文档库 最新最全的文档下载
当前位置:文档库 › 初等数论总复习题及知识点总结

初等数论总复习题及知识点总结

初等数论总复习题及知识点总结
初等数论总复习题及知识点总结

初等数论学习总结

本课程只介绍初等数论的的基本内容。由于初等数论的基本知识和技巧与中学数学有着密切的关系, 因此初等数论对于中学的数学教师和数学系(特别是师范院校)的本科生来说,是一门有着重要意义的课程,在可能情况下学习数论的一些基础内容是有益的.一方面通过这些内容可加深对数的性质的了解,更深入地理解某些他邻近学科,另一方面,也许更重要的是可以加强他们的数学训练,这些训练在很多方面都是有益的.正因为如此,许多高等院校,特别是高等师范院校,都开设了数论课程。

最后,给大家提一点数论的学习方法,即一定不能忽略习题的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经说过如果学习数论时只注意到它的内容而忽略习题的作用,则相当于只身来到宝库而空手返回而异。

数论有丰富的知识和悠久的历史,作为数论的学习者,应该懂得一点数论的常识,为此在辅导材料的最后给大家介绍数论中著名的“哥德巴赫猜想”和费马大定理的阅读材料。

初等数论自学安排

第一章:整数的可除性(6学时)自学18学时

整除的定义、带余数除法 最大公因数和辗转相除法 整除的进一步性质和最小公倍数 素数、算术基本定理

[x]和{x}的性质及其在数论中的应用

习题要求3p :2,3 ; 8p :4 ;12p :1;17p :1,2,5;20p :1。

第二章:不定方程(4学时)自学12学时

二元一次不定方程c by ax =+

多元一次不定方程c x a x a x a n n =++ 2211 勾股数 费尔马大定理。

习题要求29p :1,2,4;31p :2,3。

第三章:同余(4学时)自学12学时

同余的定义、性质 剩余类和完全剩余系 欧拉函数、简化剩余系

欧拉定理、费尔马小定理及在循环小数中的应用 习题要求43p :2,6;46p :1;49p :2,3;53p 1,2。

第四章:同余式(方程)(4学时)自学12学时

同余方程概念 孙子定理

高次同余方程的解数和解法 素数模的同余方程 威尔逊定理。

习题要求60p :1;64p :1,2;69p :1,2。 第五章:二次同余式和平方剩余(4学时)自学12学时

二次同余式

单素数的平方剩余与平方非剩余 勒让德符号 二次互反律 雅可比符号、

素数模同余方程的解法

习题要求78p :2; 81p :1,2,3;85p :1,2;89p :2;93p :1。 第一章:原根与指标(2学时)自学8学时

指数的定义及基本性质 原根存在的条件 指标及n 次乘余 模2

及合数模指标组、

特征函数

习题要求

p:3。

123

第一章整除

一、主要内容

筛法、[x]和{x}的性质、n!的标准分解式。

二、基本要求

通过本章的学习,能了解引进整除概念的意义,熟练掌握整除整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。认真体会求二个数的最大公因数的求法的理论依据,掌握素数的定义以及证明素数有无穷多个的方法。能熟练求出二个整数的最大公因数和最小公倍数,掌握高斯函数[x]的性质及其应用。

三、重点和难点

(1)素数以及它有关的性质,判别正整数a为素数的方法,算术基本定理及其应用。

(2)素数有无穷多个的证明方法。

(3)整除性问题的若干解决方法。

(4)[x]的性质及其应用,n!的标准分解式。

四、自学指导

整除是初等数论中最基本的概念之一,b∣a的意思是存在一个整数q,使得等式a=bq 成立。因此这一标准作为我们讨论整除性质的基础。也为我们提供了解决整除问题的方法。即当我们无法用整除语言来叙述或讨论整除问题时,可以将其转化为我们很熟悉的等号问题。

读者要熟练掌握并能灵活应用。特别要注意,数论的研究对象是整数集合,比小学数学中非负整数集合要大。

本章中最重要的定理之一为带余除法定理,即为

它可以重作是整除的推广。同时也可以用带余除法定理来定义整除性,(即当余数r=0

时)

种很重要的思想方法,它为我们解决整除问题提供了又一条常用的方法。同时也为我们建立同余理论建立了基础。读者应熟知常用的分类方法,例如把整数可分成奇数和偶数,特别对素数的分类方法。例全体奇素数可以分成4k+1,4k+3;或6k+1,6k+5等类型。

和整除性一样,二个数的最大公约数实质上也是用等号来定义的,因此在解决此类问题

题的常用方法之一。读者应有尽有认真体会该定理的证明过程。

既有联系,又有区别。要认真体会这些相关的性质,

a1 ,b1使用相应的定理,要注意,相关定理及推论中互素的条件是经常出现的。读者必须注意定理

成立的条件,也可以例举反例来进行说明以加深影响。顺便指出,若

最小公倍数实际上与最大公因数为对偶命题。特别要指出的是a和b的公倍数是有无穷多个。所以一般地在无穷多个数中寻找一个最小数是很困难的,为此在定义中所有公倍数中

的最小的正整数。即自然数的任何一个子集一定有一个最小自然数有在。最小公倍数的问题一般都可以通过以下式子转化为最大公因数的问题。两者的关系为

上述仅对二个正整数时成立。当个数大于2时,上述式子不再成立。证明这一式子的关键是寻找a , b的所有公倍数的形式,然后从中找一个最小的正整数。

解决了两个数的最小公倍数与最大公因数问题后,就可以求出

素数是数论研究的核心,许多中外闻名的题目都与素数有关。除1外任何正整数不是质数即为合数。判断一个已知的正整数是否为质数可用判别定理去实现。判别定理又是证明素数无穷的关键。实际上,对于任何正整数n>1,由判别定理一定知存在素数p,使得p∣n 。即任何大于1的整数一定存在一个素因数p 。素数有几个属于内在本身的性质,这些性质是

算术基本定理是整数理论中最重要的定理之一,即任何整数一定能分解成一些素数的乘积,而且分解是唯一的,不是任何数集都能满足算术基本定理的,算术基本定理为我们提供

了解决其它问题的理论保障。它有许多应用,

例如可求最大公约数,正整数正约数的个数等方面问题,对具体的n,真正去分解是件

不容易的事。对于较特殊的n,例如

[x]的性质又提供了解决带有乘除符号的整

除问题的方法。

本章的许多问题都围绕着整除而展开,读者应对整除问题的解决方法作一简单的小结。

五、例子选讲

补充知识

①最小自然数原理:自然数的任意非空子集中一定存在最小自然数。 ②抽屉原理:

(1)设n 是一个自然数,有n 个盒子,n +1个物体,把n +1个物体放进n 个盒子,至少有一个盒子放了两个或两个以上物体;

(2)km +1个元素,分成k 组,至少有一组元素其个数大于或等于m +1; (3)无限个元素分成有限组,至少有一组其元素个数为无限。 ③梅森数:形如

④费尔马数:n

⑤设n =k k p p α

α (1)

1,设n 的正因子个数为d (n ),所有正因子之和为)(n σ,则有

⑥有关技巧

1. 整数表示a =a 0×10n +a 1×10n -1+…+a n ,

2.整除的常用方法

a. 用定义

b. 对整数按被n 除的余数分类讨论

c. 连续n 个整数的积一定是n 的倍数

d. 因式分解

e. 用数学归纳法

f. 要证明a|b ,只要证明对任意素数p ,a 中p 的幂指数不超过b 中p 的幂指数即可,

用p (a )表示a 中p 的幂指数,则 例题选讲

例1.请写出10个连续正整数都是合数. 解: 11!+2,11!+3,……,11!+11。

例2. 证明连续三个整数中,必有一个被3整除。

证:设三个连续正数为a ,a +1,a +2,而a 只有3k ,3k +1,3k +2三种情况,令a =3k ,显

然成立,a =3k +1时,a +2=3(k+1),a =3k +2时,a +1=3(k +1)。

例3. 证明lg2是无理数。

证:假设lg2是有理数,则存在二个正整数p ,q ,使得lg2=

q

p

,由对数定义可得10p =2q ,则有2p ·5p =2q ,则同一个数左边含因子5,右边不含因子5,与算术基本定理矛盾。∴lg2为无理数。

例4. 求(21n+4,14n+3)

解:原式=(21n+4,14n+3)=(7n+1,14n+3)=(7n+1,7n+2)=(7n+1,1)=1

例5. 求2004!末尾零的个数。 解:因为10=2×5,而2比5多, 所以只要考虑2004!中5的幂指数,即

5(2004!)=4995

20045

200412520042520045200454=??

? ??+??

? ??+??

? ??+??

? ??+??

? ??

例6.证明(n !)(n-1)!|(n !)!

证:对任意素数p ,设(n !)(n -1)!中素数p 的指数为α, (n !)!中p 的指数β,则

∑???? ??-=∞=11k k p n n )!(α,∑???

?

??-=∞=11k k p n n !)!(β,)()(x n nx ≥ α=∑???

?

??-=∑????

??

-≥∑???? ??-=∑???? ??∴∞=∞=∞=∞=1111111k k k k k k k k p n n p n n p n n p

n !

)!(!)!()!(!

即α

β≥,即左边整除右边。

例7. 证明2003|(20022002+20042004-2005) 证:∵ 20022002=(2003-1)2002=2003M 1+1

20042004=(2003+1)2002=2003M 2+1 ∴20022002+20042004-2005=2003(M 1+M 2-1) 由定义2003|(20022002+20042004-2005)

例8. 设d (n )为n 的正因子的个数,σ (n )为n 的所有正因子之和,求d (1000),σ (1000)。 解:∵ 1000=23·53

∴ d (1000)=(3+1)(3+1)=16,σ (1000)=1

51

5121244--?

--

例9. 设c 不能被素数平方整除,若a 2|b 2c ,则a |b 证:由已知p (c )?1,且p (a 2)?p (b 2c )

∴ 2p (a )?2p (b )+p (c ) , ∴ p (a )?p (b )+2

)

(c p

即p (a ) ?p (b ) , ∴ a|b

例10. 若M n 为素数,则n 一定为素数。 证:若n 为合数,则设n =ab ,(1

∴ 2ab -1=(2a )b -1=(2a -1)M 为合数,与M n 为素数矛盾, ∴ n 为素数。

例11. 证明对任意m,n ,m ≠n , (F n ,F m )=1。 证:不妨设n>m ,则F n -2=(121

2

--n )(121

2

+-n )=(F n -1-2) (121

2

+-n )

= F n -1F n -2……F m - F 0

设(F n ,F m )=d ,则d |F n , d |F m ?d |2 但F n 为奇数,∴d =1, 即证。

例12. 设m,n 是正整数。证明

(,)(21,21)21m n m n --=-

证 : 不妨设n m ≥。由带余数除法得

,11r n q m +=

.n r ≤≤10

我们有

121221222121111111-+-=-+-=-+r n q r r r r n q m )(

由此及12121--n

q n |得,),(1212--n

m =),(12121--r n

注意到),(),(1r n n m =,若01=r ,则n

n m =),(,结论成立.若01>r ,则继续对),(12121--r n 作同样的讨

论,由辗转相除法知,结论成立。显见,2用任一大于1的自然a 代替,结论都成立。

例13. 证明:对任意的正整数n ,成立如下不等式2lg lg k n ≥。

其中n lg 是数n 的以10为底的对数,k 是n 的不同的素因数(正的)的个数。

证:设n 是大于1的整数(如果n =1,上述不等式显然成立,因k =0),k p p p ,...,,21 是n 的k 个

相异的素因素。n 的素因数分解式为

k l k l l p p p n (2)

121=.(k i l i ,...,,,211=≥) , 由于),...,,(,k i p i 212=≥,从而

k k k l l l l l l l k l l p p p n +++=???≥=.........212121222221,

而k l l l k ≥+++...21,故k n 2≥。

将上述不等式取对数(设底1>a ),则有2a a k n log log ≥。 特别有2lg lg k n ≥。

例14. 试证明任意一个整数与它的数字和的差必能被9整除,并且它与它的数字作任意调后

换后所成整数的差也能被9整除。

证: 设整数m 的个位、十位、百位…的数字分别为1a ,2a ,…,n a ,则m 可表作:

n

n a a a a m 132********-++++=...

)......()...(n n n a a a a a a a

个132321999999-++++++++= )......()...(n n n a a a a a a a

个132321111119-++++++++= 所以)...(n a a a a m ++++-321)......(n n a a a

个132111119-+++=

因为2a ,3a ,…,n a 都是整数,所以任一整数与其数字之和的差必能被9整除。 再设将1a ,2a ,…,n a 按任一种顺序排成1'a ,2'a ,…,n a ',并令

n

a a a +++=...21σ,n a a a '...'''+++=21σ,n n a a a m 12

11010-+++=...,

n

n a a a m '...'''1211010-+++=。

根据前面证明的结果,知存在整数A ,B ,使.'',B m A m 99=-=-σσ

因为'σσ=,所以)(''B A B A m m -=--+=-999σσ

由于A-B 是整数,这就证明了'm m -能被9整除。

注:若对某个整数)(n k k ≤≤1,有0≠k a ',但当n i k ≤<时,0=i a ',则此时'm 为整数:

,'...'''k k a a a m 1211010-+++=即12''...

''a a a m k =。 如前证,此时结论正确。又当m 为负整数及零时,结论显然正确。

第二章 不定方程 一、主要内容

一次不定方程有解的条件、解数、解法、通解表示,不定方程x 2+y 2=z 2通解公式、无穷递降法、费尔马大定理。 二、基本要求

1、了解不定方程的概念,理解对“解”的认识,掌握一次不定方程c by ax =+有解的条件,能熟练求解一次不定方程的特解,正整数解及通解。了解多元一次不定方程

c x a x a x a n n =++ 2211有解的条件,在有解的条件下的解法。

2、掌握不定方程x 2+y 2=z 2在一定条件下的通解公式,并运用这个通解公式作简单的应用。

3、对费尔马大定理应有在常识性的了解,掌握无穷递降法求证不定方程x 4+y 4=z 2无解的

方法。

4、掌握证明不定方程无解的若干方法。

三、难点和重点

(1)重点为求解一次不定方程的方法 (2)掌握第二节中引证的应用。 (1) 费尔马无穷递降法。 四、自学指导

不定方程主要讲解以下几个问题

解,若已知一个特解,则一切解可以用公式表示出来,因此求它的通解只要求出一个特解即可。求解二元一次不定方程的一个通解有好多种方法。读者应该总结一下,各种方法都有独到之处。特别要指出用最大公因数的方法。它的根据是求(a ,b )时所得的结果。由于注意通解公式x=x 0-b 1t ,y=y 0+a 1t 中a 1,b 1的意义和位置。以免出错。

多元一次不定方程c x a x a x a n n =++ 2211也有类似的结果,但在求解的过程中将它转化二元一次不定方程组,从最后一个二元一次不定方程解起,可逐一解出x 1 ,x 2 ,……x n 。所用的方法一般选择最大公因数的方法。由于n 元一次不定方程可转化为n-1个二元一次不定方程组,故在通解中依赖于n-1个任意常数。但不象二元一次不定方程那样有公式来表示。

x 2+y 2=z 2的正整数解称为勾股数,在考虑这个方程时,我们对(x ,y )作了一些限制,而这些限制并不影响其一般性。在条件x>0,y>0,z>0,(x ,y )=1,2∣x 的条件可以给出x 2+y 2=z 2

的通解公式,x=2ab ,y=a 2-b 2,z 2=a 2+b 2,a>b>0 , (a ,b)=1,a ,b 一奇一偶。若将2∣x 限为2∣y ,则也有相应的一个通解公式。在证明这个通解公式的过程中,用到了引理 uv=w 2,u>0,v>0,(u ,v )=1,则u=a 2,v=b 2,w=ab 。a>0,b>0,(a ,b )=1 。利用这个结论可以求解某些不定方程。特别当w=1或素数p 。则由uv=1或uv=P 可将原不定方程转化为不定方程组。

从而获得一些不定方程的解。希望读者能掌握这种方法。

为了解决著名的费尔马大定理:x n +y n =z n ,n ?3无正整数解时,当n=4时可以用较初等的方法给出证明。证明由费尔马本人给出的,一般称为费尔马无穷递降法。其基本思想为由一组解出发通过构造得出另一组解,使得两组解之间有某种特定的关系,而且这种构造可以无限重复的。从而可得到矛盾。因此无穷递降法常用来证明某些不定方程无整数解。

证明一类不定方程无解是研究不定方程邻域中常见的形式,一般的要求解不定方程比证明不定方程无解要容易些。证明不定方程无解的证明方法常采用以下形式:(反证法)

若A 有解?A 1有解?A 2有解?……?A n 有解,而A n 本身无解,这样来构造矛盾。从而说明原不定方程无解。

对于证明不定方程的无解性通常在几种方法,一般是总的几种方法交替使用。特别要求掌握:简单同余法、因子分解法、不等式法,以及中学数学中所涉及的判别式法。

五、例子选讲

例1:利用整数分离系数法求得不定方程15x +10y +6z =61。 解:注意到z 的系数最小,把原方程化为

z =)()(1236

110226110156

1++-++--=+--y x y x y x

令t 1=z y x ∈++-)(1236

1,即-3x +2y -6t 1+1=0

此时y 系数最小,)()(12

131632

111-++=-++=∴x t x t x y

令t 2 =z

x

∈-)(12

1,即122+=t x ,反推依次可解得

y =x +3t 1+t 2=2t 2+1+3t 1+t 2=1+3t 1+3t 2 z =-2x -2y +10+t 1=6-5t 1+10t 2

∴原不定方程解为??

???--=++=+=21212

105633121t

t z t t y t x t 1t 2∈z.

例2:证明2是无理数

证:假设

2

是有理数,则存在自数数a,b 使得满足22

2y x =即22

2b a

=,容易知道a 是偶数,

设a =2a 1,代入得2

1

22a b =,又得到b 为偶数,a b a <<1,设12b b =,则2

1

212b a =,这里12a b <

这样可以进一步求得a 2,b 2…且有a>b>a 1>b 1> a 2>b 2>… 但是自然数无穷递降是不可能的,于是产生了矛盾,∴2

为无理数。

例3:证明:整数勾股形的勾股中至少一个是3的倍数。

证:设N =3m ±1(m 为整数) , ∴N 2=9m 2±6m +1=3(3m 2±2m )+1

即一个整数若不是3的倍数,则其平方为3k +1,或者说3k +2不可能是平方数,设x,y 为勾股整数,且x,y 都不是3的倍数,则x 2,y 2都是3k +1,但z 2=x 2+y 2=3k +2形,这是不可能,∴勾股数中至少有一个是3的倍数。

例4:求x 2+y 2=328的正整数解

解:∵ 328为偶数,∴x,y 奇偶性相同,即x ±y 为偶数,设x+y =2u , x -y =2v ,代入原方程即为

u 2+v 2=164,同理令u +v =2u 1,u -v =2v 1有

2

1121121212282v v u u v u v u =-=+=+,, ,412222=+v u 22v u ,为一偶一奇,且

0

u 2=1,2,3,4,5代方程,有解(4,5)(5,4) ∴原方程解x =18,y =2,或x =2,y =18。

例5:求x 2+xy -6=0的正整数解。 解:原方程等价于x (x +y )=2·3,故有 ∴?

??=+=,,

32y x x

?

?

?=+=,,

23y x x

?

?

?=+=,,

61y x x

?

?

?=+=.,

16y x x , ∴ 即有x =2,y =1; x =1,y =5.

例6:证明不定方程x 2-2xy 2+5z +3=0无整数解。 解:若不定方程有解,则3542

--±=z y y x

但y 4≡0,1(mod5), ∴ 对y,z ,y 4-5z -3≡2,3(mod5) 而一个平方数≡0,1,4(mod 5) ∴ y 4-5z -3不可能为完全平方,即354--z y 不是整数,所以原不定方程无解。

例7:证明:222z y x ++78+=a 无整数解

证:若原方程有解,则有222z y x ++)8(mod 78+≡a

注意到对于模8,有

,002≡,112≡,422≡,132≡,042≡,152≡,462≡,172≡ 因而每一个整数对于模8,必同余于0,1,4这三个数。 不论222,,z y x 如何变化,只能有)8(mod 6,5,4,3,2,1,0222≡++z y x

而877(mod8)a +≡,故78+a 不同余于222z y x ++关于模8,所以假设错误,即

≠+78a 222z y x ++,从而证明了原方程无解。

例8:某人到银行去兑换一张d 元和c 分的支票,出纳员出错,给了他c 元和d 元,此人直到用去23分后才发觉其错误,此时他发现还有2d 元和2c 分,问该支票原为多少钱? 解:由题意立式得:c d d c 2210023100+?=-+

即.2319998=-d c

令d c u 2-=得,23398=-d u 令d u v -=33得.233=-u v

所以v v u (233-=为任意整数),代入得:

,23339833?-=-=v v u d (1) ,23671992?-=+=v d u c

其中v 是任意整数。又根据题意要求:10000<<>c d ,.

根据(1),仅当v=8时满足此要求,从而.

d

=c

25=

,51

因此该支票原为25元51分.

第三章同余

一、主要内容

同余的定义、性质、剩余类和完全剩余系、欧拉函数、简化剩余系、欧拉定理、费尔马小定理、循环小数、特殊数2,3,4,5,6,7,8,9,11,13的整除规律

二、基本要求

通过本章的学习,能够掌握同余的定义和性质,区别符号:“三”和=”之间的差异。能利用同余的一些基本性质进行一些计算,深刻理解完全剩余系,简化剩余系的定义、性质及构造。能判断一组数是否构成模m的一个完全剩余系或一个简化剩余系。能计算欧拉函数的值,掌握欧拉定理、费尔马小定理的内容以及证明方法。能应用这二个定理证明有关的整除问题和求余数问题。能进行循环小数与分数的互化。

三、难点和重点

(1)同余的概念及基本性质

(2)完全剩余系和简化剩余系的构造、判别

(3)欧拉函数计算、欧拉定理、费尔马小定理的证明及应用

(4)循环小数与分数的互化

(5)特殊数的整除规律。

四、自学指导

同余理论是初等数论中最核心的内容之一,由同余定义可知,若a≡b(mod m),则a和

b被m除后有相同的余数。这里m为正整数,一般要求m大于1

第一章中用带余除法定理将整数分类解决一些问题的方法只不过是同余理论中的一个特殊

。值得注意a和b关于m同余是个相对概念。即它是相对于模m来讲,二个整数a和b关于一个整数模m同余。则对于另一个整数模m

,a和b未必会同余。

1

从定义上看,同余和整除是同一个事情,但引进了新的符号“三”后,无论从问题的叙述上,还是解决问题的方法上都有了显著的变化,同时也带来了一些新的知识和方法。在引进了同余的代数性质和自身性质后,同余符号“三”和等号“=”相比,在形式上有几乎一致的性质,这便于我们记忆。事实上在所有等号成立的运算中,只有除法运算是个例外,即除法的消去律不成立。为此对于同余的除法运算我们有二种除法:

这一点读者要特别注意。

完全剩余系和简化剩余系是二个全新的概念,读者只要搞清引成这些概念的过程。因为同余关系是一个等价关系,利用等价关系可以进行将全体整数进行分类,弄清来胧去脉,对于更深刻理解其本质是很有好处的。完全剩余系或简化剩余系是一个以整数为元素的集合,在每个剩余类各取一个数组成的m个不同数的集合,故一组完全剩余系包含m个整数,由于二个不同的剩余类中的数关于m两两不同余,故可得判别一组数是否为模m的一个完全剩余系的条件有二条为

另外要能用已知完全剩余系构造新的完全剩余系。即有定理

为讨论简化剩余系,需要引进欧拉函数φ(m),欧拉函数φ(m)定义为不超过m且与m互素的正整数的个数,记为φ(m),要掌握φ(m)的计算公式,了解它的性质。这些性质最主要

现在在剩余类中把与m 互素的集合分出来,从中可在各个集合中任取一个数即可构造模m 的一个简化剩余系。另一方面,简化剩余数也可从模m 的一个完全剩余系中得到简化剩余系,一组完全剩余系中与m 互素的的数组成的φ(m )个不同数的集合称为m 简化剩余系。同样简化剩余系也有一个判别条件。

判别一组整数是否为模m 的简化剩余系的条件为

关于m 的简化剩余系也能用已知完全剩余系构造新的简化剩余系。 设(a ,m )=1,x 为m 的简化剩余系,则ax 也是m 的简化剩余系。

当1),(21=m m 时,能由1m 的简化剩余系和2m 的简化剩余系,构造21m m 简化剩余系。

欧拉定理、费尔马小定理是同余理论非常重要的定理之一。要注意欧拉定理和费尔马定理的条件和结论。

决整除问题的方法之一。

另外同余方法在证明不定方程时也非常有用,即要掌握同余“三”和相等“=”的关系:相等必同余,同余未必相等,不同余肯定不相等。

对于特殊数的整除规律要求能掌握其一般定理的证明,并熟记一些特殊数的整除规律

五、例子选讲

例1:求3406的末二位数。

解:∵ (3,100)=1,∴3)100(φ≡1(mod 100)

φ(100)= φ (22·52)=40, ∴ 340≡1(mol 100)

∴ 3406=(340)10·36≡(32)2·32≡-19×9≡-171≡29(mod 100) ∴ 末二位数为29。

例2:证明(a+b )p ≡a p +b p (mod p )

证:由费尔马小定理知对一切整数有:a p ≡a (p ),b p ≡b (P ),

由同余性质知有:a p +b p ≡a+b (p )

又由费尔马小定理有(a+b )p ≡a+b (p ) (a+b )p ≡a p +b p (p )

例3:设素数p >2,则2P -1的质因数一定是2pk +1形。 证:设q 是2p -1的质因数,由于2p -1为奇数,∴ q ≠2,

∴ (2·q )=1,由条件q|2p -1,即2p ≡1(mod q ),又∵ (q ,2)=1,2p ≡1(mod q ) 设i 是使得2x ≡1(mod p )成立最小正整数

若1

例4:证明13|42n +1+3n +2

证:∵42n +1+3n +2≡4·16n +9·3n

≡3n (4+9)≡13×3n ·≡0(13) ∴ 13|42n +1+3n +2

例5:证明5y +3=x 2无解

证明:若5y +3=x 2有解,则两边关于模5同余

有5y +3≡x 2(mod 5) 即3≡x 2(mod 5)

而任一个平方数x 2≡0,1,4(mod 5) ∴ 30,1,4(mod 5)

∴ 即得矛盾,即5y +3=x 2无解

例6:求

50

111......被7除的余数。 解:∵111111被7整除,∴

50

111......≡11(mod 7)≡4(mod 7),即余数为4。

例7:把..

0.04263化为分数。 解:设b =.

..360420,从而1000b=.

..3642,

100000b=.

..364263,99000b=4263-42 b=990004221

=11000

469。

当然也可用直化分数的方法做。

例8:设一个数为62XY427是9,11的倍数,求X ,Y 解:因为9|62XY427

所以9|6+2+X+Y+4+2+7, 即9|21+X+Y

又因为11|62XY427, 有11 |(7+4+X+6-2-Y-2) 即11|(X-Y+13)

因为0≤X ,Y ≤9, 所以有21≤ 21+X+Y ≤39, 4 ≤ X-Y+13 ≤22,由此可知 21+X+Y=27,X-Y+13=11 或21+X+Y=36,X-Y+13=22

X+Y=6,X-Y=-2

或X+Y=15,X-Y=9,解得X=2,Y=4。

例9:证明:8a+7不可能是三个整数的平方和。

证:由于每一个整数对于8,必同余于0,1,2,3,4,5,6,7这八个数之一

注意到对于模8,有

,002≡,112≡,422≡,132≡ ,042≡,152≡,462≡,172≡

因而每一个整数对于模8,必同余于0,1,4这三个数

不能222,,z y x 如何变化,只能有)8(mod 6,5,4,3,2,1,0222≡++z y x 而)8mod 778≡+a ,故78+a 不同余于222z y x ++关于模8

≠+78a 222z y x ++,从而证明了结论。

第四章 同余式 一、主要内容

同余方程概念及次数、解的定义,一次同余方程ax ≡b(mod m)有解的充分必要条件,一次同余方程组,孙子定理,高次同余方程,素数模的同余方程,威尔逊定理。

集合的简单练习题 并集合的知识点归纳

必修1 集合复习 知识框架: 1.1.1 集合的含义与表示 1.下列各组对象 ①接近于0的数的全体;②比较小的正整数全体;③平面上到点O 的距离等于1的点的全体; ④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数有( ) A .2组 B .3组 C .4组 D .5组 2.设集合M ={大于0小于1的有理数},N ={小于1050的正整数}, P ={定圆C 的内接三角形},Q ={所有能被7整除的数},其中无限集是( ) A .M 、N 、P B .M 、P 、Q C .N 、P 、Q D .M 、N 、Q 3.下列命题中正确的是( ) A .{x |x 2+2=0}在实数范围内无意义 B .{(1,2)}与{(2,1)}表示同一个集合 C .{4,5}与{5,4}表示相同的集合 D .{4,5}与{5,4}表示不同的集合 4.直角坐标平面内,集合M ={(x ,y )|xy ≥0,x ∈R ,y ∈R }的元素所对应的点是( ) A .第一象限内的点 B .第三象限内的点 C .第一或第三象限内的点 D .非第二、第四象限内的点 5.已知M ={m |m =2k ,k ∈Z },X ={x |x =2k +1,k ∈Z },Y ={y |y =4k +1,k ∈Z },则( ) A .x +y ∈M B .x +y ∈X C .x +y ∈Y D .x +y ?M 6.下列各选项中的M 与P 表示同一个集合的是( ) A .M ={x ∈R |x 2+0.01=0},P ={x |x 2=0} B .M ={(x ,y )|y =x 2+1,x ∈R },P ={(x ,y )|x =y 2+1,x ∈R } C .M ={y |y =t 2+1,t ∈R },P ={t |t =(y -1)2+1,y ∈R } D .M ={x |x =2k ,k ∈Z },P ={x |x =4k +2,k ∈Z } 7.由实数x ,-x ,|x |所组成的集合,其元素最多有______个. 8.集合{3,x ,x 2-2x }中,x 应满足的条件是______. 9.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是______. 10.用符号∈或?填空: ①1______N ,0______N .-3______Q ,0.5______Z ,2______R . ②2 1______R ,5______Q ,|-3|______N +,|-3|______Z . 11.若方程x 2+mx +n =0(m ,n ∈R )的解集为{-2,-1},则m =______,n =______. 12.若集合A ={x |x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =______,b =______. 13.方程组?? ???=+=+=+321x z z y y x 的解集为______. 14.已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举法表示集合Q =______. 15.用描述法表示下列各集合:

高中数学必修、选修全部知识点精华归纳总结

高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

集合知识点+练习题

第一章集合 §1.1集合 基础知识点: ⒈集合的定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合, 也简称集。 2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示, 而元素用小写的拉丁字母a,b,c…表示。 3.集合相等:构成两个集合的元素完全一样。 4.常用的数集及记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+;N内排除0的集. 整数集,记作Z;有理数集,记作Q;实数集,记作R; 5.关于集合的元素的特征 ⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。 如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大 发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性; 而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元 素是不确定的. ⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。. 如:方程(x-2)(x-1)2=0的解集表示为{1, 2},而不是{1, 1, 2} ⑶无序性:即集合中的元素无顺序,可以任意排列、调换。 练1:判断以下元素的全体是否组成集合,并说明理由: ⑴大于3小于11的偶数;⑵我国的小河流; ⑶非负奇数;⑷方程x2+1=0的解; ⑸徐州艺校校2011级新生;⑹血压很高的人; ⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点 6.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于?”两种) ⑴若a是集合A中的元素,则称a属于集合A,记作a∈A; ⑵若a不是集合A的元素,则称a不属于集合A,记作a?A。 例如,(1)A表示“1~20以内的所有质数”组成的集合,则有3∈A,4?A,等等。 (2)A={2,4,8,16},则4∈A,8∈A,32?A.

初等数论练习题

初等数论练习题 信阳职业技术学院 2010年12月

初等数论练习题一 一、填空题 1、d(2420)=___________; ?(2420)=___________。 2、设a,n 是大于1的整数,若a n -1是质数,则a=___________。 3、模9的绝对最小完全剩余系是___________。 4、同余方程9x+12≡0(mod 37)的解是__________。 5、不定方程18x-23y=100的通解是___________。 6、分母是正整数m 的既约真分数的个数为_______。 7、18100被172除的余数是___________。 8、?? ? ??10365 =___________。 9、若p 是素数,则同余方程x p 1 1(mod p )的解数为 。 二、计算题 1、解同余方程:3x 2 11x 200 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解 3、求(127156+34)28除以111的最小非负余数。 三、证明题 1、已知p 是质数,(a,p )=1,证明: (1)当a 为奇数时,a p-1+(p-1)a ≡0 (mod p); (2)当a 为偶数时,a p-1-(p-1)a ≡0 (mod p)。 2、设a 为正奇数,n 为正整数,试证n 2a ≡1(mod 2n+2)。 3、设p 是一个素数,且1≤k ≤p-1。证明:k p 1C - (-1 )k (mod p )。 4、设p 是不等于3和7的奇质数,证明:p 6≡1(mod 84)。

初等数论练习题二 一、填空题 1、d(1000)=__________;σ(1000)=__________。 2、2010!的标准分解式中,质数11的次数是__________。 3、费尔马(Fermat)数是指Fn=n 22+1,这种数中最小的合数Fn 中的n=_________。 4、同余方程13x ≡5(mod 31)的解是__________。 5、分母不大于m 的既约真分数的个数为_________。 6、设7∣(80n -1),则最小的正整数n=__________。 7、使41x+15y=C 无非负整数解的最大正整数C=__________。 8、?? ? ??10146=__________。 9、若p 是质数,n p 1,则同余方程x n 1 (mod p ) 的解数为 。 二、计算题 1、试求2004 2003 2002被19除所得的余数。 2、解同余方程3x 144x 10 6x 180 (mod 5)。 3、已知a=5,m=21,求使a x 1 (mod m)成立的最小自然数x 。 三、证明题 1、试证13|(54m +46n +2000)。(提示:可取模13进行计算性证明)。 2、证明Wilson 定理的逆定理:若n > 1,并且(n 1)! 1 (mod n ),则n 是素数。 3、证明:设p s 表示全部由1组成的s 位十进制数,若p s 是素数,则s 也是一个素数。 4、证明:若2p 1是奇素数,则 (p !)2 ( 1)p 0 (mod 2p 1)。 5、设p 是大于5的质数,证明:p 4≡1(mod 240)。

集合知识点总结及习题培训资料

集合知识点总结及习 题

集合 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ??????????? ???????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ???? ?????????? ???????? ?????????????????????? ??????????????????????=??????? 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.元素与集合的关系——(不)属于关系 (1)集合用大写的拉丁字母A 、B 、C …表示

初等数论总复习题及知识点总结

初等数论总复习题及知识点总结 最后,给大家提一点数论的学习方法,即一定不能忽略习题 的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经 说过如果学习数论时只注意到它的内容而忽略习题的作用,则相 当于只身来到宝库而空手返回而异。数论有丰富的知识和悠久的 历史,作为数论的学习者,应该懂得一点数论的常识,为此在辅 导材料的最后给大家介绍数论中著名的“哥德巴赫猜想”和费马 大定理的阅读材料。初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法最大公因数和辗转相除法整除的进一步性质和最小公倍数素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求:2,3 ;:4 ;:1;: 1,2,5;:1。第二章:不定方程(4学时)自学12学时二元一次不定方程多元一次不定方程勾股数费尔马大定理。习题要求:1,2,4;:2,3。第三章:同余(4学时)自学12学时同余的定义、性质剩余类和完全剩余系欧拉函数、简化剩余系欧拉定理、 费尔马小定理及在循环小数中的应用习题要求:2,6;:1;: 2,3;1,2。第四章:同余式(方程)(4学时)自学12学时同余方程概念孙子定理高次同余方程的解数和解法素数模的同余方 程威尔逊定理。习题要求:1;:1,2;:1,2。第五章:二次同余式和平方剩余(4学时)自学12学时二次同余式单素数的平方剩余与平方非剩余勒让德符号二次互反律雅可比符号、素数模同

余方程的解法习题要求:2;:1,2,3;:1,2;:2;:1。第一章:原根与指标(2学时)自学8学时指数的定义及基本性质原根存在的条件指标及n次乘余模2及合数模指标组、特征函数习题要求:3。 第一章整除 一、主要内容整除的定义、带余除法定理、余数、最大公因数、最小公倍数、辗转相除法、互素、两两互素、素数、合数、算术基本定理、Eratosthesen筛法、[x]和{x}的性质、n!的标准分解式。 二、基本要求通过本章的学习,能了解引进整除概念的意义,熟练掌握整除整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。认真体会求二个数的最大公因数的求法的理论依据,掌握素数的定义以及证明素数有无穷多个的方法。能熟练求出二个整数的最大公因数和最小公倍数,掌握高斯函数[x]的性质及其应用。 三、重点和难点(1)素数以及它有关的性质,判别正整数a 为素数的方法,算术基本定理及其应用。(2)素数有无穷多个的证明方法。(3)整除性问题的若干解决方法。(4)[x]的性质及其应用,n!的标准分解式。 四、自学指导整除是初等数论中最基本的概念之一,b∣a的意思是存在一个整数q,使得等式a=bq成立。因此这一标准作为

整理全面《高中数学知识点归纳总结》

整理全面《高中数学知识点归纳总结》

教师版高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数 选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向 量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、 和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位 置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用

天津高中数学必修+选修全部知识点精华归纳总结

高三第一轮复习资料(个人汇编请注意保密) 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等 函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线 与方程、导数及其应用。选修1—2:统计案例、推理与证明、 数系的扩充与复数、框图系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。选修2—2:导数及其应用,推理与证 明、数系的扩充与复数选修2—3:计数原理、随机变量及其 分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平 面向量,圆锥曲线,立体几 何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运 算、简易逻辑、充 要条件 ⑵函数:映射与函数、函数解析式与 定义域、值域与最值、反函 数、三大性质、函数图象、 指数与指数函数、对数与对 数函数、函数的应用

高中数学必修一集合知识点总结资料

高中数学必修一 第一章集合与函数概念 课时一:集合有关概念 1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。 2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。例:世界上最高的山、中国古代四大美女、…… (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 例:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来 {a,b,c……} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x∈R| x-3>2} ,{x| x-3>2} ①语言描述法:例:{不是直角三角形的三角形} ②Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a∈A (2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法:(&&&&&) 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 课时二、集合间的基本关系 1.“包含”关系—子集 (1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系, A?(或B?A) 称集合A是集合B的子集。记作:B A?有两种可能(1)A是B的一部分,; 注意:B (2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) 或若集合A?B,存在x∈B且x A,则称集合A是集合B的真子集。 ③如果 A?B, B?C ,那么 A?C

(完整版)最全教师版整理全面《高中数学知识点归纳总结》(最新整理)

引言 1.课程内容: 必修课程由5 个模块组成:教师版 2015 高中数学必修+选修知识点归纳 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充 必修 1:集合、函数概念与基本初等函数(指、对、幂函数) 必修 2:立体几何初步、平面解析几何初步。 必修 3:算法初步、统计、概率。 必修 4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修 5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有 4 个系列: 系列 1:由 2 个模块组成。 选修 1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修 1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列 2:由 3 个模块组成。 选修 2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修 2—2:导数及其应用,推理与证明、数系的扩充 与复数 选修 2—3:计数原理、随机变量及其分布列,统计案例。系列 3:由 6 个专题组成。 选修 3—1:数学史选讲。 选修 3—2:信息安全与密码。 选修 3—3:球面上的几何。选 修 3—4:对称与群。 要条件 ⑵函数:映射与函数、函数解析式与定义域、值域与最值、 反函数、三大性质、函数图象、指数与指数函 数、对数与对数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数列、数列 求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、和、差、 倍、半公式、求值、化简、证明、三角函数 的图象与性质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、数量积 及其应用 ⑹不等式:概念与性质、均值不等式、不等式的证明、 不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、 线性规划、圆、直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥 曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、 平面与平面、棱柱、棱锥、球、空间向量 ⑽排列、组合和概率:排列、组合应用题、二项式定理 及其应用 ⑾概率与统计:概率、分布列、期望、方差、抽样、正 态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 必修 1 数学知识点 第一章:集合与函数概念 §1.1.1、集合 1、把研究的对象统称为元素,把一些元素组成的总体 叫做集合。集合三要素:确定性、互异性、无序性。 2、只要构成两个集合的元素是一样的,就称这两个集合 相等。 选修 3—5:欧拉公式与闭曲面分类。 选修 3—6:三等分角与数域扩充。 系列 4:由 10 个专题组成。 3、常见集合:正整数集合:N *或N + ,整数集合:Z , 选修 4—1:几何证明选讲。 选修 4—2:矩阵与变换。 选修 4—3:数列与差分。 选修 4—4:坐标系与参数方程。 选修 4—5:不等式选讲。 选修 4—6:初等数论初步。 选修 4—7:优选法与试验设计初步。 选修 4—8:统筹法与图论初步。 选修 4—9:风险与决策。 选修 4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、一般地,对于两个集合 A、B,如果集合 A 中任意 一个元素都是集合 B 中的元素,则称集合 A 是集合 B 的子集。记作A ?B . 2、如果集合A ?B ,但存在元素x ∈B ,且x ?A , 则称集合A 是集合B 的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作:?.并规 定:空集合是任何集合的子集. - 0 -

(完整word版)初等数论练习题一(含答案)

《初等数论》期末练习二 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C (mod )ac bc m ≡/ D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 7、如果a b ,b a ,则( ). A b a = B b a -= C b a ≥ D b a ±= 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 10、模7的最小非负完全剩余系是( ). A -3,-2,-1,0,1,2,3 B -6,-5,-4,-3,-2,-1 C 1,2,3,4,5,6 D 0,1,2,3,4,5,6 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 12、同余式)593(mod 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 二、填空题 1、有理数 b a ,0,(,)1a b a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.

高一数学必修一知识点总结及经典例题分析

高一数学必修1 1.知识点总结 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性, (2) 元素的互异性, (3) 元素的无序性, 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集)记作:N 正整数集 N*或 N+整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4) Venn图: 4、集合的分类: (1) 有限集含有有限个元素的集合 (2) 无限集含有无限个元素的集合 (3) 空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.?包含关系—子集 注意:B包含A有两种可能(1)A是B的一部分; (2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A不属于B或B不属于A 2.相等?关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} ?元素相同则两集合相等?即:①即任何一个集合是它本身的子集。 ②真子集:如果A属于B,且A不属于B那就说集合A是集合B的真子集。 ③如果 A属于B, B属于C ,那么 A属于C ④如果A属于B 同时 B属于A ,那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 1.规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 2.特点有n个元素的集合,含有2n个子集,2n-1个真子集

最全教师版整理全面《高中数学知识点归纳总结》

教师版2015高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充 与复数 选修2—3:计数原理、随机变量及其分布列,统计案 例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充 要条件 ⑵函数:映射与函数、函数解析式与定义域、值域与最 值、反函数、三大性质、函数图象、指数与指 数函数、对数与对数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数列、数列 求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、和、差、 倍、半公式、求值、化简、证明、三角函 数的图象与性质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、数量积 及其应用 ⑹不等式:概念与性质、均值不等式、不等式的证明、 不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、 线性规划、圆、直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥 曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、 平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理 及其应用 ⑾概率与统计:概率、分布列、期望、方差、抽样、正 态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 必修1数学知识点 第一章:集合与函数概念 §1.1.1、集合 1、把研究的对象统称为元素,把一些元素组成的总体 叫做集合。集合三要素:确定性、互异性、无序性。 2、只要构成两个集合的元素是一样的,就称这两个集 合相等。 3、常见集合:正整数集合:* N或 + N,整数集合:Z,有理数集合:Q,实数集合:R. 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、一般地,对于两个集合A、B,如果集合A中任意 一个元素都是集合B中的元素,则称集合A是集合 B的子集。记作B A?. 2、如果集合B A?,但存在元素B x∈,且A x?,则称集合A是集合B的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作:?.并规 定:空集合是任何集合的子集. 4、如果集合A中含有n个元素,则集合A有n2个子 - 1 - / 35

02013初等数论复习题题库及答案

《初等数论》本科 一、填空题(每空2分) 1.写出30以内的所有素数 2.,a b 设 3.若,a b 是非零整数,则a 与b 互素的充要条件是存在整数,x y ,使1ax by += 4.写出180的标准分解式是(2+1)(2+1)(1+1)=18个. 5.,1,2, ,a b a b 设与是正整数则在中能被. 6.设,a b 是非零整数,c 是整数,方程ax by c +=有整数解(,x y )的充要条件是(,)|a b c 7.A m 的完全剩余系,则A 中含有m 个整数. 8.?9.当p 素数时,(1)()p ?=1p -;(2)()k p ?=1k k p p --. 10.(),(,)1,1m m a m a ?=-设是正整数则).m 11.,,p p a a a -设是素数则对于任意的整数有).p 12.已知235(mod 7)x +≡,则x 7). 13.同余方程22(mod7)x ≡14.同余方程2310120(mod9)x x ++≡的解是X=6+9t(t ∈Z ). 15.(,)1n p =若,n p 是模的二次剩余的充要条件是-12 1(mod ).p n p ≡. 16.(,)1n p =若,n p 是模的二次非剩余的充要条件是-12 1(mod ).p n p ≡-. 17.3(54 (5 18.,p 设是奇素数则2()p = 218(1).p --. 19.,p 设是奇素数则1()p -1 ()p = 20.5()=92 ()=45 二、判断题。(判断下列结论是否成立,每题2分). 1.||,|a b a c x y Z a bx cy ?∈+且对任意的有.成立 2.(,)(,),[,][,]a b a c a b a c ==若则.不成立

相关文档 最新文档