文档库 最新最全的文档下载
当前位置:文档库 › 水性极压剂

水性极压剂

水性极压剂
水性极压剂

水性环保极压剂、无硫极压剂、无氯极压剂、水性极压剂、无磷极压剂、切削液极压剂、切削液防锈极压剂

极压添加剂:能和接触的金属表面起反应形成高熔点无机薄膜以防止在高负荷下发生熔结、卡咬、划痕或刮伤的添加剂。

极压添加剂分为水溶性和油溶性两种。大部分的极压添加剂含有S、P、Cl、I等有机化合物,高温下与金属表面形成化学润滑膜,较耐高温,主要应用于高速加工时产生高温的场合或用于加工难加工材料,

水溶性极压添加剂主要用于金属加工液中,应具备以下特点:

●超强的极压抗磨性能、高承载性能、边界润滑性能;

●极佳的防锈功能及防锈补强性能,有效克服了市场上传统硫、

磷、氯等水性极压剂的腐蚀金属、锈蚀机床的危害性;可轻松通过各项标准的单片防锈测试!

●在低温、中温、高温、极高温度下均具有较好的界面润滑性、

减摩性能;

●与微乳液、半合成金属加工液、全合成金属加工液等水性金属

加工液相溶性良好;

●极低的浓度下保持高效极压抗磨效果;

●可升级微乳液、半合成金属加工液、半合成切削液、全合成金

属加工液、乳化液、皂化液、抗燃液压液等金属加工润滑液的配方,大大提高产品的竞争力;

●具有优异的水溶性能、无泡性能、耐硬水性能。

威海云清化工开发院经过十几年的钻研,在水性环保极压剂方面取得了卓越的成绩,成功地替代了含硫、氯等腐蚀性元素的水溶性极压剂

对于要求环保无味、无泡、无腐蚀、无腐臭无腐败的场合,有特效!尤其适用于禁用活性硫、氯等极压剂的场合。(零六叁壹五六二一三九六)下面详细地介绍一下具体的极压剂的特点:

1、水性合成酯极压剂:适用于各种水基金属加工液的新型极压剂;属合成酯类的边界润滑抗磨添加剂;尤其适用于禁用活性硫、氯等极压剂的场合。

性能特点:超强的极压抗磨性能、高承载性能、边界润滑性能;极佳的防锈功能及防锈补强性能,有效克服了市场上传统硫、磷、氯等水性极压剂的腐蚀金属、锈蚀机床的危害性;可轻松通过各项标准的单片防锈测试!在低温、中温、高温、极高温度下均具有较好的界面润滑性、减摩性能;与微乳液、半合成金属加工液、全合成金属加工液等水性金属加工液相溶性良好;极低的浓度下保持高效极压抗磨效果;可升级微乳液、半合成金属加工液、半合成切削液、全合成金属加工液、乳化液、皂化液、抗燃液压液等金属加工润滑液的配方,大大提高产品的竞争力;优异的水溶性能、无泡性能、耐硬水性能。2、水性聚酯极压剂:适用于各种水基金属加工液的新概念极压剂;属水性聚酯类的边界润滑抗磨添加剂;尤其适用于禁用活性硫、氯等极压剂的场合。

二性能特点:超强的极压抗磨性能、高承载性能、边界润滑性能;极佳的防锈功能及防锈补强性能,有效克服了市场上传统硫、磷、氯等水性极压剂的腐蚀金属、锈蚀机床的危害性;可轻松通过各项标准的单片防锈测试!在低温、中温、高温、极高温度下均具有较好的界面润滑性、减摩性能;与微乳液、半合成金属加工液、全合成金属加工液等水性金属加工液相溶性良好;极低的浓度下保持高效极压抗磨

效果;可升级微乳液、半合成金属加工液、半合成切削液、全合成金属加工液、乳化液、皂化液、抗燃液压液等金属加工润滑液的配方,大大提高产品的竞争力;优异的水溶性能、无泡性能、耐硬水性能。

3、切削液极压剂:各类切削液的专用极压剂,是全合成切削液、合成切削液、半合成切削液、微乳化切削液的配套极压剂;更适于要求“低泡、无泡、无味、非腐蚀、无腐臭”的场合,

性能特点:超强的极压抗磨性能、高承载性能、边界润滑性能。在综合润滑性能、四球Pb值、四球Pd值方面皆有突出的表现。本性能是市场上传统产品所无法比拟的;极佳的防锈功能及防锈补强性能,有效克服了市场上传统硫、磷、氯等水性极压剂的腐蚀金属、锈蚀机床的危害性;可轻松通过各项标准的单片防锈测试!在低温、中温、高温、极高温度下均具有较好的界面润滑性、减摩性能、极压抗磨性能;与切削液具有良好的配伍性;优异的低泡、无泡效果;无味、无腐蚀、无异味,长期使用不易腐败、不易发臭!优异的水溶性能;优异的耐硬水性能。

(完整word版)聚丙烯腈碳纤维用上浆剂汇总

聚丙烯腈碳纤维用上浆剂 上浆是碳纤维经表面处理后收绕成卷成为碳纤维成品前的最后一道工艺工序。上浆的主要作用是对碳纤维进行集束,类似黏合剂使碳纤维聚集在一起,改善工艺性能,便于加工,同时起到保护作用,减少碳纤维之间的摩擦,使其在后续收卷、包装、运输过程减少对纤维的损失。通过对碳纤维进行上浆处理,在碳纤维表面形成的聚合物层还可以起到类似偶联剂作用,改善碳纤维和树脂之间化学结合,提高复合材料的界面性能。碳纤维表面的聚合物还能改善炭纤维的浸润性能,便于树脂浸渍,减少复合材料的制备时间,提高复合材料的质量。碳纤维生产过程中不同上浆剂、上浆工艺对碳纤维力学性能、加工工艺性能和复合材料力学有着重要影响。 5.4.1 上浆剂种类 碳纤维上浆剂的品种很多,选择上浆剂需要综合考虑成膜性、对纤维的保护性能、环保性和成本等因素。在上浆剂研制生产时就需要考虑与最终增强基体树脂的相容性,为碳纤维在复合材料中发挥其高强高模特性提供基础准备。对于上浆剂主组分的选取,应根据相似相溶原理,选择与基体树脂材料类似的组分,比如环氧树脂基体选择环氧树脂系上浆剂,不饱和聚酯基体选择不饱和聚酯类上浆剂。表5.19为东丽公司碳纤维上浆剂与不同树脂相容性。 表5.19 东丽公司上浆剂类型与不同树脂的相容性 上浆剂类型相容树脂基体 1 环氧 3 环氧 4 环氧、酚醛、双马 5 通用:环氧、酚醛、聚酯、乙烯基酯 6 环氧 F 乙烯基酯、环氧 9 无上浆剂 目前工业及研究中所采用的上浆剂种类很多,通常为多官能型分子量较低的聚合物,包括含羧基或者醚键的化合物、含酰胺基或酯基的化合物、双酚类化合物、多氧化乙烯(多)苯基醚类化合物、多元醇-脂肪酸酯类、环氧树脂类以及其改性化合物、聚氨酯为主成分的改性物、聚酰亚胺及其改性化合物等。在最近的研究中,为了进一步改进碳纤维在复合材料制备过程的加工工艺性,研究人员尝试了微颗粒改性,如在常规上浆剂中加入硅酸铝、石墨、、云母、氧化铝、陶瓷等微颗粒,或者采用如碳纳米管、石墨烯、纳米二氧化硅等进行改性,获得了一定的改性效果。

现在常有的润滑脂挤压抗磨添加剂有哪些

极压抗磨添加剂 一些含磷、氯、硫的化合物具有极压和抗磨性。一般磷化合物具有抗磨性,而氯化物与硫化物具有极压性。同时含氯和磷化合物和含磷或硫化合物,既具有极压性,又具有抗磨性。为了改进润滑脂的抗磨性和极压性可以混合使用两种或更多的添加剂。 极压剂和抗磨剂的类型见表2。 表2极压和抗磨添加剂 二烷基二硫代氨基甲酸盐是近20多年来引人注目的通用多效添加剂,这类添加剂已成功地用于许多润滑脂和发动机油及工业润滑油中。二烷基二硫代氨基甲酸的二价和三价金属盐,是润滑剂的多效能添加剂。它具有抗氧化、抗磨和极压剂的功能,有的还具有金属钝化剂的功能。锌盐和镉盐主要用做抗氧剂,但也兼有一些抗磨和极压性能。钼、铝、锑盐主要用做抗磨极压添加剂,但也兼有一些抗氧化性能。锌盐还可起到金属钝化剂的作用。 引人注目的另一类型的抗磨极压添加剂是硼酸盐或硼酸酯类。它是一类新型极压抗磨添加剂,不含磷、硫、氯等活性元素。它是所谓的“惰性”极压抗磨添加剂。通过分散剂(如阴离子表面活性剂石油磺酸钠)将无机硼酸盐以极细的颗粒分散到矿物油中,分散体系中硼酸盐是非结晶小球,平均直径为0.1μm。 硼酸盐具有以下优点: ①抗磨极压效果好,特别是在低黏度油中具有良好的抗磨极压效果。国外称之为“节能油”的齿轮油,主要是由低黏度油加含硼添加剂制成,满足了抗磨极压性的要求。 ②硼酸盐极压剂的使用寿命长。因为硼酸盐的作用机理是由渗硼形成的FexBy形式的极压膜,这一层表面膜具有较高硬度,较好的抗磨性,较好的抗高温氧化、耐腐蚀性。而含磷、硫、氯活性元素的极压性,作用机理主要是活性元素同金属(铁)起化学反应生成一层膜,这层膜的抗剪切强度比基础金属(铁)的低。因而在使用过程中,这层膜容易被磨掉,换句话说,含磷、硫、氯的极压性,在使用过程中消耗得比硼酸盐快。表现在使用寿命上,硼酸盐显得长。

水性聚氨酯的分类

水性聚氨酯的分类 由于聚氨酯原料和配方的多样性,水性聚氨酯开发40年左右的时间,人们已研究出许多种制备方法和制备配方。水性聚氨酯品种繁多,可以按多种方法分类。 1.以外观分 水性聚氨酯可分为聚氨酯乳液、聚氨酯分散液、聚氨酯水溶液。实际应用最多的是聚氨酯乳液及分散液,本书中统称为水性聚氨酯或聚氨酯乳液,其外观分类如表5所示。 表5 水性聚氨酯形态分类 2.按使用形式分 水性聚氨酯胶粘剂按使用形式可分为单组分及双组分两类。可直接使用,或无需交联剂即可得到所需使用性能的水性聚氨酯称为单组分水性聚氨酯胶粘剂。若单独使用不能获得所需的性能,必须添加交联剂;或者一般单组分水性聚氨酯添加交联剂后能提高粘接性能,在这些情况中,水性聚氨酯主剂和交联剂二者就组成双组分体系。 3.以亲水性基团的性质分 根据聚氨酯分子侧链或主链上是否含有离子基团,即是否属离子键聚合物(离聚物),水性聚氨酯可分为阴离子型、阳离子型、非离子型。含阴、阳离子的水性聚氨酯又称为离聚物型水性聚氨酯。 (1)阴离子型水性聚氨酯又可细分为磺酸型、羧酸型,以侧链含离子基团的居多。大多数水性聚氨酯以含羧基扩链剂或含磺酸盐扩链剂引人羧基离子及磺酸离子。 (2)阳离子型水性聚氨酯一般是指主链或侧链上含有铵离子(一般为季铵离子)或锍离子的水性聚氨酯,绝大多数情况是季铵阳离子。而主链含铵离子的水性聚氨酯的制备一般以采用含叔胺基团扩链剂为主,叔胺以及仲胺经酸或烷基化试剂的作用,形成亲水的铵离子。还可通过含氨基的聚氨酯与环氧氯丙烷及酸反应而形成铵离子。 (3)非离子型水性聚氨酯,即分子中不含离子基团的水性聚氨酯。非离子型水性聚氨酯的制备方法有:①普通聚氨酯预聚体或聚氨酯有机溶液在乳化剂存在下进行高剪切力强制乳化;②制成分子中含有非离子型亲水性链段或亲水性基团,亲水性链段一般是中低分子量聚氧化乙烯,亲水性基团一般是羟甲基。 (4)混合型聚氨酯树脂分子结构中同时具有离于型及非离子型亲水基团或链段。 4.以聚氨酯原料分 按主要低聚物多元醇类型可分为聚醚型、聚酯型及聚烯烃型等,分别指采用聚醚多元醇、聚酯多元醇、聚丁二烯二醇等作为低聚物多元醇而制成的水性聚氨酯。还有聚醚-聚酯、聚醚—聚丁二烯等混合以聚氨酯的异氰酸酯原料分,可分为芳香族异氰酸酯型、脂肪族异氰酸酯型、脂环族异氰酸酯型。按具体原料还可细分,如TDI型、HDI型,等等。 5.按聚氨酯树脂的整体结构划分 (1)按原料及结构可分为聚氨酯乳液、乙烯基聚氨酯乳液、多异氰酸酯乳液、封闭型聚氨酯

纱线上浆剂

经纱上浆剂配方 配方1 纺织浆料粉 膨化玉米淀粉 0.85份、三聚磷酸钠 0.05份、氧化聚乙烯蜡 0.08份 苯甲酸钠 0.02份 描述按配比混合均匀后过筛,包装即得成品。使用时取纺织浆料粉1kg,加入20kg冷水,搅拌均匀即可使用,用法同一般的纺织浆料。该纺织浆料的特点是用其浆出的线软硬合适,手感好,断线率明显减少。 配方2 合成纤维纱线、线束的润滑和上胶浆 A相混合物 C6~16烷基苯基聚乙二醇醚磷酸酯 l 75% A相混合物甲基环氧乙烷一环氧乙烷共聚物(相对分子质量1 100) 10 75% B相混合磺化橄榄油 20 25% B相混合蓖麻油聚氧乙烯(4)醚 20 25% B相混合羟乙胺/蓖麻醇酸缩聚物 60 25% 描述上述物料的8%水乳化液用于聚丙烯线束的上胶,能使聚丙烯纤维在拉伸、纺织和捻线时高度黏合。 配方3 纺织品的复合上浆剂 聚乙烯醇(皂化度98.8%) 300g 玉米淀粉 200g 氢氧化钠水溶液(30%) 130g 丙烯酰胺水溶液(50%) 426g 聚乙二醇 5g 描述将前两组分混合后,添加氢氧化钠水溶液在40℃反应1h,再添加丙烯酰胺水溶液和聚乙二醇,在40℃反应6h,即可得到低胶化温度和良好相容性,的改性聚乙烯醇复合上浆剂。含有8%上述上浆剂的上浆液,60℃用于棉纱上浆,黏着力、浆纱毛羽均符合要求,在25℃和相对湿度65%时,伸长率为5.9%。 配方4 醋酸丝无捻整理上浆 聚丙烯酸酯 2%~2.5%骨胶 2.5%~3% 聚乙烯醇 2%~2.5%渗透剂适量 抗静电剂适量浆料黏度 73~80s 描述用山东昌邑纺机厂的GD301浆丝机,使醋酸丝先进烘房,烘至六至七成千,浆膜基本形成再上K144三锡林浆丝机。用浸、挤浆联合上浆方式。上浆车速要适当,浆温以55~60℃为宜,烘房温度在80℃左右,烘筒表面温度为一高一低,最低温度不低于45℃,最高温度不超过 80℃(冬夏不同)。在上浆过程中必须控制伸长率,若过大则强力降低、增加织造中的起毛和断头;若过小则会使经丝之间相互翻滚造成滚绞。常州锦华绸厂采用上述工艺技术后,好轴率达到99%,使织造能顺利进行。 配方5 纺织浆料 聚乙烯醇(PVAl7?99) 50kg TB-225酸变性淀粉 40kg 固体聚丙烯酸酯浆料(25%) 6.25kg 油脂 5kg 2?萘酚 0.5kg 氢氧化钠 0.6kg 描述该浆料具有良好的黏度及热稳定性,成膜性好,对纯棉或涤棉纱线比一般的聚丙烯酸盐浆料有更好的黏着性能,浆纱毛羽少,纱线滑爽,提高了浆纱质量,经纱断头率分别下降了19%和36%,织机效果也有较明显的提高。 配方6 浆纱平滑配方 涤/棉细布涤/粘单纱平纹呢聚乙烯醇 50kg 50kg 玉米淀粉 20kg 20kg DDF 1kg 1kg 浆纱平滑剂SPT?90 2.5kg 3.0kg 2?萘酚 0.04kg ?? 水调节黏度至15?16s 调节黏度至15?16s 描述上述处方能明显提高上浆质量,特别是对那些难于织造的高增值品种。经处理后,浆纱手感滑爽,有弹性,毛羽减少,开口清晰,断头显著减少,织造效率提高,成本较低。

极压抗磨剂分类

极压抗磨剂分类 极压抗磨剂从大类上来说,有含硫极压抗磨剂、含磷极压抗磨剂、含氯极压抗磨剂、有机金属盐极压抗磨剂和硼酸盐极压抗磨剂等。 ①含硫极压抗磨剂有机硫化物极压抗磨剂是用得较广泛的一种添加剂。它的极压抗磨作用,首先在金属表面吸附,随着摩擦的强化,金属接触处的瞬时温度迅速提高使油膜破裂,同时,金属表面和有机硫化物发生化学反应,形成有承载能力的金属硫化物膜。一般认为二硫化物在抗磨范围是吸附膜起作用,但在极压范围内,生成含硫无极膜。 硫化铁膜水解安定性好,熔点高达700℃仍不会失效。但硫化铁膜没有氯化铁膜那样具有层状结构不易剪切掉,因此,摩擦因数较大。 目前用得较多的是硫化三异丁烯和硫化异丁烯,特别是硫化异丁烯,是20世纪70年代发展起来的新的极压抗磨剂。硫化异丁烯具有颜色浅,油溶性好,含硫量高(可达41%~45%),热稳定性好的特点,已经广泛应用于车辆齿轮油、极压工业齿轮油、液压油和金属加工用油等。 ②含磷极压抗磨剂成磷酸酯类等含磷极压抗磨添加剂是应用得比较早的一种抗磨剂。它的抗磨作用在20世纪40年代认为在边界润滑条件下,与金属反应形成“金属磷化物-铁”的低共溶合金,即所谓“化学抛光”作用,减少金属表面之间的摩擦和磨损。进入20世纪60年代,则认为含磷极压抗磨剂与金属反应形成了磷酸铁膜。近期则认为它的抗磨机理有一个过程:首先在金属表面吸附,然后经过水解生成酸性磷酸酯,与金属形成有机金属磷酸盐,最后,在极压摩擦条件下,进一步水解后,生成无机的亚磷酸铁膜,起到极压抗磨作用。磷酸酯类属于较常用的含磷极压抗磨剂。 ③含氯极压抗磨剂氯化石蜡(含氯量42%~70%)是用得最多最广的含氯极压抗磨剂。在极压条件下,首先发生分解,碳-氯键断裂,在金属表面生成氯化铁膜。这种膜具有类似于石墨和二硫化钼的层状结构,剪切强度小,摩擦因数小。但氯化铁的熔点低(氯化亚铁盐600℃,氯化铁盐300℃),所以在高温下不像硫化铁膜那样稳定,易产生化学磨损;在有水的条件下,易水解而失去润滑性,并引起金属的腐蚀和锈蚀。 为了克服上述缺点,利用六氯环戊二烯为原料合成非腐蚀性含氯极压剂,如六氯环戊二烯、四氢苯二甲酸与脂肪胺的反应产物等,使其具有耐热、抗氯、水解稳定性好,极压抗磨性好等优点。 ④有机金属盐极压抗磨剂环烷酸铅和二烷基二硫代磷酸锌是较常用的两种有机金属盐极压抗磨剂。环烷酸铅具有良好的极压性能,与含硫极压剂复合作用,

德国莱茵化学极压剂-Additin RC 2411

Additin? RC 2411 极 压 添 加 剂___________________________________________________________________________________________ 类 型用于金属加工的极 压 添 加 剂, 浅 色、低 气 味、含 非 活 性 硫 ___________________________________________________________________________________________ 技 术 数 据* 组 分 硫化植物脂肪酸脂,不含矿油 外观 浅棕色透明液体 色度(ASTM-D1500) 3.5 硫含量 约 9.5% (w) 活性硫含量(ASTM-D1622) 约 1 %(w) 腐 蚀 试 验 (ASTM-D130 ) ( 石 蜡 基 基 础 油+10%RC2411, 铜 片,3h/100°C) 1b 运 动 粘 度(40°C) (ASTM-D 446) 约 230mm2/s 密 度(20°C) (ASTM-D941) 约 0.97 g/ml 闪 点( 开 口) (ASTM-D 92) >180°C ___________________________________________________________________________________________ 应 用 范 围-------- 金 属 加 工 液 -------- 润 滑 脂 -------- 纺 织 机 用 油 -------- 导 轨 油 Addition RC 2411 是一种浅色,含非活性 硫, 具有优异极压和抗磨特性的 添 加 剂.由于其特殊的制造工艺,RC2411非常适用于有色金属及铝合金的加 工液的配方中. RC2411使用了特殊选用的原料,显示出优异的润滑性能及良好的摩擦改善性 能. 溶 解 性可 溶 于 矿 油 和 合 成 基 础 油, 但 必 须 确 认 在 所用 基 础 油 中 的 溶 解 性, 以 及 与 其 它 添 加 剂 的配 伍 性. *分 析 数 据 是 指 导 值 Additin RC 2411 列 入 ENECS 和 TSCA 目 录 中

水性聚氨酯胶解析(一)

水性聚氨酯胶解析(一) 2009-11-21 23:08 水性聚氨酯胶解析 水性聚氨酯胶的发展概况 水性聚氨酯胶粘剂是指聚氨酯溶于水或分散于水中而形成的胶粘剂,有人也称水性聚氨酯为水系聚氨酯或水基聚氨酯。依其外观和粒径,将水性聚氨酯分为三类:聚氨酯水溶液(粒径<0.001um,外观透明)、聚氨酯分散液(粒径0.001-0.1 um,外观半透明)、聚氨酯乳液(粒径>0.1 ,外观白浊)。但习惯上后两类在有关文献资料中又统称为聚氨酯乳液或聚氨酯分散液,区分并不严格。实际应用中,水性聚氨酯以聚氨酯乳液或分散液居多,水溶液少。 由于聚氨酯类胶粘剂具有软硬度等性能可调节性好以及耐低温、柔韧性好、粘接强度大等优点,用途越来越广。目前聚氨酯胶粘剂以溶剂型为主。有机溶剂易燃易爆、易挥发、气味大、使用时造成空气污染,具有或多或少的毒性。近10多年来,保护地球环境舆论压力与日俱增,一些发达国家制订了消防法规及溶剂法规,这些因素促使世界各国聚氨酯材料研究人员花费相当大的精力进行水性聚氨酯胶粘剂的开发。 水性聚氨酯以水为基本介质,具有不燃、气味小、不污染环境、节能、操作加工方便等优点,已受到人们的重视。 聚氨酯从30年代开始发展,而在50年代就有少量水性聚氨酯的研究,如1953年Du Pont公司的研究人员将端异氰酸酯基团聚氨酯预聚体的甲苯溶液分散于水,用二元胺扩链,合成了聚氨酯乳液。当时,聚氨酯材料科学刚刚起步,水性聚氨酯还未受到重视,到了六、七十年代,对水性聚氨酯的研究开发才开始

迅速发展,1967年首次出现于美国市场,1972年已能大批量生产。70-80年代,美、德、日等国的一些水性聚氨酯产品已从试制阶段发展为实际生产和应用,一些公司有多种牌号的水性聚氨酯产品供应,如德国Bayer公司的磺酸型阴离子聚氨酯乳液ImPranil和Dispercoll KA等系列、Hoechst公司的Acrym系列、美国Wyandotte化学公司的X及E等系列,日本大日本油墨公司的Hydran HW 及AP系列、日本公司的聚氨酯乳液CVC36及水性乙烯基聚氨酯胶粘剂CU系列、日本光洋产业公司的水性乙烯基聚氨酯胶粘剂KR系列等等。 在水性类胶粘剂中,我国目前仍以聚丙烯酸酯类乳液胶、聚乙烯醋酸乙烯类乳液胶、水性三醛树脂等胶粘剂为主。有柔韧性好等特点,有较大的发展前途。水性聚氨酯胶粘剂的性能特点 1.与溶剂型聚氨酯胶粘剂相比,水性聚氨酯胶粘剂除了上述的无溶剂臭味、无污染等优点外,还具有下述特点。 (1)大多数水性聚氨酯胶粘剂中不含NCO基团,因而主要是靠分子内极性基团产生内聚力和粘附力进行固化。而溶剂型或无溶剂单组分及双组分聚氨酯胶粘剂可充分利用NCO的反应、在粘接固化过程中增强粘接性能。水性聚氨酯中含有羧基、羟基等基团,适宜条件下可参与反应,使胶粘剂产生交联。 (2)除了外加的高分子增稠剂外,影响水性聚氨酯粘度的重要因素还有离子电荷、核壳结构、乳液粒径等。?聚合物分子上的离子及反离子(指溶液中的与聚氨酯主链、侧链中所含的离子基团极性相反的自由离子)越多,粘度越大;而固体含量(浓度)、聚氨酯树脂的分子量、交联剂等因素对水性聚氨酯粘度的影响并不明显,这有利于聚氨酯的高分子量化,以提高胶粘剂的内聚强度。与之相比,溶剂型聚氨酯胶粘剂的粘度的主要影响因素有聚氨酯的分子量、支化度、胶的浓

管道压浆料及管道压浆剂技术要求

管道压浆料及管道压浆剂技术要求 根据设计院出具的《梁预应力砼连续梁技术交底条件》显示,管道压浆中的压浆材料及工艺应满足《铁路后张法预应力混凝土梁管道压浆技术条件》(TB/T 3192-2008)的各项规定。 管道压浆料 cable grouts 管道压浆料是由水泥、高效减水剂、微膨胀剂、矿物掺合料等多种材料干拌而成的混合料。它是在施工现场按一定比例与水混合均匀后,用于后张梁预压力管道充填的压浆材料。 管道压浆剂 cable grouting agents 管道压浆剂是由高效减水剂、微膨胀剂、矿物掺合料等多种材料干拌而成的混合剂。它是在施工现场按一定比例与水泥、水混合均匀后,用于后张梁预应力管道充填压浆材料。 根据以往施工经验,多数采用压浆剂,但压浆剂自行调配难以控制,且质量很难保证。为方便现场管理。建议采用压浆料。 1、技术要求 1.1 原材料要求 1.1.1 原材料应有供应商提供的出厂检验合格证书,并应按有关检验项目、批次规定,严格实施进场检验。 1.1.2 水泥应采用性能稳定、强度等级不应低于4 2.5级的低碱硅酸盐或低碱普通硅酸盐水泥(掺和粉仅为粉煤灰或矿渣),水泥熟料中C3A 含量不应大于8%;其余性能应符合GB 175-1999的规定,不应使用其他品种水泥。

1.1.3 矿物掺和料的品种宜为I级粉煤灰、矿渣粉或硅灰。I级粉煤灰的技术要求应满足表1的规定;矿渣粉的技术要求应满足表2的规定;硅灰的技术要求应满足表3的规定。 1.1.4 应采用高效减水剂,其性能应与所用水泥具有良好的适应性。高效减水剂的减水率不应小于20%,其他指标应符合GB 8076—1997中高效减水剂一等品的要求。其他外加剂应符合GB 8076 — 1997中

润滑油常用添加剂大讲堂

润滑油常用添加剂大讲堂 内燃机油常用的功能添加剂有清净分散剂、抗氧剂、极压抗磨剂、金属减活剂、防锈剂。下面就对各类添加剂作一个简单的介绍。 一、金属清净剂清净剂是内燃机油的重要添加剂,是用量最大的一种添加剂,其功能主要是中和油品燃烧和衰变产生的酸性物质,并防止金属表面生产漆膜积碳。主要有增溶、胶溶、酸中和、清洗等几方面作用。按不同有机官能团可分为烷基苯磺酸盐烷基水杨酸盐硫化烷基酚盐环烷酸盐硫磷酸 盐其他羧酸盐按不同碱性组分可分为:钡盐、钙盐、镁盐、钠盐等,分别制成低碱性、中碱性、高碱性,其中以高碱性钙盐的用途最为广泛。 二、无灰分散剂分散剂在润滑油中的主要功能是分散和增溶。分散作用是指分散剂提供的油溶性基团能有效地抑制烟灰、氧化物的聚集,使得这些粒子有效的分散于油中;增溶的作用是指分散剂能与生成油泥的羰基、羟基等直接作用,从而达到溶解效果。分散剂主要有:聚异丁烯丁二酰亚胺硼化无灰丁二酸酯无灰磷酸酯苄胺聚异丁基丁二酰亚胺是使用最 多的一种。 三、抗氧剂润滑油的氧化是造成油品质量变差的重要原因,抗氧剂可以减缓氧化变质的过程,延长润滑油的使用寿命。

抗氧剂分为一次抗氧剂和二次抗氧剂。一次抗氧剂也称为连锁反应停止剂,主要用胺和位阻酚系的化合物很快和过氧游离基(ROO·)反应,而后和烷基游离基(RO·)反应,防止(切断)氧化的连锁反应。 二次抗氧剂也称为过氧化物分解剂,主要用硫醚、磷酸盐、硫磷酸盐等化合物与过氧化物(ROOH)反应生产非自由基和非活性物质而阻止氧化。酚型抗氧剂中使用效果最广泛的是2,6-二叔丁基对甲酚(T501)胺型抗氧剂的代表化合物有N,N-二仲丁基对苯二胺,N-苯基-N-仲丁基对苯二胺等各种金属(如Cu,Zn, Mo,Sb等)的烷基硫代磷酸化合物都具有一定的抗氧化、抗磨、抗腐和极压作用。特别是二烷基二硫代磷酸锌(ZDDP), 具有优良的抗氧、抗磨,抗腐性能,可广泛的用于润滑油,尤其是发动机油中。 四、极压抗磨剂极压抗磨剂可以达到降低摩擦系数、减少磨损的作用。首先,说明下“抗磨剂”和“极压剂”的概念。 抗磨剂:在中等负荷及速度条件下,摩擦表面因大量放热而温度升高,这使得摩擦表面吸附的油性剂发生脱附,进而失去减摩抗磨作用,在这种条件下,必须使用在较高温度下能与新生金属表面作用生成化学吸附膜的表面活性物质,才能起到防止摩擦表面胶合的作用。这样的物质,就是抗磨剂。极压剂:在低速高负荷或高速冲击摩擦条件下,摩擦面容易发生烧结,抗磨剂也无能为力,而极压剂可以防止烧结。

水性聚氨酯发展概况

水性聚氨酯发展概况 水性聚氨酯胶粘剂是指聚氨酯溶于水或分散于水中而形成的胶粘剂,有人也称水性聚氨酯为水系聚氨酯或水基聚氨酯。依其外观和粒径,将水性聚氨酯分为三类:聚氨酯水溶液(粒径< 0.001um,外观透明)、聚氨酯分散液(粒径0.001-0.1 um,外观半透明)、聚氨酯乳液(粒径>0. 1 ,外观白浊)。但习惯上后两类在有关文献资料中又统称为聚氨酯乳液或聚氨酯分散液,区分并不严格。实际应用中,水性聚氨酯以聚氨酯乳液或分散液居多,水溶液少。由于聚氨酯类胶粘剂具有软硬度等性能可调节性好以及耐低温、柔韧性好、粘接强度大等优点,用途越来越广。目前聚氨酯胶粘剂以溶剂型为主。有机溶剂易燃易爆、易挥发、气味大、使用时造成空气污染,具有或多或少的毒性。近10多年来,保护地球环境舆论压力与日俱增,一些发达国家制订了消防法规及溶剂法规,这些因素促使世界各国聚氨酯材料研究人员花费相当大的精力进行水性聚氨酯胶粘剂的开发。水性聚氨酯以水为基本介质,具有不燃、气味小、不污染环境、节能、操作加工方便等优点,已受到人们的重视。聚氨酯从30年代开始发展,而在50年代就有少量水性聚氨酯的研究,如1953年Du Pont公司的研究人员将端异氰酸酯基团聚氨酯预聚体的甲苯溶液分散于水,用二元胺扩链,合成了聚氨酯乳液。当时,聚氨酯材料科学刚刚起步,水性聚氨酯还未受到重视,到了六、七十年代,对水性聚氨酯的研究开发才开始迅速发展,1967年首次出现于美国市场,1972年已能大批量生产。7 0-80年代,美、德、日等国的一些水性聚氨酯产品已从试制阶段发展为实际生产和应用,一些公司有多种牌号的水性聚氨酯产品供应,如德国Bayer公司的磺酸型阴离子聚氨酯乳液ImPranil和Dispercoll KA等系列、Hoechst公司的Acrym系列、美国Wyandotte化学公司的X及E等系列,日本大日本油墨公司的Hydran HW及AP系列、日本公司的聚氨酯乳液C VC36及水性乙烯基聚氨酯胶粘剂CU系列、日本光洋产业公司的水性乙烯基聚氨酯胶粘剂KR系列等等。在水性类胶粘剂中,我国目前仍以聚丙烯酸酯类乳液胶、聚乙烯醋酸乙烯类乳液胶、水性三醛树脂等胶粘剂为主。有柔韧性好等特点,有较大的发展前途。水性聚氨酯的分类由于聚氨酯原料和配方的多样性,水性聚氨酯开发40年左右的时间,人们已研究出许多种制备方法和制备配方。水性聚氨酯品种繁多,可以按多种方法分类。1.以外观分水性聚氨酯可分为聚氨酯乳液、聚氨酯分散液、聚氨酯水溶液。实际应用最多的是聚氨酯乳液及分散液,本书中统称为水性聚氨酯或聚氨酯乳液,其外观分类如表5所示。表5 水性聚氨酯形态分类 -----------------------------------------------------名称水溶液分散液乳液状态溶解—胶体分散分散外观透 明半透明乳白白浊粒径,um <0.001 100-1000 0.001-0.1分子量数千-20万>0.1 >5000------------------------------------------------------ 2.按使用形式分水性聚氨酯胶粘剂按使用形式可分为单组分及双组分两类。可直接使用,或无需交

航空润滑油极压抗磨剂概述

航空润滑油极压抗磨剂 概述 The manuscript was revised on the evening of 2021

航空润滑油极压抗磨剂概述 随着飞机和其发动机的发展,矿物型航空润滑油由于高低温性能的限制越来越不适应飞机和其发动机的使用要求;目前除少数的活塞式飞机外,大部分飞机都使用合成航空润滑油。在合成航空润滑油的各种添加剂配方中,极压抗磨剂是必不可少的。航空润滑油是一类特殊的润滑剂,由于其使用环境的苛刻,不仅要求基础油有良好的性能,而且对添加剂也有特殊的要求。 现代高速飞机,特别是现代军用飞机,飞行马赫数大,发动机转速高。发动机转子轴承作为主要润滑部件,长期处于高温、高速和高负荷的工作状况,涡轮前工作温度达到140℃以上。这使得发动机润滑油长期处于高温状态,对润滑油有着很高的性能要求。在这种高温、高速及高负荷工作条件下,发动机润滑油性能的可靠性是飞机安全的一个重要因素。飞机机械部件能否正常工作与润滑油有着直接关系。英国对1984-1988年发生的900起飞机事故调查中发现,有9起事故直接与轴承的失灵有关,其中1起是直接因轴承磨伤而卡死,1起由过度磨损导致,2起由润滑失败引起。因此,航空润滑油能否满足轴承润滑的工作要求,将对发动机的正常工作产生重要的影响。 一、航空润滑油的润滑性能要求 1、航空润滑油的工作条件 航空发动机工作时,空气压缩器将空气增压并输送到燃烧室,与燃料燃烧后形成的高温、高压燃气驱动涡轮做功,带动同轴的压缩器及其附件工作。由于涡轮输出功率高,润滑系统容量有限(一般仅为30~50L),发动机的输出功率与润滑油量比值非常高,使得涡轮轴承的润滑油达到了150~200℃的高温。发动机的转速一般在12000~25000r/Mn,轴承承受的负荷高达68000~90000N。

磷氮型极压抗磨添加剂综述

磷氮型极压抗磨添加剂在润滑油中的应用现状和发展趋势 摘要:对国内外磷氮型添加剂在润滑油中的应用现状进行了文献综述,详细介绍了磷氮剂的制备方法、应用范围和良好性能,总结了一些文献中关于磷氮型添加剂作用机理的报道,并对其发展趋势提出了一些看法。 关键词:磷氮剂,极压抗磨性能,润滑油添加剂 1、前言 极压抗磨性能是工业齿轮油极为重要的一个使用性能,主要通过加入极压抗磨添加剂来实现。含磷极压剂是齿轮油硫-磷型复合剂的主要组分,具有很好的极压、抗磨和金属去活性能,是应用于现代高档润滑油等石油产品中的一类非常重要的多功能添加剂。磷氮剂是齿轮油中磷元素的主要来源,它在降低齿轮低速、高扭矩下的磨损起着重要的作用。 磷氮型极压抗磨添加剂及其配伍性的研究由来已久,并已获得了广泛的工业应用。已经发现,磷元素有益于添加剂的高温稳定性、高效抗擦伤性以及添加剂的配伍性、多效性;氮元素是载荷添加剂常用的活性元素之一,所以磷氮剂具有承载能力高、防腐和抗氧化安定性好、抗磨减摩能力高、与其它添加剂配伍性好等优点。虽然与含硫添加剂相比,磷氮剂的极压性相对差一些,但是其低温抗磨性要优于含硫添加剂,因此通常可以通过齿轮润滑油中的硫剂与磷氮剂的复配来获得所要求的极压抗磨性。 国外早在60年代,就已经开始研究在齿轮油中使用磷氮型极压抗磨添加剂,而国内近二十年也开始对磷氮剂进行了一些研究应用。通过文献调研,本文对磷氮型极压抗磨剂进行一些阐述。 2、磷氮剂的发展 整体来说,按照所含活性元素或者官能团的不同,磷氮型极压抗磨剂主要分为磷酸酯胺盐、硫代磷酸酯胺盐、磷酸酯与含氮化合物的复配以及含有其它官能团的磷酸酯胺盐等。 2.1磷酸酯与含氮化合物的复配 获得磷氮剂最简单的方法,就是将磷剂与氮剂进行复配。专利[1~3]等专利报道了不同磷剂与氮剂的复配应用。磷剂的类型主要有磷酸酯、酸性磷酸酯、亚磷酸酯和酸性亚磷酸酯等;氮剂主要有长链脂肪胺、取代芳香胺、α,γ-丁内酰胺、琥珀酸胺盐等等。 α,γ-丁内酰胺作为辅助剂,和磷酸酯按照一定的比例加入,可以提高磷酸酯的油溶性、兼容性,还可以改善油品的低温流动性。一般来说,α,γ-丁内酰胺和磷酸酯的重量比范围为3.5~4:1,比例的不同,取决于所用磷酸酯的类型,可以通过实验获得。 另外,取代芳香胺主要作为抗氧剂,琥珀酸胺盐是作为分散剂,而长链脂肪胺的引入可以改善齿轮油的极压抗磨性能。应该注意的是,在磷剂与氮剂的复配组成中,元素比100N/(S+P) 应该控制在4~10之间,5~8更好。 2.2 磷酸酯胺盐 磷酸酯胺盐是最早出现的、应用最广泛的一类磷氮型极压抗磨添加剂,主要有酸性亚磷酸酯胺盐、酸性磷酸酯胺盐和膦酸胺盐等。 美国和欧洲的很多专利[4~17]等详细报道了不同类型磷酸酯胺盐的制备方法、使用范围和性能评价等。 磷酸酯由于其结构稳定,水解试验后的酸值小,对铜片不产生腐蚀,使它只能在轻负荷下具有好的抗磨性,而在重负荷下的极压抗磨性较差。用酸性磷酸酯和长链胺反应得到的磷氮剂,比不含氮的含磷化合物具有更高的承载能力、较好的防锈性能和长期储存稳定性。 作者简介:李久盛(1974-),男,2002年毕业于上海交通大学材料科学专业,博士。现于中国石油兰州润滑油研究开发中心博士后工作站工作,主要从事润滑油添加剂的合成及机理研究,已在国内外期刊发表论文20余篇。

双组分水性聚氨酯胶粘剂的制备与性能

双组分水性聚氨酯胶黏剂的合成及表征 郑延清1*,邹友思 2 (1.闽江学院化学与化学工程系,福建福州350108; 2.厦门大学材料学院,福建厦门361005) 摘要:以聚酯二元醇、甲苯二异氰酸酯(TDI)、二羟甲基丙酸(DMPA)、1,4-丁二 醇(BDO)和三羟甲基丙烷(TMP)等为原料合成了双组分水性聚氨酯的多元醇组 分作为A组分。考虑到溶解性,反应活性,工业成本等因素,本文从小分子二元醇(如乙二醇,丙二醇,丁二醇,一缩乙二醇等),小分子三元醇(甘油),小分子四 元醇(季戊四醇),聚乙二醇(相对分子质量从200到2000),聚丙二醇(相对分子 质量从300到2000)等数十种醇类化合物中,反复试验,再三筛选,最后确定以聚 乙二醇-800和六亚甲基二异氰酸酯(HDI)三聚体为原料合成了亲水性多异氰酸酯 固化剂作为B组分。将A、B组分混合配制,得到了双组分水性聚氨酯胶黏剂。通 过红外光谱(FT-IR)、核磁共振(NMR)、粘度、吸水率、粘接强度、离心稳定性等 性能测试,分别对A、B组分合成的关键步骤及影响产物性能的各种因素进行了探讨。结果表明,当DMPA、BDO、TMP的质量分数分别为6%、4%、3%时,多元醇 组分的外观、稳定性、粘接强度等性能较好;选择聚乙二醇作为亲水组分对HDI三 聚体进行改性,且当其添加的质量分数为11%及以上时,制备出的多异氰酸酯固化 剂组分具有较好的水分散性。 关键词:水性聚氨酯;胶黏剂;多元醇组分;固化剂;粘接强度 中途分类号:O 631 文章标志码:A 文章标号: 聚氨酯胶黏剂具有独特的软硬段结构,这种化学结构决定了它具有耐低温、耐磨、耐脆化、拉伸强度高、韧性、弹性好等优点[1-4]。传统的溶剂型聚氨酯胶黏剂以二甲基甲酰胺、甲苯、二甲苯等溶剂为分散介质,这些溶剂易燃易爆,挥发性和毒性较大,污染环境,危害操作者的身体健康。近年来,随着保护环境的舆论压力和人们的环保意识不断增强,一些发达国家制定了限制挥发性有机物(VOC)的法律法规,这些因素促进了*通信作者:yanqingz2115@https://www.wendangku.net/doc/554785584.html,

极压抗磨剂

极压抗磨剂 时间:2009-9-22 亚太车务 在传统的润滑理论中,把润滑分为液体润滑和边界润滑。作相对运动的两个金属表面完全被润滑油膜隔开,没有金属的直接接触,这种润滑状态叫做液体润滑;随着载荷的增加,金属表面之间的油膜厚度逐渐减薄,当载荷增至一定程度,连续的油膜被金属表面的峰顶破坏,局部产生金属表面之间的直接接触,这种润滑状态叫做边界润滑。 在边界润滑中,当金属表面只承受中等负荷时,如有一种添加剂能被吸附在金属表面上或与金属表面剧烈磨损,这种添加剂称为抗磨添加剂。当金属表面承受很高的负荷时,大量的金属表面直接接触,产生大量的热,而抗磨剂形成的膜也被破坏,不再起保护金属表面的作用,如有一种添加剂能与金属表面起化学反应生成化学反应膜,起润滑作用,防止金属表面擦伤,甚至熔焊,通常把这种最苛刻的边界润滑叫做极压润滑,而这种添加剂称为极压添加剂。由于其在适用性能和作用机理上的区分是不很严格的,所以有时很难将二者区分开。故在西方国家,把极压剂、抗磨剂和油性剂统称为载荷添加剂(Load-Carrying additives)。 极压抗磨剂是一种重要的润滑脂添加剂,其大部分是一些含硫、磷、氯、铅、钼的化合物。在一般情况下,氯类、硫类可提高润滑脂的耐负荷能力,防止金属表面在高负荷条件下发生烧结、卡咬、刮伤;而磷类、有机金属盐类具有较高的抗磨能力,可防止或减少金属表面在中等负荷条件下的磨损。实际应用中,通常将不同种类的极压抗磨剂按一定比例混合使用性能更好。一般磷化物具有抗磨性,二氯化物与硫化物具有极压性。同时含氯和含磷或含硫化合物,既具有极压性,又具有抗磨性。 常用的极压抗磨剂有以下几种: 1:有机氯化物 有机氯化物在极压条件下摩擦系数小,所赋予润滑脂的极压性能比抗磨性好,但在高温和有水条件下极压性能会下降。并引起金属腐蚀和锈蚀。常用添加量为1%--10%。氯化石蜡是一种较古老的极压添加剂产品,浅黄色至黄色粘稠液体,因含氯量不同又分为三种,氯化石蜡42,氯化石蜡50和氯化石蜡52。氯化石蜡加热到120℃以上会缓慢分解,放出氯化氢气体,所以经常与金属磺酸盐类防锈剂共同使用。 2:有机硫化物 有机硫化物比氯化物更能有效地抵抗负荷,形成的膜在700℃的高温下仍不失效,水解安定性好,但摩擦系数大。添加量一般为1%--5%。代表性产品有:硫化鲸鱼油,具有良好的油溶性,能使油品在高负荷下保持油膜润滑,比硫化猪油稳定。可用于切削液、导轨油、齿轮油、液压导轨油发动机磨合油、润滑脂等。由于材料的限制,现在已发展了多种替代品。硫化棉籽油,红肿色透明液体,具有良好的油溶性能、极压性、抗氧化性、可降低摩擦系数。添加量一般为1%--3%。 硫化烯烃棉籽油,深红色透明粘稠液体,易溶于石油润滑油。具有良好的极压抗磨抗氧和低摩擦系数等性能,是硫化鲸鱼油的理想替代品。常与其它添加剂复合使用,添加量一般为0.5%--4%。 硫化异丁烯,以异丁烯为原料,先用氯化硫进行硫化,再用硫化钠脱氯硫化,并用碱精致而成,具有良好的油溶性和极压性,腐蚀性小。多用于极压抗磨型润滑油脂。 二苄基二硫,白色或微黄色树枝状晶体,具有良好的极压性能,油溶性稍差,用量超过2.8%即会析出,添加量一般为1%--2%。 3:有机磷化物 含磷化合物可以提高润滑脂的抗磨性,虽然酸性磷酸酯的承载能力强于中性磷酸酯,但酸性磷酸酯化学活性强,易造成金属腐蚀故很少使用,常用的是:磷酸三甲酚酯、磷酸三苯酯、磷酸三乙酯、磷酸三丁酯和亚磷酸二正丁酯等。 磷酸三甲酚酯,为浅黄色油状液体,有毒,凝点-35℃.不溶于水,溶于醇、醚、苯等有机溶剂,具有阻燃性和良好的抗磨性能,常与其它极压添加剂配合使用,增强极压抗磨性能。添加量一般为0.5%--5%。

润滑剂分析常用理化指标和意义

润滑剂分析常用理化指标和意义 默认分类2009-08-14 11:14:31 阅读201 评论0 字号:大中小 1. 粘度 液体受外力作用移动时,液体分子间产生内摩擦力的性质,称为粘度。粘度随温度的升高而较低。它是润滑油的主要技术指标,粘度是各种润滑油分类分级的依据,对质量鉴别和确定用途等有决定性的意义。 我国常用运动粘度、动力粘度和条件粘度来表示油品的粘度。测定运动粘度的标准方法为GB/T 265、GB/T 11137,即在某一恒定的温度下,一定体积的液体在重力下流过一个标定好的玻璃毛细管的时间。粘度计的毛细管常数与流动时间的乘积就是该温度下液体的运动粘度。运动粘度的单位为m2/s,通常实际使用单位是mm2/s。国外相应测定油品运动粘度的标准方法主要有美国的ASTM D445、德国的DIN 51562和ISO 3105等。 某些油品,如液力传动液、车用齿轮油等低温粘度通常用布氏粘度计法来测定。我国的GB/T 11145、美国的ASTM D2983和德国的DIN 51398等标准方法。 粘度是评定润滑油质量的一项重要的理化性能指标,对于生产,运输和使用都具有重要意义。在实际应用中,绝大多数润滑油是根据其40℃时中间点运动粘度的正数值来表示牌号的,粘度是各种设备选油的主要依据;选择合适粘度的润滑油品,可以保证机械设备正常、可靠地工作。通常,低速高负荷的应用场合;选用粘度较大的油品,以保证足够的油膜厚度和正常润滑;高速低负荷的应用场合,选用粘度较小的油品,以保证机械设备正常的起动和运转力矩,运行中温升小。测定不同温度下粘度,可计算出该油品的粘度指数,了解该油品在温度变化下的粘度变化情况,另外,粘度还是工艺计算的重要参数之一。 粘度的度量方法分为绝对粘度和相对粘度两大类。绝对粘度分为动力粘度、运动粘度两种;相对粘度有恩氏粘度、赛氏粘度和雷氏粘度等几种表示方法。 粘度指数 粘度指数是一个表示润滑油粘度随温度变化的性质的参数。润滑油的粘度随温度的变化而变化:温度升高,粘度减小;温度降低,粘度增大。这种粘度随温度变化的性质,叫做粘温性能。通过将润滑油试样与一种粘温性较好(粘度指数定为100)及另一种粘温性较差(粘度指数定为0)的标准油进行比较,得出表示润滑油粘度受温度影响而变化程度的相对值。粘度指数(VI)是表示油品粘温性能的一个约定量值。粘度指数高,表示油品的粘度随温度变化小,油的粘温性能好。反之亦然。 石油产品的粘度指数可通过计算得到。计算方法在我国的GB/T 1995或美国的ASTM D2270、德国的DIN 51564、ISO2902、日本的JIS K2284等标准中有详细的说明。粘度指数还可以用查表法得到,我国的GB/T 2541。

水性聚氨酯胶黏剂国内外发展情况

1.国外研究进展 国外对聚氨酯的研究较早。 20 世纪 40 年代,德国的拜耳就建成了聚氨酯试验车间, 美国、英国于20 世纪 5 0 年代相继开始了工业化, 20 世纪 60 年代杜邦公司首次工业化生产了水性聚氨酯, 20 世纪 70年代以来德国对水性聚氨酯进行了大量的研究工作, 对自乳化稳定机理及相转变过程进行了描述与解释。 20 世纪 80 年代后 , 美国、日本、荷兰等国家开始生产和应用聚氨酯。由于合成技术的发展和性能的不断改进, 使水性聚氨酯进入飞速发展 阶段, 涉及的领域涵盖皮革、纸张、纺织、涂料、胶黏剂等。进 入 21 世纪后, 聚氨酯的应用领域不断拓宽, 特别是世界范围内日 益高涨的环保要求, 更加快了水性聚氨酯工业的发展步伐。经过几十年的发展, 聚氨酯产品在汽车涂料、胶黏剂等领域已接近或达到溶剂型产品水平, 原料生产实现了规模化, 异氰酸酯、聚醚多元醇等聚氨酯基本原料的先进生产技术只掌握在少数几家跨国公司( 如BASF, Bayer, H untsman,DuPONT 等)手中,他们在世界各地建立了特大规模(10万t/a以上)的生产装置,这对中国规模较小、技术相对落后的原料企业的发展构成了一定威胁。国外水性聚氨酯胶黏剂的发展速度明显快于其他胶黏剂产品 , 且品种多、产量大。例如 : 拜耳公司U53 , U 54 等系列产品; 日本大日本油墨公司的H ydr an H W 及 AP 系列; 日本公司的聚氨酯乳液CV C36 及水性乙烯基聚氨酯胶黏剂 CU 系列等 [ 5] 。这些胶黏剂一般都具有较好的初黏性、耐水性、耐温性。近年来环境保护的压力迫使一些

航空润滑油极压抗磨剂概述

航空润滑油极压抗磨剂概述 随着飞机和其发动机的发展,矿物型航空润滑油由于高低温性能的限制越来越不适应飞机和其发动机的使用要求;目前除少数的活塞式飞机外,大部分飞机都使用合成航空润滑油。在合成航空润滑油的各种添加剂配方中,极压抗磨剂是必不可少的。航空润滑油是一类特殊的润滑剂,由于其使用环境的苛刻,不仅要求基础油有良好的性能,而且对添加剂也有特殊的要求。 现代高速飞机,特别是现代军用飞机,飞行马赫数大,发动机转速高。发动机转子轴承作为主要润滑部件,长期处于高温、高速和高负荷的工作状况,涡轮前工作温度达到140℃以上。这使得发动机润滑油长期处于高温状态,对润滑油有着很高的性能要求。在这种高温、高速及高负荷工作条件下,发动机润滑油性能的可靠性是飞机安全的一个重要因素。飞机机械部件能否正常工作与润滑油有着直接关系。英国对1984-1988年发生的900起飞机事故调查中发现,有9起事故直接与轴承的失灵有关,其中1起是直接因轴承磨伤而卡死,1起由过度磨损导致,2起由润滑失败引起。因此,航空润滑油能否满足轴承润滑的工作要求,将对发动机的正常工作产生重要的影响。 一、航空润滑油的润滑性能要求 1、航空润滑油的工作条件 航空发动机工作时,空气压缩器将空气增压并输送到燃烧室,与燃料燃烧后形成的高温、高压燃气驱动涡轮做功,带动同轴的压缩器及其附件工作。由于涡轮输出功率高,润滑系统容量有限(一般仅为30~50L),发动机的输出功率与润滑油量比值非常高,使得涡轮轴承的润滑油达到了150~200℃的高温。发动机的转速一般在12000~25000r/Mn,轴承承受的负荷高达68000~90000N。正常工作时,润滑油处于循环状态,在润滑系统油路中高速流动,润滑油在涡轮轴承处的停留时间非常短。但当发动机停车后,润滑油停留在轴承处,同时冷气扇停止,致使轴承温度上升,留滞在轴承处的润滑油温度达到250~300℃,直至轴承慢慢地自然冷却。因此,航空润滑油己基本摈弃有氧最高使用温度在150℃左右的石油基润滑油,改用耐高温性能好的双酯、多元醇酯等酯类合成油,并己形成主导趋势。 2、航空润滑油的润滑性能要求 航空润滑油的润滑部位主要有发动机涡轮转子轴承、附件传动齿轮、轴承等,其中以发动机涡轮转子轴承的工作条件最苛刻,它的负荷大、转速高、工作温度高。因此,转子轴承的润滑要求是选用航空润滑油的主要考虑因素。本来采用滚动轴承,摩擦系数小,产生的热量少,但由于涡喷发动机轴承承受的负荷很大,使滚子产生弹性变形,滚子与轨道的接触面积增大,轴承滚动时接触区出现了滑动摩擦,产生了大量的热量,再加上高转速的作用,使得单位时间内产生的热量很大。因此,对航空润滑油的润滑性能提出了很高的要求。 航空润滑油的润滑性能包括润滑油的粘度、油性和极压抗磨性。航空涡轮润滑油比较合适的粘度范围为3~15mm2 / s(100℃),从保证轴承的润滑来说,粘度越大,形成的油膜越厚,越有利于轴承的润滑,但飞机的工作温度范围宽,航空发动机最大可接受的低温粘度值为20000mm2 / s,而且从轴承散热和发动机冷启动来考虑,粘度越小,越有利于轴承的散热和发动机的冷启动。因此,常用的涡喷、涡扇发动机油的粘度为3~5mm2 / s(100℃)。在低转速、高负荷的边界润滑条件下,润滑油的粘度性能已无法满足金属表面的正常润滑,主要依靠油品的极压抗磨性,这一性能是润滑油烃类成分所不具备的,需要加入极压抗磨剂来提高和改善。

相关文档
相关文档 最新文档