文档库 最新最全的文档下载
当前位置:文档库 › 用MATLAB计算发动机悬置系统的固有频率和主振型

用MATLAB计算发动机悬置系统的固有频率和主振型

用MATLAB计算发动机悬置系统的固有频率和主振型
用MATLAB计算发动机悬置系统的固有频率和主振型

悬臂梁固有频率的计算

悬臂梁固有频率的计算 试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶)。 解:法一:欧拉-伯努利梁理论 悬臂梁的运动微分方程为:4242(,)(,)+0w x t w x t EI A x t ρ??=??; 悬臂梁的边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x l dw w w w x x dx x x x ==???======???,; 该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到 1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++,(t)Acos t Bsin t T w w =+;其中2 4 A EI ρωβ= 将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得 12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得 12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=;12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要 求12C C 和有非零解,则它们的系数行列式必为零,即 (cos cosh ) (sin sinh ) =0(sin sinh )(cos cosh ) l l l l l l l l ββββββββ-+-+--+-+ 所以得到频率方程为:cos()cosh()1n n l l ββ=-; 该方程的根n l β表示振动系统的固有频率:12 2 4 ()(),1,2,...n n EI w l n Al βρ==满足上式中的各 n l β(1,2,...n =)的值在书P443表8.4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,; 若相对于n β的2C 值表示为2n C ,根据式中的1n C ,2n C 可以表示为21cos cosh ()sin sinh n n n n n n l l C C l l ββββ+=-+;

轴固有频率计算课件

转子固有频率计算方法对比 本文通过理论计算与ansys 模拟两种方法计算转子的固有频率,分别对单盘与多盘情况下作了计算,本文中转子与轴的材料参数如下: 3 .07850101.211==?=μρ泊松比kg/m 密度Pa 弹性模量3E 一、 单盘时计算与对比 1、理论计算 中点C 处挠度EI Fl c 483 -=ω

推出轴的刚度3 48l EI k =,其中l 为轴总长度,E 为弹性模量, I 为惯性矩,F 为外力 64 4 d I π= ,d 为轴的轴径 得:3 4 43l d E k π= 代入数据有: N/m 5 3 41110342.4225 .0401.014.3101.23?=?????=k 质量kg 5.17850025.01.014.34 141 22=????===ρπρa l D V m rad/s 5385 .110342.45 =?==m k n ω HZ 7.8528 .6538 2=== πωn f 2、ansys 模态计算固有频率 约束方式:A 端铰支,即约束X 、Y 、Z 平动自由度,不约束转动自由度,B 端只约束Y 、Z 自由度 用mass21单元:

3、结论: 1).不加集中质量结果偏差较大 2).直接约束与用combin14和matrix27单元模拟与理论计算结果差不多

二、多盘时计算与对比 模型结构图 考虑多个盘时对比较复杂,先画出本文结构如下图: 理论推导示意图 轴系统固有频率计算 ANSYS 中模态分析 直接得出固有频率 通过柔度计算刚度,求 固有频率 根据轴挠度公式计算得柔度,得固有频率 ANSYS 中静力分析求出柔度,推出固有频率

结构自振周期

场地土类别、结构自振周期、设计特征周期的概念解读常有众智平台朋友来询问场地土类别与地震力是什么关系,结构自振周期折减对结构的地震力有什么影响,设计特征周期是什么概念,土的卓越周期又是怎么回事,本文结合规范对这些内容进行了整理,对这几个概念的相关关系也做了一些论述,期望与大家一起交流学习,具体综述如下: 一、场地土类别 《建筑抗震设计规范》第4.1.6对场地土类别是这样划分的:建筑的 场地类别,应根据土层等效剪切波速和场地覆盖层厚度按表4.1.6划分为四类,其中Ⅰ类分为Ⅰ0、Ⅰ1两个亚类。当有可靠的剪切波速和覆盖层厚度且其值处于表4.1.6所列场地类别的分界线附近时,应允许按插值方法确定地震作用计算所用的特征周期。 《抗规》第4.1.4条、4.1.5条对场地覆盖层的厚度及图层的等效剪切波束分别作了规定。 相关概念:

场地--工程群体所在地,具有相似的反应谱特征。其范围相当于厂区、居民小区和自然村或不小于1.0km2的平面面积。 与震害的关系:土质愈软覆盖层厚度愈厚,建筑震害愈严重,反之愈轻,软弱土层对地震力具有放大作用。历次大地震的经验表明,同样或相近的建筑,建造于Ⅰ类场地时震害较轻,建造于Ⅲ、Ⅳ类场地震害较重。 规范采取的相应措施:《抗规》第4.1.1条将场地划分为对建筑抗震有利、一般、不利和危险的地段。具体设计时,结构设计师对不利地段,应提出避开要求;当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 另外《抗规》第3.3.2、4.1.8,、4.1.9对相关措施提出了严格要求,设计人员不应忽视。 二、结构自振周期 概念: 结构自振周期是结构按某一振型完成一次自由振动所需的时间,是结构本身固有的动力特性,只与自身质量及刚度有关,结构有几个振型就有几个自振周期,一一对应。 应用:

自振周期折减系数

自振周期折减系数 1 概念 由于计算模型的简化和非结构因素的作用,导致多层钢筋混凝土框架结构在弹性阶段的计算自振周期(下简称“计算周期”)比真实自振周期(下简称“自振周期”)偏长。因此,无论是采用理论公式计算还是经验公式计算;无论是简化手算还是采用计算机程序计算,结构的计算周期值都应根据具体情况采用自振周期折减系数(下简称“折减系数”)加以修正,经修正后的计算周期即为设计采用的实际周期(下简称“设计周期”),设计周期=计算周期×折减系数。如果折减系数取值不恰当,往往使结构设计不合理,或造成浪费、或甚至产生安全隐患。诚然,折减系数是钢筋混凝土框架结设计所需要解决的一个重要问题。 2 影响自振周期因素 影响自振周期因素是诸多方面的,加之多层钢筋混凝土框架结构实际工程的复杂性,抗震规范没有、也不可能对折减系数给出一个确切的数值。许多文献中给出,当主要考虑填充墙的刚度影响时,折减系数可0.6~0.7[2];根据填充墙的多少、填充墙开洞情况,其对结构自振周期影响的不同,可取0.50~0.90。这些都是以粘土实心砖为填充墙的经验值,不言而喻,采用不同填充墙体材料的折减系数是不相同的。当采用轻质材料或空心砖作填充墙,当然不应该套用实心砖为填充墙的折减系数。对于粘土实心砖外的其它墙体可根据具体情况确定折减系数。结构计算分析总是要进行简化的,简化程度取决于当时的计算工具;简化是有条件的,而关键是简化模型尽可能符合真实受力模型。多层钢筋混凝土框架结构的计算周期往往与其自振周期有较大出入,笔者认为,此偏差主要来自计算模型的简化,没有计入那些难于准确计算的因素造成的。一分为二的说,没有计入的那些因素,常常使计算周期比自振周期长,在一定条件下也会使计算周期比自振周期短,主要表现为以下几方面: 3 计算周期长的原因 1.填充墙的刚度影响 大多数多层钢筋混凝土框架结构的设计计算中,并没有计算填充墙、装修(饰)材料、支撑、设备等非结构构件的刚度。实际工程中,由于未考虑砖填充墙的刚度常常使计算周期比实测自振周期(下简称“实测周期”)大很多[7].填充墙的影响与填充墙的材料性能、数量、单片墙体长度、墙体完整性(开洞情况)、与框架的连接情况息息相关。定性地说,填充墙的数量多、单片墙体长度大、墙体开洞少且小、与框架连接好,它对框架结构的刚度增加大,反之就小。 我国的框架填充墙的发展趋势是,逐步取消粘土砖(保护粘土资源、能源、环境等的要求),采用多样化轻质填充砌体、轻墙板取而代之。采用不同材料的填充墙,由于填充墙材料的刚度、变形性能、延性的不同,其对结构的空间刚度影响显然不相同。在其它条件相同时,采用轻质填充墙比粘土砖填充墙对结构的刚度影响小。 一般框架结构都要有填充墙,当砖填充墙多,可能会成为影响结构自振周期的主要的直接因素。 2.基坑回填土及混凝土刚性地坪对底层框架柱的侧限作用通常,在计算模型中,多层钢筋混凝土框架结构的底层柱高(计算高度),一般取基顶至一层楼盖顶之间的距离,见下图1.由于基顶至室内、外之间回填土必须严格夯实。例如压

自振频率

h t t p://w e nk u.ba i d u.c o m/v i ew/8003e022*******e4536f61f.ht m l 楼盖竖向自振频率怎么算 Kingckong按:上次发此文时出现个笔误,原文“自振频率=圆频率X2X3.14”是错的,应为“自振频率=圆频率/( 2π)”。因此修改后重新发上来。 一、规范条文引起的思考 1、规范条文引述: 《混凝土结构设计规范》GB50010-2010第3.4.6条:对混凝土楼盖结构应根据使用功能的要求进行竖向自振频率验算,并宜符合下列要求:1)住宅和公寓不宜低于5Hz;2)办公楼和旅馆不宜低于4Hz;)3大跨度公共建筑不宜低于3Hz。 2、新混凝土设计规范提出了验算楼盖楼盖竖向自振频率的要求,并没有提供验算的具体方法,条文说明也只是指出一般情况可用简化方法。执行该规范条文存在困难,具体用什么方法只能由结构设计人查找相关参考资料。

二、实用的资料和方法: 1、PKPM系列软件使用说明书《JCCAD用户手册及技术条件》的附录E提供了“常用结构构件对称型基本自振圆频率计算”,但不知其出处在哪、是否正确,姑且摘录如下作为参考。注意:下面的数据是圆频率,单位是弧度/秒,而自振频率单位是1/秒,自振频率=圆频率/(2π)。

2、用有限元精确计算,如用SAP2000建模计算。 3、2010版的PKPM软件也新增了个“楼盖舒适度计算”的模块。 4、以上第2、3项是需要花费白花花的银两,如果自己或单位财力不够,也可以其他参考资料的简化方法进行手算,如(1)《多层厂房楼盖抗微振设计规范》(GB50190-93)第6.3节(2)冶金部标准《机器动荷载作用下建筑物承重结构的振动计算和隔振设计规程》YBJ55-90附录二 (3)《复杂高层建筑结构设计》(徐陪福,建筑工业出版社,2005年)P44~54 (4)《钢结构设计手册(第三版)》(下册,建筑工业出版社,2004年)P168,适用于组合楼板自振频率的计算 相关阅读1:中华钢结构论坛的帖子“《混凝土结构设计规范》2011培训笔记” https://www.wendangku.net/doc/504799729.html,/forum/viewthread.php?tid=245669&pid2=1079908&keywords=竖向 自振频率&searchstyle=3&issearch=true#pid1079908

固有频率的计算

2.8.6.1 液压传动的固有频率 2.8.6.1.1 概述 液压传动装置的固有频率,对于闭环系统的动态特性和系统计算的原点,是一个重要的参数。从稳定性观点来看,一个闭环系统,若系统具有较高的固有频率,则会有一些问题。可粗略地划分为如下的3个频率区: ?低频:3~10Hz,重型机械、机械手、手动设备、注射机。 中频:50~80Hz,位置控制的机床。? ?高频:>100Hz,试验机、注射机、压机。 2.8.6.1.2 基本公式 计算弹簧质量系统固有频率的基本公式为: 式中:(1/s) m=质量(kg) C=弹簧刚度() 弹簧刚度“液压刚度”C,主要由受压的油液体积决定,由下式确定, 式中:E=液压油的弹性模量 =1~1.4×109() =1~1.4×104(bar) A2=油缸面积的平方(m4) V=油液体积(m3) 如基本公式已经表明的那样,一个液压传动系统的固有频率,取决于执行器液压马达或液压缸的尺寸,和驱动的质量。 系统中的其他元件,例如调节阀,也有自已的固有频率。因为整个闭环系统的角频率,是由系统中动态特性最低的元件决定的,因而也要注意闭环调节阀的极限频率。此值在50到150Hz的范围。 2.8.6.1.3 双出杆液压缸 让活塞处于缸的中间位置,得到: 式中:AR=油缸环形面积(┫) h=油缸行程(m) 注:对于死容积,应预先给行程h增加20~50%的附加值。 人们都明确地了解到,活塞面积与行程之比,对固有频率有着重要的影响。A:h的系数也可表示为λ=“长径比”。从提高固有频率观点考虑,较大的面积和较短的行程是比较有利的。面积的确定,还要由其他的一些因素,如规格大小、压力、体积流量等一同来考虑。 在作这些考察时,管道的容积未加考虑。很显然,总要尽可能地减小死容积,这就是说,阀与缸之间的管道短些、刚性大些,有利于提高固有频率。 上面计算固有频率,是按活塞处于中间位置的情况得到的一个最小固有频率值,这是实践中处于最不利情况下必须达到的数值。 例1已知:D=50mm,d=32mm,m=50kg≌[ ],h=500mm=0.5m,E=1.4?109 解: 2.8.6.1.4 单出杆缸

固有频率测定方式

实验三振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: t F Kx x C x m e ωsin 0=++ 方程式的解由21X X +这两部分组成: ) sin cos (211t w C t w C e X D D t +=-ε 21D w w D -= 式中1C 、2C 常数由初始条件决定: t w A t w A X e e sin cos 212+= 其中 ( ) () 2 2 2 22 2 214e e e q A ω εω ω ωω+--= , () 22 222 242e e e q A ω εω ω ε ω+-= , m F q 0= 1X 代表阻尼自由振动基,2X 代表阻尼强迫振动项。 自由振动周期: D D T ωπ 2= 强迫振动项周期: e e T ωπ 2= 由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分: ( ) () () t q t q x e e e e e e e e ωω εω ω ε ωωω εω ω ωωsin 42cos 422 222 22 222 2 2+-+ +--=

LC固有频率计算公式

Q=wL\R=2πfL\R(因为w=2πf)=1/wCR=1/2πfCR 1. LC并联谐振电路最常见的应用是构成选频电路或选频放大器; 2. LC串联谐振电路最主要用来构成吸收电路,用来构成在众多频率信号中将某一频率信号进行吸收,也就是进行衰减,将某一频率信号从众多频率中去掉; 3. LC并联谐振电路还可用来构成阻波电路,即从众多频率中阻止某一频率信号通过放大器或其他电路; 4. LC并联谐振电路还可以构成移相电路,用来对信号相位进行超前或滞逅移动。 a. 无论是LC并联谐振还是LC串联谐振电路,其频率的计算公式相同,谐振频率又称固有频率,或自然频率。f0=1/(2*pi*sqrt(L1*C1)); b. 品质因数Q值——衡量LC谐振电路振荡质量的重要参数。Q=(2*pi*f0*L1)/R1,R1为线圈L1的直流电阻,L1为谐振电路中电感; ①频点分析:输入信号频率等于该电路谐振电路谐振频率时,LC并联谐振电路发生谐振,此时谐振电路的阻抗达到最大,并且为纯阻性,Z0=Q*Q*R1,Q为品质因数,R1为线圈L1的直流电阻; ②高频段分析:输入信号频率高于谐振频率f0时,LC谐振电路处于失谐状态,电路阻抗下降; ③低频段分析:输入信号频率低于谐振电路f0时,LC并联谐振电路也处于失谐状态,谐振电路的阻抗也要减小。 信号频率低于谐振频率时,LC并联谐振电路的阻抗呈感性电路等效成一个电感(但不等于L1)。

1. 谐振定义:电路中L、C两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是 X L =X C时,为R-L-C串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率

固有频率参数的理解

固有频率在ADAMS/Linear 和ADAMS/Vibration 中的理解 在ADAMS 中,固有频率是通过本征向量计算的,为了更好的理解计算结果中各个参数的意义,解决仿真中常见的问题,在这里理论联合实际对一些基本知识在ADAMS 中的应用做一基本论述。 在此,不涉及ADAMS/Linear 的扩展命令,所有的线性化命令实际都是在图形界面操作所得的。 对于单自由度系统,如经典的弹簧——质量——阻尼系统,质量m 的运动方程有: 0=++m k x m c x x 或 0=++kx x c x m (1) 这里x 为质量m 的位移,k 为弹簧刚度系数,c 为阻尼系数。根据无阻尼固有圆频率和阻尼比的定义重写等式(1): 022=++x x x n n ωζω (2) 这里: 无阻尼固有圆频率(Undamped Natural Frequency )m k n =ω (3) 阻尼比(Damping Ratio )n m c km c ωζ22== (4) 可以看出,无阻尼固有圆频率n ω只是弹簧刚度k 和质量m 的函数,与阻尼值无关。 ADAMS/Linear 实际上计算无阻尼固有圆频率的方法有所不同,它使用拉普拉斯(Laplace )在仿真运行点对模型变换为线性矩阵,再通过本征值向量(Eigenvalues )计算系统的固有圆频率和阻尼比,但计算结果与上述计算是等效的。一般,本征值λ由实部(Real part )r λ和虚部(Imaginary part )i λ两部分组成:i r λλλ±=,因此,方程式(2)可以写为: 0222=++n n ωλζωλ (5) 本征值λ由下式决定: 当阻尼比ζ>1,12-±-=ζωζωλn n (6) 当阻尼比ζ<1,21ζ ωζωλ-±-=n n j (7) 令:n r ζωλ-=;21ζωλ-=n i 。 当系统阻尼比当ζ<1时,ADAMS/Linear 使用下式计算无阻尼固有圆频率与阻尼比: 22 i r n λλω+= (8) 即:()()n n n n n n n i r ωωωζωωζξωζωλλ==-+=-+-=+22222222222 1

固有频率测定方法

固有频率测定方法 Prepared on 24 November 2020

固有频率测定方法 1.概要 固有频率的测定一般采用传递函数测定的方法。这个方法是一种为了测定结构物的各个点中的传递函数,使用数字信号处理技术和FFT算法的方法。 所谓传递函数是指若以系统的输入信号为“X”,从该处输出(应答)信号为“Y”,可以公式:传递函数 H=Y/X (1) 来表示的函数。 振动解析的领域中处理的传递函数,输入X多数为力。输出(应答)Y是哪一个物理量,则取决于测定。如表1所示那样,传递函数H分别具有固有频率。 表1 传递函数的种类 图1所示为测定传递函数顺序。固有频率与传递函数的虚数部中的峰值相一致。此外,除在振幅成为“0”的节点测定的外,在所有的测定点,振幅存在于相同的频率上。

图1 传递函数的测定顺序 以的输入信号 同时采样输入信号和应答 信号 实行采样的波形(信号) 的傅里叶交换 以输入的傅里叶交换实行 应答的傅里交换 2.测定安装方法 以下就传递函数测定法的具有代表性的加振方法——随机加振法、脉冲加振法进行说明。对于试验体的材料、结构、试验目的等,可采用各种各样的加振方法,详细内容请参照参考书。 (1)随机加振法图2 随机加振法 随机加振法是一种如图2所示的那样, 在试验体的加振点安装加振机,给与随机噪 声的加振力,测定应答点的加速度,其信号 输入至FFT模拟装置,进行处理的方法。 图3脉冲加振法 (2)脉冲加振法 脉冲加振法是一种如图3所示的那样,用 脉冲锤子敲打作为测定对象的试验体的加振点,

给与脉冲状的力,检测这个力的时间变化和应 答点的加速度,进行与上述加振法相同的处理 方法。 此外,脉冲信号的频谱也是平坦的,所以, 随机噪声同样作为输入波形使用。 再者,采用这类测定时有必要预先确认加振力和应答加速度的时间波形、频谱、相关函数。 表2 所示为各种加振法的比较。 表2 加振法的比较 3.加振试验时的注意事项 以下汇总了进行加振实验时的注意事项。 (1)随机加振 (a)加振机的选择 为了求得必要的加振力,根据其值,选择应适使用得加振机在。这是 得到高SN比的传递函数的重要条件。

固有频率测定方法.

固有频率测定方法 1.概要 固有频率的测定一般采用传递函数测定的方法。这个方法是一种为了测定结构物的各个点中的传递函数,使用数字信号处理技术和FFT算法的方法。 所谓传递函数是指若以系统的输入信号为“X”,从该处输出(应答)信号为“Y”,可以公式:传递函数H=Y/X (1) 来表示的函数。 振动解析的领域中处理的传递函数,输入X多数为力。输出(应答)Y是哪一个物理量,则取决于测定。如表1所示那样,传递函数H分别具有固有频率。 Y 位移速度加速度 H 顺从性迁移率加速度 (惯性) 图1所示为测定传递函数顺序。固有频率与传递函数的虚数部中的峰值相一致。此外,除在振幅成为“0”的节点测定的外,在所有的测定点,振幅存在于相同的频率上。 图1 传递函数的测定顺序 以的输入信号 同时采样输入信号和应答 信号 实行采样的波形(信号)的 傅里叶交换 以输入的傅里叶交换实行 应答的傅里交换

2.测定安装方法 以下就传递函数测定法的具有代表性的加振方法——随机加振法、脉冲加振法进行说明。对于试验体的材料、结构、试验目的等,可采用各种各样的加振方法,详细内容请参照参考书。 (1)随机加振法图2 随机加振法随机加振法是一种如图2所示的那样, 在试验体的加振点安装加振机,给与随机噪 声的加振力,测定应答点的加速度,其信号 输入至FFT模拟装置,进行处理的方法。 图3脉冲加振法 (2)脉冲加振法 脉冲加振法是一种如图3所示的那样,用 脉冲锤子敲打作为测定对象的试验体的加振点, 给与脉冲状的力,检测这个力的时间变化和应 答点的加速度,进行与上述加振法相同的处理 方法。 此外,脉冲信号的频谱也是平坦的,所以, 随机噪声同样作为输入波形使用。 再者,采用这类测定时有必要预先确认加振力和应答加速度的时间波形、频谱、相关函数。 表2 所示为各种加振法的比较。 项目脉冲加振法随机加振法 测定的难易度·为了稳定地得到具有必要的区 域和水平地脉冲波形,需要熟练 地技术和小诀窍。 ·只有加振器,就能简单地加振。失 败少。 测定时间·一次一次慎重进行加振,化时 间。 ·快 适用范围·适用于小形、轻量的测定对象。·测定对象为小型、轻量,不仅加振 器安装困难。受到加振器的质量影 响,不能正确地进行测定。 ·适合于具有执行元件等加振器的测 定对象。

附录F:结构基本自振周期的经验公式

附录F 结构基本自振周期的经验公式 F.1 高耸结构 F.1.1 一般高耸结构的基本自振周期,钢结构可取下式计算的较大值,钢筋混凝土结构可取下式计算的较小值: H T )013.0~007.0(1= (F.1.1) 式中:H ——结构的高度(m)。 F.1.2 烟囱和塔架等具体结构的基本自振周期可按下列规定采用: 1,烟囱的基本自振周期可按下列规定计算: 1)高度不超过60m 的砖烟囱的基本自振周期按下式计算: d H T 2 2 110 22.023.0-?+= (F.1.2-1) 2)高度不超过150m 的钢筋混凝土烟囱的基本自振周期按下式计算: d H T 2 2 110 10.041.0-?+= (F.1.2-2) 3)高度超过150m ,但低于210m 的钢筋混凝土烟囱的基本自振周期按下式计算: d H T 2 2 110 08.053.0-?+= (F.1.2-3) 式中:H ——烟囱高度(m); d ——烟囱1/2高度处的外径(m)。 2,石油化工塔架(图F.1.2)的基本自振周期可按下列规定计算: 图F.1.2 设备塔架的基础形式 (a)圆柱基础塔;(b)圆筒基础塔; (c)方形(板式)框架基础塔;(d)环形框架基础塔 1)圆柱(筒)基础塔(塔壁厚不大于30mm)的基本自振周期按下列公式计算: 当H 2/D 0<700时 2 3 110 85.035.0D H T -?+= (F.1.2-4)

当H 2/D 0≥700时 2 3 110 99.025.0D H T -?+= (F.1.2-5) 式中:H ——从基础底板或柱基顶面至设备塔顶面的总高度(m); D 0——设备塔的外径(m);对变直径塔,可按各段高度为权,取外径的加权平均值。 2)框架基础塔(塔壁厚不大于30mm)的基本自振周期按下式计算: 2 3 110 40.056.0D H T -?+= (F.1.2-6) 3)塔壁厚大于30mm 的各类设备塔架的基本自振周期应按有关理论公式计算。 4)当若干塔由平台连成一排时,垂直于排列方向的各塔基本自振周期T 1可采用主塔(即周期最长的塔)的基本自振周期值;平行于排列方向的各塔基本自振周期T 1可采用主塔基本自振周期乘以折减系数0.9。 F.2 高层建筑 F.2.1 一般情况下,高层建筑的基本自振周期可根据建筑总层数近似地按下列规定采用: 1,钢结构的基本自振周期按下式计算: T 1=(0.10~0.15)n (F.2.1-1) 式中:n ——建筑总层数。 2,钢筋混凝土结构的基本自振周期按下式计算: T 1=(0.05~0.lO)n (F.2.1-2) F.2.2 钢筋混凝土框架、框剪和剪力墙结构的基本自振周期可按下列规定采用: 1,钢筋混凝土框架和框剪结构的基本自振周期按下式计算: 3 2 3 110 53.025.0B H T -?+= (F.2.2-1) 2,钢筋混凝土剪力墙结构的基本自振周期按下式计算: 3 103 .003.0B H T += (F.2.2-2) 式中:H ——房屋总高度(m); B ——房屋宽度(m)。

3.7 结构自振周期的计算

职业技术学院一、能量法计算基本周期 3.7结构自振周期的计算设体系按i振型作自由振动。速度为应用抗震设计反应谱计算地震作用下的结构反应,除砌体结构、底部框架抗震墙砖房和内框架房屋采用底部剪力法不需要计算自振周期外,其余均需计算自振周期。计算方法: 矩阵位移法解特征问题、近似公式、经验公式。t时刻的位移为重力荷载代表值作用下的水平位移解: 例.已知: 求结构的基本周期。G2G1 (1)计算各层层间剪力 (2)计算各楼层处的水平位移 (3)计算基本周期二、等效质量法(折算质量法)将多质点体系用单质点体系代替。多质点体系的最大动能为单质点体系的最大动能为---体系按第一振型振动时,相应于折算质点处的最大位移;---单位水平力作用下顶点位移。重力荷载代表值作用下的水平位移解: 例.已知: 求结构的基本周期。G2G1能量法的结果为T1 0.508s三、顶点位移法对于顶点位移容易估算的建筑结构,可直接由顶点位移估计基本周期。1体系按弯曲振动时抗震墙结构可视为弯曲型杆。无限自由度体系,弯曲振动的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为2体系按剪切振动时框架结构可近似视为剪切型杆。无限自由度体系,剪切杆的的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为3体系按剪弯振动时框架-抗震墙结构可近似视为剪弯型杆。基本周期为四、自振周期的经验公式根据实测统计,忽略填充墙布置、质量分布差异等,初步设计时可按下列公式估算 (1)高度低于25m且有较多的填充墙框架办公楼、旅馆的基本周期

(2)高度低于50m的钢筋混凝土框架-抗震墙结构的基本周期H---房屋总高度;B---所考虑方向房屋总宽度。 (3)高度低于50m的规则钢筋混凝土抗震墙结构的基本周期 (4)高度低于35m的化工煤炭工业系统钢筋混凝土框架厂房的基本周期

悬臂梁固有频率的计算电子版本

悬臂梁固有频率的计 算

悬臂梁固有频率的计算 试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶)。 解:法一:欧拉-伯努利梁理论 悬臂梁的运动微分方程为:4242(,)(,)+0w x t w x t EI A x t ρ??=??; 悬臂梁的边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x l dw w w w x x dx x x x ==???======???,; 该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++,(t)Acos t Bsin t T w w =+;其中2 4A EI ρωβ= 将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=;12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要求12C C 和有非零解,则它们的系数行列式必为零,即 (cos cosh ) (sin sinh )=0(sin sinh )(cos cosh ) l l l l l l l l ββββββββ-+-+--+-+ 所以得到频率方程为:cos()cosh()1n n l l ββ=-;该方程的根 n l β表示振动系统的固有频率:1224 ()(),1,2,...n n EI w l n Al βρ==满足上式中的各n l β(1,2,...n =)的值在书P443表8.4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,;

自振频率和振型计算方法比较

结构自振频率和振型计算方法及各方法比较 方法一:直接手算法 即通过求解体系自由振动方程组,简单的表达为矩阵式:(K ?w 2m )X =0 式中: K =[k 11k 12k 21 k 22 ?k 1n ? ?? k n1? k nn ];m =[m 1 ?0???0 ? m n ];X =X 1?X n 频率方程为:|K ?w 2m |=0 此法适用于结构自由度为1的情形,当结构自由度多于2或3时,运用此法就显得过于复杂。 方法二:矩阵迭代法 矩阵迭代法又称Stodola 法,它是采用逐步逼近的计算方法来确定结构的频率和振型。 主振型的变形曲线可以看做是结构按照某一频率振动时,其上相应惯性力引起的静力变形曲线。因此,结构按频率w 振动时,其上各质点的位移幅值将分别为: [X 1X 2?X n ]=w 2[δ11δ12δ21 δ22 ?δ1n ?? ? δn1 ? δnn ]|m 100 0?00 m n |[X 1X 2?X n ] 或 X =w 2δmX 实际上 X =w 2K ?1mX 可见柔度矩阵与刚度矩阵是互逆的,即δ=K ?1。 该法的计算步骤:先假定一个振型带入上式等号右边,进行求解后得到w 2和其主振型的第一次近似值;再以第一次近似值代入上式进行计算,则可得到w 2和其主振型的第二次近似值;如此下去,直到前后两次的计算结果接近为止。当一个振型求得后,则可利用振型的正交性,求出较高次的频率和振型。 该法的缺陷:由于在求解高频率及其主振型时,要利用已被求出的较低振型,故计算误差将随着振型的提高而增加。采用该法计算较多自由度的体系频率和振型时,需要列出每一质点 的运动方程,并分别解方程组,因此质点较多时,此法较复杂。 方法三:能量法 适用于求解多自由度体系的基本频率。又称瑞雷法,是根据体系在振动过程中能量守恒的原理导出的,即一个无阻尼的弹性体系在自由振动时,在任意时刻的动能和变形位能之和保持不变。亦即位移最大时的变形位能U max 等于位移最小时的动能T max 。 T max =1 2 w 2∑m i X i 2n i=1 U max =1 2 ∑m i gX i n i=1 T max =U max 得到w =√g ∑m i X i n i=1∑(m i X i 2)n i=1? T = 2πw 运用此法时,要提高精度,可采用迭代法进行计算。即先按照已算的频率算出各质点的相应惯性力,然后按此惯性力计算结构位移,这时得到的曲线为修正后的振型,以此新振型

周期、振型问题

1、《高层规程》3.2.6规定-----结构基本自振周期大致为:框架结构T1=(0.08~0.10)n, 框—剪和框—筒结构T1=(0.06~0.08)n 剪力墙和筒中筒结构T1=(0.05~0.06)n 2、周期比即结构扭转为主的第一自振周期(也称第一扭振周期)Tt 与平动为主的第一自振周期(也称第一侧振周期)T1的比值。周期比主要控制结构扭转效应,减小扭转对结构产生的不利影响,使结构的抗扭刚度不能太弱。因为当两者接近时,由于振动藕连的影响,结构的扭转效应将明显增大。2.2 相关规范条文的控制:[高规]4.3.5条规定,结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比(即周期比),A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。[高规]5.1.13条规定,高层建筑结构计算振型数不应小于9,抗震计算时,宜考虑平扭藕连计算结构的扭转效应,振型数不小于15,对于多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。2.3 电算结果的判别与调整要点: (1).计算结果详周期、地震力与振型输出文件。因SATWE电算结果中并未直接给出周期比,故对于通常的规则单塔楼结构,需人工按如下步骤验算周期比: a)根据各振型的两个平动系数和一个扭转系数(三者之和等于1)判别各振型分别是扭转为主的振型(也称扭振振型)还是平动为主的振型(也称侧振振型)。一般情况下,当扭转系数大于0.5时,可认为该振型是扭振振型,反之应为侧振振型。当然,对某些极为复杂的结构还应结

合主振型信息来进行判断;b)周期最长的扭振振型对应的就是第一扭振周期Tt,周期最长的侧振振型对应的就是第一侧振周期T1;c)计算Tt / T1,看是否超过0.9(0.85)。对于多塔结构周期比,不能直接按上面的方法验算,这时应该将多塔结构分成多个单塔,按多个结构分别计算、分别验算(注意不是在同一结构中定义多塔,而是按塔分成多个结构)。(2).对于刚度均匀的结构,在考虑扭转耦连计算时,一般来说前两个或几个振型为其主振型,但对于刚度不均匀的复杂结构,上述规律不一定存在。总之在高层结构设计中,使得扭转振型不应靠前,以减小震害。SATWE程序中给出了各振型对基底剪力贡献比例的计算功能,通过参数Ratio(振型的基底剪力占总基底剪力的百分比)可以判断出那个振型是X方向或Y方向的主振型,并可查看以及每个振型对基底剪力的贡献大小。(3).振型分解反应谱法分析计算周期,地震力时,还应注意两个问题,即计算模型的选择与振型数的确定。一般来说,当全楼作刚性楼板假定后,计算时宜选择“侧刚模型”进行计算。而当结构定义有弹性楼板时则应选择“总刚模型”进行计算较为合理。至于振型数的确定,应按上述[高规]5.1.13条执行,振型数是否足够,应以计算振型数使振型参与质量不小于总质量的90%作为唯一的条件进行判别。(4).如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。即周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性。考虑周期比限制以后,

第八节计算固有频率的近似方法

第八节 计算固有频率的近似方法 (教材6.16) 在工程问题中,许多情况只需求出系统最低几阶固有频率。在这种情况下,可以应用近似方法直接求出系统的固有频率。 一、 瑞利(Rayleigh )法 由振型正交性知,系统的第i 阶固有频率的平方为 {}[]{}{}[]{}2(1,2,,)T i i i ni T i i i u k u K i n M u M u ω== = (a ) 式中 {}i u 是第i 阶振型向量。 Rayleigh 法是根据系统的条件,事先选取一个任意向量{}u 作为系统的第i 阶振型向量,代入式(a ),计算与此假定振型向量相应的频率的平方,用2 R ω表示,即 {}[]{}{}[]{} 2T R T u k u u M u ω= (6-70) 上式右端称为Rayleigh 商,频率R ω称为Rayleigh 频率。 讨论: 1. 从理论上讲,方程(6-70)适用于求系统的各阶固有频率。但实际上,因为关于系统的高阶振型向量很难作出合理假设,所以上式往往只有用于估算系统的第一阶固有频率1n ω时才是切实可行的。 因此,若任选的振型向量{}u 恰好是系统的第一阶振型

向量{}1u ,则Rayleigh 商就是对应的系统的第一阶固有频率 1n ω,即 1R n ωω= 若所选的阵型{}u 不是系统的第一阶振型向量{}1u ,则Rayleigh 商是系统的第一阶固有频率1n ω的估值,即 1R n ωω≈ 证:系统的n 个正则振型向量{}{}{}12,, ,n ???是n 维 空间的一个基。则由线性代数知,该空间的任一向量都可由正则振型向量的线性组合来表示,即 {}{}{}{}[]{}1212n n u c c c c ????=++ += 式中12,, ,c n c c 是任意常数。把上式代入方程(6-70),得 {}[][][]{}{}[][][]{}{}[]{}{}{} 2 2222221122222 122222 22 22222 11111 222221 1 11T T T R T T T n n n nn n n n nn n n n n c k c c c c M c c c c c c c c c c c c c c c c c ωωωωωωωωωΦΦΛ==ΦΦ+++=++++++=+++ (b ) 若任选的振型向量{}u 是系统的第一阶振型向量{}1u ,则 23=c 0n c c == =,故 1R n ωω= 若所选的阵型{}u 不是系统的第一阶振型向量{}1u ,但

结构自振周期是结构自由振动的周期

predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。 卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。三级为松软土层,卓越周期在二级和四级之间。四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s. 自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。

基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。 基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。 高阶振型:相对于低阶振型而言。一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。 特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。 在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。

关于多高层建筑自振频率的定性分析

关于多高层建筑自振频率的定性分析 结22 杨戬 2002010376 摘要:本文简要介绍分析了多高层建筑物在地震荷载作用下的结构特点,并利用结构力学求解 器构建了几种力学分析模型对各自的自振频率加以分析,进一步加深对高层建筑物的认识,了 解定性分析的重要意义。 关键词:多层建筑,高层建筑,自振频率,地基 引 言 “把繁琐交给求解器,我们留下创造力。” (一)概述 多高层建筑是当今比较普遍见到的建筑结构形式,这部 分自振频率的分析对于结构抗震计算与设计有着非常重要 的意义。随着科学技术进步与城市规划节约用地的考虑,尤 其是高层建筑结构得到了广泛的发展应用。如今国内高50 层以上,160m以上的建筑已经屡见不鲜。例如53层,高160m 的深圳国际贸易中心,高165m的上海商城,高460m的国际 环球金融中心以及上海的标志——金茂大厦等等(图示为 CCTV新楼)。高层建筑由于层数多、高度高、重量大,因此 对基础-地基-上部结构的整体体系提出了更高的要求。只有 运用合适实际的理论,才能反映出真正准确的受力状态和振 动特征,使高层建筑结构设计更为经济合理。 那么多高层建筑的基底约束形式与自振频率又有哪些 关系?二者的变化规律如何?这就是我们重点要解决的定 性分析内容。 为了解决上述的两个问题,我们将通过对高层建筑物结 构特点分析建立相应的计算模型和求解器分析得出理想的 结论。 (二)用结力求解器分析多高层建筑的自振频率 2.1 高层建筑的结构计算特点 构造复杂多样,为多次超静定体系,考虑空间协调性,自振特性分析计算极为复杂,目前国内外主要沿用传统经典、复杂藕联分析方法,或者一般数值法,所用计算时间和过程比较繁琐。结构的主要特点是有一定的空间对称性,同时混凝土多采用框架结构或者框架剪力墙结构(限于12层以下),钢结构的分析也基本类似。在一定层数以上,各层间有明显的重复性,同时底层剪力一般较大,受力时候需予以注意。 2.2计算模型的建立 为简化达到定性分析目的,采用等效连续板,并且简化为空间各向等效即转为平面问题加以考虑。硬地地基采用基底刚性约束形式,软土地基采用基底近似部分铰接形式,然后利用求解器输入数据进行分析:(建立如下四种不同模型,因结力求解器学生版对单元数有限定,故而高层采用8层)

相关文档
相关文档 最新文档