基因转移的工作主要集中在中国。1992 年,周文麟等通过花粉管法将C4作物的DNA 导入小麦,获得了具有C4作物若干性状的转“基因”后代[5]。随后,曾君祉等利用该法将带有GUS基因的pBI121 质粒导入小山3号,获得 5株转基因植株,转化率为4.7%[6]。阎新甫等将抗白粉病的大麦DNA导入花76,既获得了符合遗传规律的稳定抗病后代,还明确了抗白粉病基因由一对显性基因控制[7]。Ziberstein A 等将质粒DNA 涂于授粉的柱头,提高了转化频率,并完成后代分析和分子鉴定[8]。成卓敏等将大麦黄矮病毒GPV 株系的外壳蛋白基因导入小麦品种,获得了抗黄矮病毒GPV 的转基

高通量SNP基因分型技术研究进展

10Sheng W et al.J Viro l,2003;77(6):3859 11Co hen JI,et al.J Viro l,1999;73(9):7627 12Wei MX et al.Cancer Res,1994;54(7):1843 13Gao Y et al.Oncogene,2002;21(5):825 14Tanner JE et al.J Infect Dis,1997;175(1):3815Decaussin G et al.Cancer Res,2000;60(19):5584 16Brink AA et al.J Clin Micro biol,1998;36(11):3164 17Hayes DP et al.Mol Patho l,1999;52(2):97 18zur Hausen A et al.Cancer Res,2000;60(10):2745 (2002211201收稿) 高通量SNP基因分型技术研究进展 方唯意综述姚开泰审阅 中南大学湘雅医学院肿瘤研究所(长沙,410078) 摘要在后基因组时代,单核苷酸多态性研究已迅速成为了生物医学许多领域的焦点。发展可靠、敏感、经济、稳定、高通量的S NP基因分型技术已迫在眉睫。本文主要着重于高通量SN P基因分型技术的原理、利弊以及这些技术在这个领域过去几年中的进展。 关键词高通量;单核苷酸多态性;基因分型 单核苷酸多态性(S NPs)是最普遍的遗传变异形式。通过开展具有明显表型特征的S NPs基因分型大规模相关研究,有助于鉴定许多复杂疾病原因,了解个体对各种药物的耐受性和对环境因子的反应。人类基因组测序的完成和142万个S NPs在基因组上的定位[1],为首次在全基因组水平上进行S NPs研究打开了方便大门。经典的S NPs分析方法是PCR 扩增后用凝胶电泳检测,虽然可靠性好,但缺乏效率。寡核苷酸微阵列和其他高通量筛选技术效率有了明显的提高,但临床应用绝非可靠,因此,有必要改进和发展新的可靠、敏感、高通量、经济、稳定的SNPs基因分型技术。在本文中,我们主要阐述高通量SN Ps基因分型方法,包括一步均质法、焦磷酸测序、D N A芯片/阵列分析法、微球法、M A LDI2TO F质谱基因分型分析法等,讨论这些技术的目前状态和将来潜力。 1一步均质法 Taqman、Sc orpion分析和分子灯塔组成了微滴定平板荧光阅读系统。Taqman和分子灯塔都依赖于等位基因特异性寡核苷酸杂交在PCR期间对等位基因进行区分。而Scorpion分析能使用等位基因特异性PCR或是等位基因特异性杂交反应[2]来区分等位基因。它们作为一个末端分析能在一个完全均质的反应条件下进行分析。在反应起始,所有试剂和基因组D NA都混合在一起,经热循环步骤后,荧光信号能被检测到。该反应既没有单独的预扩增步骤,也没有中间的处理过程,因此它们是一种最简单的分析方法。由于没有适合这些方法的384孔荧光检测器,以及荧光标记探针的价格过高和缺乏可靠的自动化基因型呼叫软件,因此阻碍了这些方法的发展。最近,Applied Biosystems公司新开发的7900HT型高通量荧光定量PCR仪,使得进行384孔微滴定平板荧光检测成为了可能,这主要归因于高通量能力的增加和反应容积的减少。当如果要发展更高的基因分型通量时,一个可靠的自动化等位基因呼叫能力是必须的,它不只是纠正基因型呼叫信号更快,而且在处理和加工数据上必须更迅速,更准确。近来研究表明,自动化基因型呼叫在无阳性对照情况下进行聚类分析是可行的[3]。 2焦磷酸测序Pyrosequencing 焦磷酸测序是对短到中等长度的D NA序列样品进行高通量、精确和重复性好的分析方法。其反应原理是当测序引物与PCR扩增的,单链D NA模板杂交,和各种酶包括D NA聚合酶、A TP硫酸化酶、荧光素酶、三磷酸腺苷双磷酸酶、以及底物、荧光素一起共同孵育。4种dN TP之一被加入反应体系,如与模板配对,该dNT P与引物的末端形成共价键,dN TP 的焦磷酸基团释放出来。A TP硫酸化酶在APS存在的情况下催化焦磷酸生成A TP,ATP驱动荧光素酶介导的荧光素向氧化荧光素的转化,氧化荧光素发出的可见光信号与ATP量成正比。A TP和未掺入的dNTP由三磷酸腺苷双磷酸酶降解,光信号淬灭,并再生反应体系,然后再加另一种dN TP继续反应。焦磷酸测序最初作为D N A测序方法而发展起来的,其化学反应与Sanger双脱氧二核苷酸法完全不同。它无需灌胶、毛细管电泳,也无需同位素或荧光染料

相关文档