文档库 最新最全的文档下载
当前位置:文档库 › 微细电火花加工技术的进展

微细电火花加工技术的进展

微细电火花加工技术的进展
微细电火花加工技术的进展

电火花加工技术概述

《先进制造技术》课程学习报告 题目:电火花加工技术概述 专业:机械类 姓名:喻娇艳 年级:2013级 班级:机械类 1306 班 学号:201303164193 武汉科技大学机械自动化学院 2016年 6月 10日

电火花加工技术概述 喻娇艳 (武汉科技大学机械自动化学院, 湖北 ,武汉) (13 级机械类专业,学号 201303164193 ) 摘要:电火花加工( Electrospark Machining )在日本和欧美又称为放电加工( Electrical Discharge Machining, 简称EDM) ,是一种直接利用电能和热能进行加工的新工艺,本文从电火花加工的 研究现状、基本原理、发展前景等三方面加以论述关键词:电火花加工的研究现状基本原理 . 发展前景 Summarize of Electrospark Machining Technique YU Jiao-yan (College of Machinery and Automation, WuHan University of Science and Technology, HuBei WuHan 430074) Abstract : Electrospark Machining Technique is also called Electrical Discharge Machining(EDM) in Japan and Occident,it ’s a new technology of machining using electrical and heat energy directly.This article discusses it in addition in three aspects including it ’s research status,fundamental principle,future prospects,etc. Keywords: Research status;Fundamental principle; Future prospects 1、前言 从前苏联科学院拉扎连柯夫妇在1943 年研制出世界上第一台实用化电火花加工装置以 来,电火花加工已有 70 多年的历史 ,发展速度是惊人的 ,目前已广泛应用于机械、宇航、航空、电子、电机、仪器仪表、汽车、轻工等行业,它不仅是一种有效的机械加工手段,而且已经成为在某些场合不可替代的加工方法.例如 ,在解决难、硬材料及复杂零件的加工问题时,应用电火花加工技术十分有效 . 据统计 ,目前电火花加工机床的市场占有率已占世界机床市场的6%以上 .而且随着科学技术的不断发展 ,现代制造技术极其相关技术为电火花技术的发展提供了良好机遇.柔性制造、人工智能技术、网络技术、敏捷制造、虚拟制造和绿色制造等现代制造技术正逐渐渗透到电 火花加工技术中来 ,给电火花加工技术的发展带来了新的生机.近年来 ,国内外很多研究机构对电火花加工技术进行了大量的研究,并且在许多方面取得了显著进展[1-5]. 2、电火花加工技术的研究现状 经过60 多年的发展,电火花加工技术已日趋完善.2011年第十二届中国国际展览会 上 ,40余家国内外特种设备生产商携机参展.在高速铣削技术日趋成熟且飞速发展的今天,包

电火花论文

电火花加工 机电一体化专业3班于新伟 37号摘要: 关键词: 一、引言 二、电火花加工的基本原理

(一)概念 电火花加工的原理是基于工具和工件(正、负电极)之间脉冲性火花放电时的电腐蚀现象来蚀除多余的金属,以达到对零件的尺寸、形状及表面质量的加工要求。 要将电腐蚀现象用于金属材料的尺寸加工,设备装置必需以下三个条件: 1)工具电极和工件被加工表面之间经常保持一定的放电间隙(通常约为几微米至几百微米)。间隙过大,极间电压不能击穿极间介质,因而不会产生火花放电。间隙过小,会形成短路,不能产生火花放电,而且会烧伤电极。 2)火花放电必须是瞬时的脉冲性放电,放电延续一段时间后,需停歇一段时间,放电延续时间一般为10-7~10-3s。这样才能使放电所产生的热量来不及传导扩散到其余部分,把每一次的放电点分别局限在很小的范围内;否则,象持续电弧放电那样,使表面烧伤而无法用作尺寸加工。为此,电火花加工必须采用脉冲电源 3)火花放电必须在有一定绝缘性能的液体介质中进行,例如煤油、皂化液或去离子水等。液体介质又称工作液,它们必须具有较高的绝缘强度(103~107Ω·cm)以有利于产生脉冲性的火花放电,同时,液体介质还能把电火花加工过程中产生的金属小屑、碳黑等电蚀产物从放电间隙中悬浮排除出去,并且对电极和工件表面有较好的冷却作用 图1 电火花加工原理示意图 1-工件;2-脉冲电源;3-自动进给调节装置;4-工具; 5-工作液;6-过滤器;7-液泵

(三)电火花加工特点 电火花属于不接触加工 工具电极和工件之间并不直接接触,而是有一个火花放电间隙,这个间隙一般是在0.05~0.3mm之间,有时可能达到0.5mm甚至更大,间隙中充满工作液,加工时通过高压脉冲放电,对工件进行放电腐蚀。 加工过程中没有宏观切削力 火花放电时,局部、瞬时爆炸力的平均值很小,不足以引起工件的变形和位移。 可以“以柔克刚” 由于电火花加工直接利用电能和热能来去除金属材料,与工件材料的强度和硬度等关系不大,因此町以用软的工具电极加工硬的工件,实现“以柔克刚”。 可以加工任何难加工的金属材料和导电材料 由于加工中材料的去除是靠放电时的电、热作用实现的,材料的可加工性主要取决于材料的导电性及热学特性,如熔点、沸点、比热容、导热系数、电阻率等,而几乎与其力学性能(硬度、强度等)无关。这样可以突破传统切削加工对刀具的限制,可以实现用软的工具加工硬、韧的工件甚至可以加工聚晶金刚行、立方氮化硼一类的超硬材料。目前电极材料多采用紫铜或石墨,因此工具电极较容易加工。 可以加工形状复杂的表面 由于可以简单地将工具电极的形状复制到工件上,因此特别适用于复杂表面形状工件的加工,如复杂型腔模具加工等。特别是数控技术的采用,使得用简单的电极加工复杂形状零件成为现实。 可以加工特殊要求的零件 可以加工薄壁、弹性、低刚度、微细小孔、异形小孔、深小孔等有特殊要求的零件。由于加工中工具电极和工件不直接接触,没有机械加工的切削力,因此适宜加工低刚度工件及微细加工。 三、电火花加工的一些规律 (一)影响材料放电腐蚀的主要因素 1.极性效应 能量在两极上的分配对两个电极电蚀量的影响是一个极为重要的因素,而电子和正离子对电极表面的撞击则是影响能量分布的主要因素,因此,电子撞击和离子撞击无疑是影响极性效应的重要因素。但是,近年来的生产实践和研究结果表明,正的电极表面能吸附工作液中分解游离出来的碳微粒,形成碳黑膜(覆盖层)减小电极损耗。

微细电火花加工专业技术与发展趋势势

微细电火花加工技术与发展趋势 于同敏黄晓超 (大连理工大学机械工程学院模具研究所大连116023) 摘要:本文简要的介绍了微型制件及微型模具的定义和分类,并着重介绍了应用于微型模具型腔加工的微细加工技术—微细电火花加工。总结了微细电火花的发展趋势和关键技术。 关键词:微注塑模具微细电火花关键技术 Technology of Micro Electrical Discharge Machining and Its Development Trend YU Tongmin HUANG Xiaochao (Institute of Die and Mould of School of Mechanical Engineering of Dalian University of Technology, Dalian 116023 ) Abstract: The division and definition of micro part and micro mould were introduced in this paper. Emphsis was given to illustrate the micro-machining technology of mould cave manufactureng —Micro electrical discharge machining(M-EDM) . A conclusion of the development trend and key technology of MEDM was made in this paper. Key words:Micro-injection mould Micro-EDM Key technology 0 前言 为了满足塑料制件在各种工业产品中的使用要求,塑料成型技术正朝着复杂化、精密化、微小化等方向发展,例如应用于微机电系统的微马达、微小齿轮以及应用于生物工程领域的细胞培养皿和微流控芯片等的成型。除了必须研发或引进微型和精密成型设备外,微小且精密的塑料成型模具更是需要采用先进的模具CAD/CAE/CAM技术来设计制造,并运用各种先进的加工手段]1[。 微型模具的制造主要通过微细加工,目前的微细加工方法主要有:①微细切车削、铣削和磨削等;②微细特种加工如:电火花、电化学、激光、超声波、离了束和电了束等;③光刻、蚀刻和LIGA技术。其中微细电火花加工应用最为广泛,也是近年来研究的重点方向之一。 1 微型模具 1.1 微型模具的定义 应用微细加工方法制作微型模具,再通过微型模具成形微型制件,具有生产效率高、制件尺寸稳定性好的优点]2[。因此,近年来关于微型模具制造技术的研究普遍受到人们的关注。但到日前为止,对于微型模具,也没有统一的定义,通常人们习惯于在尺寸和制造精度

电火花加工

课程名称:院系: 专业: 班级: 学号: 姓名:

电火花加工 1.概述 电火花加工是一种自激放电,故又称放电加工(EDM),于20世纪40年代开始研究并逐步应用于生产,是目前机械制造业中应用最广泛的特种加工方法之一,在难切削材料、复杂型面零件等的加工中得到了广泛应用。 2.原理 火花放电的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后,随即发生火花放电。伴随击穿过程,两电极间的电阻急剧变小,两极之间的电压也随之急剧变低。火花通道必须在维持暂短的时间(通常为后及时熄灭,才可保持火花放电的“冷极”特性(即通道能量转换的热能来不及传至电极纵深),使通道能量作用于极小范围。通道能量的作用,可使电极局部被腐蚀。利用火花放电时产生的腐蚀现象对材料进行尺寸加工的方法,叫电火花加工。电火花加工是在较低的电压范围内,在液体介质中的火花放电。 3.特点 1.脉冲放电的能量密度高,便于加工用普通的机械加工方法难于加工或无法加工的特殊材料和复杂形状的工件。不受材料硬度影响,不受热处理状况影响。 2.脉冲放电持续时间极短,放电时产生的热量传导扩散范围小,材料受热影响范围小。 3.加工时,工具电极与工件材料不接触,两者之间宏观作用力极小。工具电极材料不需比工件材料硬,因此,工具电极制造容易。 4.可以改革工件结构,简化加工工艺,提高工件使用寿命,降低工人劳动强度。基于.上述特点,电火花加工的主要用途有以下几项: 1)制造冲模、塑料模、锻模和压铸模。 2)加工小孔、畸形孔以及在硬质合金上加工螺纹螺孔。 3)在金属板材上切割出零件。4)加工窄缝。 5)磨削平面和圆面。

电火花加工专题论文

河海大学文天学院 《现代制造技术》专题论文 ——电火花加工技术 专 业____________ 班 级____________ 姓 名____________ 学 号____________ 10机械工程及其自动化 机械四班 方浩、张剑波 100330409、100330436

汪永明 指导老师____________ 摘要:电火花加工的原理是基于工具和工件之间脉冲性放电时的电腐现象来蚀除多余的金属,以达到对零件的尺寸、形状及表面质量预定的加工要求。电火花加工主要优点是适合于难切削材料,可以加工特殊及复杂形状的零件。电火花加工主要用于加工金属等导电材料,但在一定条件下也可以加工半导体和非导体材料。由于电火花加工具有许多传统切削加工所无法比拟的优点,因此其应用领域日益扩大。 关键字:电火花加工不接触加工电蚀加工

第一章电火花加工技术的产生与发展 一、电火花加工的概念 电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除多余的金属,以达到对零件的尺寸、形状及表面质量的加工要求的特种加工方法,又称放电加工或电蚀加工,英文简称EDM【1】。 二、电火花加工技术的产生背景【2】 提到电火花加工,我们首先就会想到特种加工技术。特种加工技术有别于传统的机械加工,他的产生不是偶然的。第二次世界大战后,特别是进入20世纪50年代以来,随着现代科学技术的发展,各个行业,尤其是国防工业部门,要求尖端科技产品向高精度、高速度、大功率、小型化方向发展,以及在高温、高压、重载荷或腐蚀环境下长期可靠的工作。为了适应这些要求,各种新结构、新材料和复杂形状的精密零件大量出现,其结构和形状越来越复杂,材料的性能越来越强韧,对精度要求越来越高,对加工表面粗糙度和完整性要求越来越严格,使现代机械制造面临着一系列严峻的任务。如:各种难切削材料的加工问题;各种特殊复杂型面的加工问题;各种超精密、光整零件的加工问题;特殊零件的加工问题等。 要解决上述一系列的问题,仅仅依靠传统的切削加工方法很难实现,有些甚至无法实现。为此,人们相继探索、研究新的加工方法。特种加工就是在这种前提条件下产生和发展起来的。

电火花加工报告技术

电火花加工技术 一:电火花技术概述 电火花加工是利用两极见脉冲放电时产生的电腐蚀现象,放电时局部瞬时产生的高温把金属蚀除下来。 早在十九世纪,人们就发现了电器开光的触点开闭时,以为放电,使接触部位烧蚀,造成接触面的损坏。这种放电引起的电极烧蚀现象叫做电腐蚀。起初,电腐蚀被认为是有害的,为减少和避免这种有害的电腐蚀,人们一直在研究电副食产生的原因和防止的办法。当人们掌握了它的规律之后,便创造条件,转害为益,把电腐蚀用于生产中。1870年,英国科学家普利斯特里最早发现电火花对金属的腐蚀作用。当两极产生放电的过程中,放电通道瞬时产生大量的热,足以使电极材料表面局部熔化或汽化,并在一定条件下,熔化或汽化的部分能抛离电极表面,形成放电腐蚀的坑穴。直到1934年,前苏联科学家拉扎连柯等把电火花对金属的腐蚀作用利用起来。 后来,人们进一步认识到,在液体介质中进行重复性脉冲放电时,能够对导电材料进行尺寸加工,因此,创立了“电火花加工法”。电火花加工技术作为特种加工领域的重要技术之一,最早应用于二战时期折断丝锥取出时的加工。随着人类进入信息化时代,电加工技术取得了突飞猛进的发展,可控性更高,数字化程度更好。 在中国电火花加工技术起步稍晚。根据中国的国情,实现电火花加工技术的原始创新是很困难的,只能采取引进消化吸收再创新的策

略,因为这套系统集成了很多学科领域的知识,如计算机的软硬件、微电子、数控、电力半导体、机械技术、电气技术等,是多方面、多学科集成的产品,是比较复杂的高科技产品。国内现在显然还没有一个能够独立进行原始创新的团队,因此注定要经历一个长时间痛苦的积淀过程,所以我认为中国的电火花技术创新之路别无选择。政府也越来越认识到高校已经不再是创新的主战场,必须依托企业才能实现。 制造业是一个传统行业。一个国家的发展终归要落脚于制造业,因此作为基础工业,制造业必定拥有永久的生命力,而电加工行业也不例外。随着各项技术的不断发展,电加工技术也在进步,至于一项技术能够发展多久,也要看这个行业中的人怎样去尽心敬业、钻研并推进它。 二: 加工原理及原理图 电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电 蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工,英文简称EDM。 电火花加工时,脉冲电源的一极接工具电极,另一极接工件电极,两极均浸入具有一定绝缘度的液体介质(常用煤油或矿物油或去离子水)中。工具电极由自动进给调节装置控制,以保证工具与工件在正常加工时维持一很小的放电间隙(0.01~ 0.05mm)。当脉冲电压加到两极之间,便将当时条件下极间最近

微细加工技术概述及其应用

2011 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:微细超精密机械加工技术原理及系统设计学生所在院(系):机电工程学院 学生所在学科:机械设计及理论 学生姓名:杨嘉 学号:10S008214 学生类别:学术型 考核结果阅卷人

微细加工技术概述及其应用 摘要 微细加工原指加工尺度约在微米级范围的加工方法,现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,从微细加工的发展来看,美国和德国在世界处于领先的地位,日本发展最快,中国有很大差距。本文从用电火花加工方法加工微凹坑和用微铣削方法加工微小零件两方面描述了微细加工技术的实际应用。 关键词:微细加工;电火花;微铣削 1微细加工技术简介及国内外研究成果 1.1微细加工技术的概念 微细加工原指加工尺度约在微米级范围的加工方法。在微机械研究领域中,从尺寸角度,微机械可分为1mm~10mm的微小机械,1μm~1mm的微机械,1nm~1μm的纳米机械,微细加工则是微米级精细加工、亚微米级微细加工、纳米级微细加工的通称。广义上的微细加工,其方式十分丰富,几乎涉及现代特种加工、微型精密切削加工等多种方式,微机械制造过程又往往是多种加工方法的组合。从基本加工类型看,微细加工可大致分为四类:分离加工——将材料的某一部分分离出去的加工方式,如分解、蒸发、溅射、切削、破碎等;接合加工——同种或不同材料的附和加工或相互结合加工方式,如蒸镀、淀积、生长等;变形加工——使材料形状发生改变的加工方式,如塑性变形加工、流体变形加工等;材料处理或改性和热处理或表面改性等。微细加工技术曾广泛用于大规模集成电路的加工制作,正是借助于微细加工技术才使得众多的微电子器件及相关技术和产业蓬勃兴起。目前,微细加工技术已逐渐被赋予更广泛的内容和更高的要求,已在特种新型器件、电子零件和电子装置、机械零件和装置、表面分析、材料改性等方面发挥日益重要的作用,特别是微机械研究和制作方面,微细加工技术已成为必不可少的基本环节。 现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,微细超精密加工的主要方法如下: 微细电火花加工技术的研究起步于20世纪60年代末,是在绝缘的工作液中通过工具电极和工件间脉冲火花放电产生的瞬时、局部高温来熔化和汽化蚀除金属的一种加工技术。由于其在微细轴孔加工及微三维结构制作方面存在的巨大潜力和应用背景,得到了

电火花加工的费用.doc

电火花加工 一、加工费用:电火花加工的费用计算方法与其它机加工方法是相似的,一般是按小时来计算加工费的。时间可以按从调平工件开始到完成加工为止来计算,也可以按自动加工的时间累加时间来计算。每小时的加工费用,可以按照[(电极设计费+电极加工费+机器折旧费+人工费+电费+期望的利润值)*(1+税率)]来计算。当然,加工后工件的表面粗糙度和精度是每小时加工费用的重要参考指标,工件在加工后表面粗糙度越小、精度越高,则每小时加工费越高。 电火花加工需要丰富的经验,用合适的加工方式、到位的粗加工和半精加工、以及用高效的精加工条件一次性地完成图纸的要求,是获取低成本电火花加工的决定因素。 机床的精度、电极的精度以及电极的损耗程度是电火花加工精度的决定因素。

二、电火花加工 目录 发明与发展 工作原理 分类 使用说明 电火花加工特点 电火花加工的特点如下: 简介 发明与发展 工作原理 分类 使用说明 电火花加工特点 电火花加工的特点如下: 简介 电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工,英文简称EDM。 发明与发展 由苏联学者发明 1943年,苏联学者拉扎连科夫妇研究发明电火花加工,之后随着脉冲电源和控制系统的改进,而迅速发展起来。最初使用的脉冲电源是简单的电阻-电容回路。

50年代初 改进为电阻-电感-电容等回路。同时,还采用脉冲发电机之类的所谓长脉冲电源,使蚀除效率提高,工具电极相对损耗降低。 随后又出现了大功率电子管、闸流管等高频脉冲电源,使在同样表面粗糙度条件下的生产率得以提高。 60年代中期 出现了晶体管和可控硅脉冲电源,提高了能源利用效率和降低了工具电极损耗,并扩大了粗精加工的可调范围。 70年代 出现了高低压复合脉冲、多回路脉冲、等幅脉冲和可调波形脉冲等电源,在加工表面粗糙度、加工精度和降低工具电极损耗等方面又有了新的进展。在控制系统方面,从最初简单地保持放电间隙,控制工具电极的进退,逐步发展到利用微型计算机,对电参数和非电参数等各种因素进行适时控制。 电火花加工 工作原理 进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电。 电火花加工 在放电的微细通道中瞬时集中大量的热能,温度可高达一万摄氏度以上,压力也有急剧变化,从而使这一点工作表面局部微量的金属材料立刻熔化、

电火花线切割的优缺点及应用

本科课程论文 题目电火花线切割的优缺点及应用 学院工程技术学院 专业机械设计制造及其自动化 年级_____2008级_____ 学号_222008322222107 姓名__陈________玺__ 指导教师 _邱______ 兵__ 成绩 _______________

目录 摘要................................................................................................1前言 (3) 2正文 (3) 2.1电火花线切割的原理 (3) 2.1.1工作原理 (3) 2.1.2机床种类 (3) 2.2电火花线切割的特点 (4) 2.2.1优点 (4) 2.2.2使用中易出现的问题 (4) 2.3电火花线切割的应用及发展 (4) 2.3.1加工范围 (4) 2.3.2未来发展的展望 (5) 2.4总结 (6) 参考文献 (6)

电火花线切割的优缺点及应用 陈玺 邱兵 西南大学工程技术学院 2008级机械设计制造及其自动化2班 摘要:本文通过对电火花线切割的优缺点及应用的概述,阐述了电火花线切割在未来的发展方向,以及电火花线切割将应用更广。 关键词:电火花线切割线切割走丝 1. 前言 电火花加工作为一种现代的特种加工方式,具有许多传统加工所不具有的优点以及良好的发展前景。 2. 正文 2.1电火花线切割的原理 2.1.1工作原理 电火花线切割机(Wire cut Electrical Discharge Machining简称WEDM),属电加工范畴,是由前苏联拉扎林科夫妇研究开关触点受火花放电腐蚀损坏的现象和原因时,发现电火花的瞬时高温可以使局部的金属熔化、氧化而被腐蚀掉,从而开创和发明了电火花加工方法。工作原理是自由正离子和电子在场中积累,很快形成一个被电离的导电通道。在这个阶段,两板间形成电流。导致粒子间发生无数次碰撞,形成一个等离子区,并很快升高到8000到12000度的高温,在两导体表面瞬间熔化一些材料,同时,由于电极和电介液的汽化,形成一个气泡,并且它的压力规则上升直到非常高。然后电流中断,温度突然降低,引起气泡内向爆炸,产生的动力把溶化的物质抛出弹坑,然后被腐蚀的材料在电介液中重新凝结成小的球体,并被电介液排走。然后通过NC控制的监测和管控,伺服机构执行,使这种放电现象均匀一致,从而达到加工物被加工,使之成为合乎要求之尺寸大小及形状精度的产品。 2.1.2机床种类 电火花线切割机按走丝速度可分为高速往复走丝电火花线切(Reciprocating type High Speed Wire cut Electrical Discharge Machining俗称“快走丝”)、低速单向走丝电火花线切割机(Low Speed one-way walk Wire cut Electrical Discharge

微型机械加工技术发展现状和趋势分析

微型机械加工或称微型机电系统或微型系统是只可以批量制作的、集微型机构、微型传感器、微型执行器以及信号处理和控制电路、甚至外围接口、通讯电路和电源等于一体的微型器件或系统。其主要特点有:体积小(特征尺寸范围为:1μm-10mm)、重量轻、耗能低、性能稳定;有利于大批量生产,降低生产成本;惯性小、谐振频率高、响应时间短;集约高技术成果,附加值高。微型机械的目的不仅仅在于缩小尺寸和体积,其目标更在于通过微型化、集成化、来搜索新原理、新功能的元件和系统,开辟一个新技术领域,形成批量化产业。 微型机械加工技术是指制作为机械装置的微细加工技术。微细加工的出现和发展早是与大规模集成电路密切相关的,集成电路要求在微小面积的半导体上能容纳更多的电子元件,以形成功能复杂而完善的电路。电路微细图案中的最小线条宽度是提高集成电路集成度的关键技术标志,微细加工对微电子工业而言就是一种加工尺度从微米到纳米量级的制造微小尺寸元器件或薄模图形的先进制造技术。目前微型加工技术主要有基于从半导体集成电路微细加工工艺中发展起来的硅平面加工和体加工工艺,上世纪八十年代中期以后在LIGA加工(微型铸模电镀工艺)、准LIGA加工,超微细加工、微细电火花加工(EDM)、等离子束加工、电子束加工、快速原型制造(RPM)以及键合技术等微细加工工艺方面取得相当大的进展。 微型机械系统可以完成大型机电系统所不能完成的任务。微型机械与电子技术紧密结合,将使种类繁多的微型器件问世,这些微器件采用大批量集成制造,价格低廉,将广泛地应用于人类生活众多领域。可以预料,在本世纪内,微型机械将逐步从实验室走向适用化,对工农业、信息、环境、生物医疗、空间、国防等领域的发展将产生重大影响。微细机械加工技术是微型机械技术领域的一个非常重要而又非常活跃的技术领域,其发展不仅可带动许多相关学科的发展,更是与国家科技发展、经济和国防建设息息相关。微型机械加工技术的发展有着巨大的产业化应用前景。 微型机械加工技术的国外发展现状 1959年,RichardPFeynman(1965年诺贝尔物理奖获得者)就提出了微型机械的设想。1962年第一个硅微型压力传感器问世,气候开发出尺寸为50~500μm的齿轮、齿轮泵、气动涡轮及联接件等微机械。1965年,斯坦福大学研制出硅脑电极探针,后来又在扫描隧道显微镜、微型传感器方面取得成功。1987年美国加州大学伯克利分校研制出转子直径为60~12μm的利用硅微型静电机,显示出利用硅微加工工艺制造小可动结构并与集成电路兼容以制造微小系统的潜力。

电火花加工工艺

电火花加工工艺 1. 常用工件金属材料 1.1 钢的名称、牌号及用途 普通碳素结构钢:用于一般机器零件,常用的牌号有 A1~A7,代号 A 后的数字愈大,钢的抗拉强度愈高而塑性愈低。 优质碳素结构钢:用于较高要求的机械零件。常用牌号有钢 10~钢 70。钢 15(15 号钢)的平均含碳量为 0.15%,钢 40 为 0.40%,含碳量愈高,强度、硬度也愈高,但愈脆。 合金结构钢:广泛用于各种重要机械的重要零件。常用的有 20Cr、40Cr(作齿轮、轴、杆)、18CrMnTi、38CrMoAlA(重要齿轮、渗氮零件)及 65Mn(弹簧钢)。前边的数字 20 表示平均含碳量为 0.20%,38 表示 0.38%。末尾的 A 表示高级优质钢。中间的合金元素化学符号含义为:Mn 锰、Si硅、Cr 铬、W 钨、Mo 钼、Ti 钛、AL 铝、Co 钴、Ni 镍、Nb 铌、B 硼、V 钒。 碳素工具钢:因含碳量高,硬而耐磨,常用作工具、模具等。碳素工具钢牌号前加 T 字,以此和结构钢有所区别。牌号后的 A 表示高级优质钢。常用的有 T7、T7A、T8、T8A (13) T13A等。 合金工具钢:牌号意义与合金结构钢相同,只是前面含碳量的数字是以 0.10%为单位(含碳量较高)。例如 9CrSi 中平均含碳量为 0.90%。常用作模具的有 CrWMn、Cr12MoV(作冷冲模用)、5CrMnMo(作热压模用)。 1.2 铸铁的名称、牌号及用途 灰口铸铁:牌号中以灰、铁二字的汉语拼音第一字母为首,后面第一组数字为最低抗拉强度,第二组数字为最低抗弯强度。常用的有 HT10-26,HT15-33,HT20-40,HT30-54,HT40-68 等,用以铸造盖、轮、架、箱体等。 球墨铸铁:比灰口铸铁强度高而脆性小,常用的牌号有 QT45-0,QT50-1.5,QT60-2 等。第一组数字为最低抗拉强度,最后的数字为最低延伸率%。 可锻铸铁:强度和韧性更高,有 KT30-6,KT35-10 等,牌号意义同上。 1.3 有色金属及其合金 铜及铜合金:纯铜又称紫铜,有良好的导电性和导热性、耐腐蚀性和塑性。电火花加工中广泛作为电极材料,加工稳定而电极损耗小。牌号有 T1~T4(数字愈小愈纯)。铜合金主要有黄铜(含锌),常用牌号有 H59、H62、H80 等。黄铜电极加工时特别稳定,但电极损耗很大。 铝及铝合金:纯铝的牌号有 L1~L6(数字愈小愈纯)。铝合金主要为硬铝,牌号有 LY11~LY13,用作板材、型材、线材等。 1.4 粉末冶金材料 最常用的是硬质合金,具有极高的硬度和耐磨性,广泛用作工具及模具。由于其成分不同而分为钨钴类和钨钛类两大类硬质合金。

电火花加工技术论文

电火花加工的历史 1943年,苏联学者拉扎连科夫妇研究发明电火花加工,之后随着脉冲电源 和控制系统的改进,而迅速发展起来。最初使用的脉冲电源是简单的电阻-电容 回路。 50年代初,改进为电阻-电感-电容等回路。同时,还采用脉冲发电机之类的所谓长脉冲电源,使蚀除效率提高,工具电极相对损耗降低。随后又出现了大 功率电子管、闸流管等高频脉冲电源,使在同样表面粗糙度条件下的生产率得 以提高。 60年代中期,出现了晶体管和可控硅脉冲电源,提高了能源利用效率和降 低了工具电极损耗,并扩大了粗精加工的可调范围。 到70年代,出现了高低压复合脉冲、多回路脉冲、等幅脉冲和可调波形脉 冲等电源,在加工表面粗糙度、加工精度和降低工具电极损耗等方面又有了新 的进展。在控制系统方面,从最初简单地保持放电间隙,控制工具电极的进退,逐步发展到利用微型计算机,对电参数和非电参数等各种因素进行适时控制。 电火花加工 电火花加工是在加工过程中,使工具和工件之间不断产生脉冲性的火花放电,靠放电时局部、瞬间产生的高温把金属蚀除下来。又称放电加工和电蚀加工,英文称(Electrical Discharge Machining,简称EMD)。

按照工具电极的形式及其与工件之间相对运动的特征,可将电火花加工方 式分为五类: ①利用成型工具电极,相对工件作简单进给运动的电火花成形加工; ②利用轴向移动的金属丝作工具电极,工件按所需形状和尺寸作轨迹运动,以切割导电材料的电火花线切割加工; ③利用金属丝或成形导电磨轮作工具电极,进行小孔磨削或成形磨削的电 火花磨削; ④用于加工螺纹环规、螺纹塞规、齿轮等的电火花共轭回转加工; ⑤小孔加工、刻印、表面合金化、表面强化等其他种类的加工。 电火花加工的基本原理 (1)极间介质的电离、击穿,形成放电通道 放电通道是有大量带正电和负电的粒子以及中型粒子组成,带电粒子高速运动,相互碰撞,产生大量热能,使通道温度相当高,通道中心温度可达到10000摄氏度以上。由于放电时电流产生磁场,磁场又反过来对电子流动产生向心的磁压 缩效应和周围介质惯性力压缩效应的作用,通道扩展受到很大阻力,故放电开 始阶段通道截面很小,而通道内有高温热膨胀形成的压力高达几百万帕,高温高压的放电通道以及随后瞬间气化形成的气体急速扩展,产生一个强烈的冲击波向四 周传播。在放电的同时还伴随着光效应、声效应和热效应等,这就形成了肉眼所 能看到的电火花。 (2)介质热分解、电极材料的融化,汽化热膨胀 极间介质被电离、击穿,形成放电通道后,脉冲电源使通道间的电子高速奔向正极,正离子奔向负极。电能转化为动能,动能通过相互碰撞转化为热能。正极 和负极表面形成瞬间热源,使通道瞬间达到很高的温度。通道高温首先使工作 液介质气化,进而进行热分解。并且使两电极表面的金属材料开始融化直至沸腾

微细电火花加工技术

微细电火花加工技术 微细电火花加工技术的简要及背景 随着世界范围产品日益的小型化和精密化,作为非接触式精微制造方法之一的微细及小孔电火花加工技术以其超精细和高精度的加工特点倍受学术界和工业界关注,目前已经成为微机械制造领域的重要组成部分之一,在制造业中得以广泛应用。 电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用,蚀除导电材料的特种加工方法,又称放电加工或电蚀加工。主要用于加工具有复杂形状的型孔和型腔的模具和零件;加工各种硬、脆材料,如硬质合金和淬火钢等;加工深细孔、异形孔、深槽、窄缝和切割薄片等;加工各种成形刀具、样板和螺纹环规等工具和量具。 20世纪50年代初期,我国开始研究和试制电火花镀敷设备,即把硬质合金用电火花工艺镀敷在高速钢金属切削刀具和冷冲模刃口上,提高金属切削刀具和模具的使用寿命。同时我国还成功研制了电火花穿孔机,并广泛应用于柴油机喷嘴小孔的加工。60年代初,上海科学院电工研究所成功研制了我国第一台靠模仿形电火花线切割机床。随后又出现了具有我国特色的冷冲模工艺,即直接采用凸模打凹模的方法,使凸凹模配合的均匀性得到了保证,大大简化了工艺过程。60年代末,上海电表厂张维良工程师在阳极切割的基础上发明了我国独有的高速走丝线切割机床。上海复旦大学研制出电火花线切割数控系统。70年代随着电火花工艺装备的不断进步,电火花型腔模具成型加工工艺已经成熟。线切割工艺也从加工小型冷冲模发展到可以加工中型和较大型模具。切割厚度不断增加,加工精度也不断提高。80年代以来计算机技术飞速发展,电火花加工也引进了数控技术和电脑编程技术,数控系统的普及,使人们从繁重、琐碎的编程工作中解放出来,极大的提高了效率。目前计算机技术广泛应用于工业领域,电火花加工实现了数控化和无人化。美国、日本的一些电火花加工设备生产公司依靠其精密机械制造的雄厚实力,通过两轴、三轴和多轴数控系统、自动工具交换系统及采用多方向伺服的平动、摇动方案,解决了电火花加工技术中一系列实质性的问题。随着具有高精度、高刚度、高自动化、高加工表面粗糙度的机床不断出现,使加工的功能及范围不断扩大。如今,在国际上,电火花加工可以加工大至数十吨重的模具和零件,小至只有几微米的微孔。 微细电火花加工技术的原理 电火花加工基于电火花腐蚀原理,是在工具电极与工件电极相互靠近时,极间形成脉冲性火花放电,在电火花通道中产生瞬时高温,使局部金属融化,甚至汽化,从而将金属蚀除下来。 (1)极间介质的电离、击穿,形成放电通道 放电通道是有大量带正电和负电的粒子以及中型粒子组成,带电粒子高速运动,相互碰撞,产生大量热能,使通道温度升高,通道中心温度可达到10000摄氏度以上。由于放电开始阶段通道截面很小,而通道内有高温热膨胀形成的压力高达几万帕,高温高压的放电通道急速扩展,产生一个强烈的冲击波向四周传播。在放电的同时还伴随着光效应和声效应,这就形成了肉眼所能看到的电火花。

激光微细加工技术及其在MEMS微制造中的应用讲解

SpecialReports 2002年第3期 综述 激光微细加工技术及其在MEMS微制造中的应用LaserMicromachiningandItsApplicationintheMicrofabricationofMEMS 潘开林①②陈子辰②傅建中① (①浙江大学生产工程研究所②桂林电子工业学院) 摘要:文章综述了当前MEMS各类微制造技术,阐述了各种激光微细加工技术的原理、特点,主要包括准 分子激光微细加工技术、激光LIGA技术、激光微细立体光刻技术等,以及它们在MEMS微制造中的应用。 关键词:激光微细加工微机电系统激光LIGA1所示[5]。 表1MEMS主要微制造技术对比 技术 LIGA 1MEMS及其微制造技术概述 微机电系统(ME,,知功能和执行功能,在此基础上可开发出高度智能、高功能密度的新型系统。MEMS器件与系统未来将成为多个领域的核心,其作用与以CPU为代表的集成电路构成当今电子系统的核心一样。鉴于MEMS技术的重要技术经济潜力和战略地位,引起了世界各国的高度重视。MEMS主要是美国学者的称谓,在日本称为微机械,在欧洲称为微系统。此外,微技术在不同的学科与应用领域,还有类似的不同的专业或行业术语,如生物技术领域的基因芯片(DNA芯片)、生物芯片(Bio-Chip),分析化学领域的微全流体分析系统(uTAS)、芯 最小尺寸 +++--(+)-(+)+++ 精度 +++--(+)++-+ 高宽比粗糙度 ++-+-+++++++

++--+-++ 几何自 由度 +-++++++-- 材料范围金属、聚合物、 陶瓷金属、聚合物金属、聚合物、 陶瓷聚合物金属、半导体、 陶瓷金属、半导体非铁金属、聚合物 技术准分子激光微细立体光刻微细电火化 LCVD 金刚石片实验室(LabonChip),与光学集成形成微光机电系统(MOEMS)等。MEMS是从微电子技术发展而来,其微制造技术 注:表中++、+、-、--分别表示很好、好、较差、很差,+-表示不同应用条件下的相对效果,括号内的“+”表示最新研究有所进展。 在目前MEMS微细加工技术的研究与应用中,激光微细加工技术得到了广泛的关注与研究。激光微细加工制造商宣称激光微细加工技术具有:非接触工艺、有选择性加工、热影响区域小、高精度与高重复率、高的零件尺寸与形状的加工柔性等优点。 实际上,激光微细加工技术最大的特点是“直写”加工,简化了工艺,实现了MEMS的快速原型制造。此外,该方法没有诸如腐蚀等方法带来的环境污染问题,可谓“绿色制造”。 在MEMS微制造中主要采用的激光微细加工技术有:激光直写微细加工、激光LIGA、激光微细立体光刻等,下面分别加以介绍。 主要沿用微电子加工技术与设备。微电子加工技术与设备价格昂贵,适合批量生产。由于微电子工艺是平面工艺,在加工MEMS三维结构方面有一定的难度。目前,通过与其它学科的交叉渗透,已研究开发出以下一些特定的MEMS微制造技术。 (1)LIGA技术LIGA和准LIGA技术最大的特点是可制出高径比很大的微构件,但缺点同样突出,成本高。 (2)材料去除加工技术这类技术主要包括准分 子激光微细加工[1~4]、微细电火花加工[5]、以牺牲层技术为代表的硅表面微细加工、以腐蚀技术为主体的体硅加工技术、电子束铣、聚焦离子束铣等。(3)材料淀积加工技术这类技术主要包括激光 7] 辅助淀积(LCVD)、微细立体光刻[6、、电化学淀积等。

电火花加工技术概述

电火花加工技术概述-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《先进制造技术》课程学习报告 题目:电火花加工技术概述 专业:机械类 姓名:喻娇艳 年级: 2013 级 班级:机械类1306班 学号: 201303164193 武汉科技大学机械自动化学院 2016年 6月 10日

电火花加工技术概述 喻娇艳 (武汉科技大学机械自动化学院, 湖北,武汉) (13级机械类专业,学号201303164193) 摘要:电火花加工(Electrospark Machining)在日本和欧美又称为放电加工(Electrical Discharge Machining,简称EDM),是一种直接利用电能和热能进行加工的新工艺,本文从电火花加工的研究现状、基本原理、发展前景等三方面加以论述. 关键词:电火花加工的研究现状基本原理发展前景 Summarize of Electrospark Machining Technique YU Jiao-yan (College of Machinery and Automation, WuHan University of Science and Technology, HuBei WuHan 430074) Abstract: Electrospark Machining Technique is also called Electrical Discharge Machining(EDM) in Japan and Occident,it’s a new technology of machining using electrical and heat energy directly.This article discusses it in addition in three aspects including it’s research status,fundamental principle,future prospects,etc. Keywords: Research status;Fundamental principle; Future prospects 1、前言 从前苏联科学院拉扎连柯夫妇在1943年研制出世界上第一台实用化电火花加工装置以来,电火花加工已有70多年的历史,发展速度是惊人的,目前已广泛应用于机械、宇航、航空、电子、电机、仪器仪表、汽车、轻工等行业,它不仅是一种有效的机械加工手段,而且已经成为在某些场合不可替代的加工方法.例如,在解决难、硬材料及复杂零件的加工问题时,应用电火花加工技术十分有效. 据统计,目前电火花加工机床的市场占有率已占世界机床市场的6%以上.而且随着科学技术的不断发展,现代制造技术极其相关技术为电火花技术的发展提

电火花加工技术教案

天津工程师范学院 精密数控电火花加工技术 机械制造技能实训基地

第一部分基础知识 一、电火花加工:在加工过程中,使工具和工件之不断产生脉冲性的火花放电,靠放 电时局部、瞬时产生的高温把金属蚀除下来。 二、电火花加工的原理:基于工件和工具(正、负电极)之间脉冲性火花放电时的电 腐蚀现象来蚀除多余的金属,以达到对零件的尺寸、形状及表面预定的加工要 求。 三、加工条件: 1、必须使工具电极和工件被加工表面之间经常保持一定的放电间隙。 2、火花放电必须使瞬时的脉冲性放电,放电延续一段时间后,需停歇一段时 间。 3、火花放电必须在一定绝缘性能的液体介质中进行。 四、电火花加工的机理: 1、极间介质的电离、击穿、形成放电通道 2、介质热分解、电极材料熔化、气体热膨胀 3、电极材料的抛出 4、极间介质的消电离 五、电火花加工的一些基本规律: 1、影响材料放电腐蚀的主要因素 2、电火花加工的加工速度和工具的损耗速度 3、影响加工精度的主要因素 4、电火花加工的表面质量:( 1)表面粗糙度( 2)表面变质层( 3)表面力 学性能 六、基本术语: 1、工具电极 2 、放电间隙 3 、脉冲电源 4 、工作液介质 5、电蚀产物 6 、电规准 7 、脉冲宽度 8 、脉冲间隔 9、放电时间 10 、峰值电压 11 、加工点流 12 、短路电流 13、峰值电流 14 、 短路峰值电流 七、主要用途及使用范围:采用紫铜、石墨、钢、铜钨合金等电极材料,能对碳素钢、工具钢、淬火钢、硬质合金及其它高硬度金属材料进行放电加工,可加工冲压模(落料模、复合模、级进模等),型腔模(精锻模、压铸模、压延模、注塑模等)以及各种零件的坐标孔及复杂的异形曲面,还 可以加工0.1mm以上的小孔和0.2mm以上的窄缝。广泛应用于电机、仪表、汽车、航天、轻工、军工、模具等行业。 八、机床的组成部分:由主机、工作油箱、脉冲电源柜等部分组成。

相关文档
相关文档 最新文档