文档库 最新最全的文档下载
当前位置:文档库 › 传送带中的能量问题

传送带中的能量问题

传送带中的能量问题
传送带中的能量问题

传送带中的能量问题

知识梳理

摩擦力做功与机械能、内能之间转化的关系

方法指导:一对相互作用的滑动摩擦力做功所产生的热量=相对,其中相对是

物体间相对路径长度.如果两物体同向运动,l 相对为两物体对地位移大小之差;如果两物

体反向运动,l 相对为两物体对地位移大小之和;如果一个物体相对另一物体做往复运动,

则l 相对为两物体相对滑行路径的总长度

例1、电机带动水平传送带以速度v 匀速运动,一质量为m 的小木块由静止轻放在传送带上,

若小木块与传送带之间的动摩擦因数为μ,如图所示,当小木块与传送带相对静止时,求:

(1)小木块的位移;

(2)传送带转过的路程;

(3)小木块获得的功能;

(4)摩擦过程产生的内能;

(5)电机带动传送带匀速转动输出的总能量.

例2、如图5-4-4所示,AB为半径R=0.8 m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接.小车质量M=3 kg,车长L=2.06 m,车上表面距地面的高度h=0.2 m.现有一质量m=1 kg的小滑块,由轨道顶端无初速释放,滑到

B端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运动了1.5 s时,车被地面装置锁定.(g=10 m/s2)试求:

(1)滑块到达B端时,轨道对它支持力的大小;

(2)车被锁定时,车右端距轨道B端的距离;

(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小;

例3、工厂流水线上采用弹射装置把物品转运,现简化其模型分析:如图5-4-24所示,质量为m的滑块,放在光滑的水平平台上,平台右端B与水平传送带相接,传送带的运行速度为v0,长为L;现将滑块向左压缩固定在平台上的轻弹簧,到达某处时由静止释放,若滑块离开弹簧时的速度小于传送带的速度,当滑块滑到传送带右端C时,恰好与传送带速度相同,滑块与传送带间的动摩擦因数为μ.求:

(1)释放滑块时,弹簧具有的弹性势能;

(2)滑块在传送带上滑行的整个过程中产生的热量.

综合题

例4、某校物理兴趣小组决定举行遥控赛车比赛,比赛路径如图5-4-8所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟.已知赛车质量m=0.1 kg,通电后以额定功率P=1.5 W工作,进入竖直圆轨道前受到的阻力恒为0.3 N,随后在运动中受到的阻力均可不计.图中L=10.00 m,R=0.32 m,h=1.25 m,s=1.50 m.问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10 m/s2)

达标检测

1、如图16甲所示,水平传送带的长度L=6 m,皮带轮以速度v顺时针匀速转

动,现在一质量为1 kg的小物块(可视为质点)以水平速度v0从A点滑上传送带,越过B点后做平抛运动,其水平位移为x,保持物块的初速度v0不变,多次改变皮带轮的速度v依次测量水平位移x,得到如图16乙所示的x-v图象.

(1)当0<v≤1 m/s时,物块在A、B之间做什么运动?当v≥7 m/s时,物块在A、B

之间做什么运动?

(2)物块的初速度v0多大?

2、如图所示的水平传送带静止时,一个小物块A以某一水平初速度从传送带左端冲上传送带,然后从传送带右端以一个较小的速度V滑出传送带;若传送带在皮带轮带动下运动时,A物块仍以相同的水平速度冲上传送带,且传送带的速度小于A的初速度,则 ( )

A、若皮带轮逆时针转动,A物块仍以速度V离开传送带

B、若皮带轮逆时针方向转动,A物块不可能到达传送带的右端

C、若皮带轮顺时针方向转动,A物块离开传送带的速度仍然可能为V

D、若皮带轮顺时针方向转动,A物块离开传送带右端的速度一定大于V

答案:例1对小木块,相对滑动时,由ma =μmg 得加速度a =μg ,由v =at 得,达相对静止所用时间t =v μg

. (1)小木块的位移x 1=v 2t =v 2

2μg

. (2)传送带始终匀速运动,路程x 2=vt =v 2

μg

. (3)对小木块获得的动能E k =12

mv 2 这一问也可用动能定理解:μmgx 1=E k

故E k =12

mv 2. (4)产生的内能Q =μmg (x 2-x 1)=12

mv 2. 注意,这儿凑巧了Q =E k ,但不是所有的问题都这样.

(5)由能的转化与守恒定律得,电机输出的总能量转化为小木块的动能与内能,所以E 总=E k +Q =mv 2.

例2【标准解答】 (1)由机械能守恒定律和牛顿第二定律得

mgR =12

mv 2B , F N B -mg =m v 2

B R

则:F N B =30 N.

(2)设m 滑上小车后经过时间t 1与小车同速,共同速度大小为v ,

对滑块有:μmg =ma 1,v =v B -a 1t 1

对于小车:μmg =Ma 2,v =a 2t 1

可得t 1=1 s <1.5 s

故滑块与小车同速后,小车继续向左匀速行驶了0.5 s ,则小车右端距B 端的距离为

l 车=v 2

t 1+v (1.5 s -t 1)=1 m. (3)Q =μmgl 相对=μmg (v B +v 2t 1-v 2t 1)=6 J. 车被锁定后,滑块能否从车的左端滑出?若能滑出,试求出滑块落地点离车左端的水平距离.

车被锁定时,m 相对车面已滑行了

l 相对=v B +v 2t 1-v 2

t 1=2 m 故此时滑块离车的左端的距离为

l =L -l 相对=0.06 m ,

假设滑块能从车的左端滑出,速度大小为v ′,

则由12mv 2=12

mv ′2+μmgl 可得:

v ′=0.8 m/s >0,可见假设成立.

又h =12

gt ′2,l ′=v ′t ′. 可得:l ′=0.16 m.

例3【解析】 (1)设滑块冲上传送带时的速度为v ,在弹簧弹开过程中,

由机械能守恒E p =12

mv 2 滑块在传送带上做匀加速运动

由动能定理μmgL =12mv 20-12

mv 2 解得:E p =12

mv 20-μmgL . (2)设滑块在传送带上做匀加速运动的时间为t ,则t 时间内传送带的位移 s =v 0t

v 0=v +at μmg =ma

滑块相对传送带滑动的位移Δs =s -L

相对滑动生成的热量Q =μmg Δs

解得:Q =mv 0(v 0- v 20-2μgL )-μmgL .

例4【解析】 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律 s =v 1t

h =12gt 2

解得 v 1=s g 2h

=3 m/s 设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点的速度为v 3,由牛顿运动定律及机械能守恒定律得

mg =m v 2

2R

12mv 23=12

mv 22+mg (2R ) 解得v 3=5gR =4 m/s

通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能原理

Pt -fL =12mv 2

min

由此可得t =2.53 s.

达标检测

1、解析:(1)由于0<v ≤1 m/s 时传送带速度增加而物体的平抛初速度不变,所以物体在

A 、

B 之间做匀减速直线运动.

由于v ≥7 m/s 时传送带速度增加而物体的平抛初速度不变,所以物体在A 、B 之间做 匀加速直线运动.

(2)由图象可知在传送带速度v 带=1 m/s 时,物体做匀减速运动.

则平抛初速度为v 1=1 m/s ,由动能定理得:

-μmgL =12mv 12-12

mv 02 在v 带=7 m/s 时,物体做匀加速运动,

则平抛初速度为v 2=7 m/s ,由动能定理得:

μmgL =12mv 22-12

mv 02 解得v 0=

v 12+v 22

2=5 m/s. 答案:(1)匀减速直线运动 匀加速直线运动 (2)5 m/s

2、AC

专题七 摩擦力做功及传送带中的能量问题

专题七摩擦力做功及传送带中的能量问题 1. 如图所示,足够长的传送带以恒定速率顺时针运行,将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端.下列说法正确的是() A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功 B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加 C.第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加 D.物体从底端到顶端全过程机械能的增加等于全过程物体与传送带间的摩擦生热 2. 如图所示,光滑坡道顶端距水平面高度为h,质量为m的小物块A从坡道顶端由静止滑下,进入水平面上的滑道,经过O点时无机械能损失,为使A制动,将轻弹簧的一端固定在竖直墙上的M点,另一端恰位于滑道的末端O点.已知在OM段,物块A与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求: (1)物块滑到O点时的速度大小; (2)弹簧为最大压缩量d时的弹性势能(设弹簧处于原长时弹性势能为零); (3)若物块A能够被弹回到坡道上,则它能够上升的最大高度是多少? 3. 如图所示,斜面AB、DB摩擦因数相同.可视为质点的物体,分别沿AB、DB从斜面顶端由静止下滑到底端,下列说法正确的是() A.物体沿斜面DB滑动到底端时动能较大 B.物体沿斜面AB滑动到底端时动能较大 C.物体沿斜面DB滑动到底端过程中克服摩擦力做的功较多 D.物体沿斜面AB滑动到底端过程中克服摩擦力做的功较多 4. 如图所示,粗糙的斜面与光滑的水平面相连接,滑块沿水平面以速度v0运动,设滑块运动到A点的时刻为t=0,距A点的水平距离为x,水平速度为v x.由于v0不同,从A点到B点的几种可能的运动图象如下列选项所示,其中表示摩擦力做功最大的是() A B C D

传送带中的能量能量分析

传送带中的能量能量分析

传送带中的能量能量分析 象山中学 李铁林 传送带作为一种运输工具,其能量的转化主要考虑 两个方面:①、增加物体的机械能(动能和势能)②、增加系统的内能(即由于物体和皮带之间发生相对运动因摩擦而产生的热量) 例1. 如图,电机带动传送带以速度v 匀速传动,一 质量为m 的小木块由静止放在传送带上(传送带 足够长)若小木 块与传送带之间的动摩擦因数 为μ,当小木块与传送带相对静止时,求:⑴、 小木块的位移。⑵、传送带经过的路程。⑶、小 木块获得的动能。⑷、摩擦过程产生的热量。⑸ 电机带动传送带匀速转动输出的总能量。 分析:木块刚放上时速度为零,必 然受到传送带的滑动摩擦力作用做匀加速直线运动,达到与传送带有共同速度后不再有相对运动,整个过程中木块获得一定的动能,系统要产生摩擦热。 对木块:相对滑动时,a=μg,达到相对静止所用的时 间为t=v g μ,木块的位移21122v s vt g μ==,传送带的位移22v s vt g μ==,木块相对传送带的位移2 212v s s s g μ=-=,小木块获得的动能

212k E mv =,产生的热量221211()()2Q fs f s s mg s s mv μ==-=-=,电动机输 出的总能量转化为小木块的动能和系统产生的热量2 k E E Q mv =+= 注意:当木块的初速为零时,木块经过的位移和木 块相对皮带的位移恰好相等,这一特点要记住,在解题中很有用处。 2.如图,已知传送带两轮的半 径r =1m ,传动中传送带不打滑,质 量为1kg 的物体从光滑轨道A 点无 初速下滑(A 点比B 点高h =5m ),物体与传送带之间的动摩擦因数2.0=μ,当传送带静止时,物体恰能在C 点离开传送带,则 (1)BC 两点间距离为多少? (2)若要使物体从A 点无初速释放后能以最短时间到达C 点,轮子转动的角速度大小应满足什么条件? (3)当传送带两轮以12rad/s 的角速度顺时针转动时,物体仍从A 点无初速释放,在整个过程中物体与皮带系统增加的内能为多少? 解:(1)设物体质量为m ,在C 点时运动速度为C v ,BC 间距离为s 。因物体恰在c 点离开传送带,则 r v m mg C 2=, 由动能定理,得2 21C mv mgs mgh =-μ,联立得,10=C v m/s ,

传送带中的能量问题---专题

传送带中的能量问题 知识梳理 摩擦力做功与机械能、内能之间转化的关系 # 方法指导:一对相互作用的滑动摩擦力做功所产生的热量Q =fl 相对,其中l 相对是物体 间相对路径长度.如果两物体同向运动,l 相对为两物体对地位移大小之差;如果两物体反向 运动,l 相对为两物体对地位移大小之和;如果一个物体相对另一物体做往复运动,则l 相对 为两物体相对滑行路径的总长度。 例1、电机带动水平传送带以速度v 匀速运动,一质量为m 的小木块由静止轻放在传送带上, 若小木块与传送带之间的动摩擦因数为μ,如图所示,当小木块与传送带相对静止时,求: (1)小木块的位移; (2)传送带转过的路程; (3)小木块获得的功能; (4)摩擦过程产生的内能; (5)电机带动传送带匀速转动输出的总能量

} 例2、如图5-4-4所示,AB 为半径R = m 的1/4光滑圆弧轨道,下端B 恰与小车右端平滑对接.小车质量M =3 kg ,车长L = m ,车上表面距地面的高度h = m .现有一质量m =1 kg 的小滑块,由轨道顶端无初速释放,滑到 B 端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=,当车运动了 s 时,车被地面装置锁定.(g =10 m/s 2)试求: (1)滑块到达B 端时,轨道对它支持力的大小; (2)车被锁定时,车右端距轨道B 端的距离; (3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小; (1)由机械能守恒定律和牛顿第二定律得 mgR =12mv 2B ,F N B -mg =m v 2B R 则:F N B =30 N. (2)设m 滑上小车后经过时间t 1与小车同速,共同速度大小为v , 对滑块有:μmg =ma 1,v =v B -a 1t 1 @ 对于小车:μmg =Ma 2,v =a 2t 1 可得t 1=1 s < s 故滑块与小车同速后,小车继续向左匀速行驶了 s ,则小车右端距B 端的距离为 l 车=v 2 t 1+v s -t 1)=1 m. (3)Q =μmgl 相对=μmg ( v B +v 2t 1-v 2 t 1)=6 J.

有关传送带的能量问题

高中物理试卷第1页,共1页 有关传送带的能量问题 一、计算题() 1.如图所示,一质量为 m =1 kg 的可视为质点的滑块,放在光滑的水平平台上,平台的左端与水平传送带相接,传送带以 v =2 m/s 的速度沿顺时针方向匀速转动(传送带不打滑),现将滑块缓慢向右压缩轻弹簧,轻弹簧的原长小于平台的长度,滑块静止时弹簧的弹性势能为 E p = 4.5 J ,若突然释放滑块,滑块向左滑上传送带。已知滑块与传送带的动摩擦因数为 μ=0.2,传送带足够长, g =10 m/s 2。求: (1) 滑块第一次滑上传送带到离开传送带所经历的时间。 (2) 滑块第一次滑上传送带到离开传送带由于摩擦产生的热量。 2.如图所示,质量m 的小物体,从光滑曲面上高度h 处释放,到达底端时水平进入轴心距离L 的水平传 送带,传送带可由一电机驱使顺时针转动.已知物体与传送带间的动摩擦因数为μ.求: (1)求物体到达曲面底端时的速度大小v 0? (2)若电机不开启,传送带不动,物体能够从传送带右端滑出,则物体滑离传送带右端的速度大小v 1 为多少? (3)若开启电机,传送带以速率v 2(v 2>v 0)顺时针转动,且已知物体到达传送带右端前速度已达到 v 2,则传送一个物体电动机对传送带多做的功为多少? 3.电机带动水平传送带以速度v 匀速传动,一质量为m 的小木块由静止轻放在传送带上,如图所示.若小 木块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,求: (1)小木块的位移; (2)传送带转过的路程; (3)摩擦过程产生的摩擦热; (4)电机带动传送带匀速转动输出的总能量. 4.如图所示,绷紧的传送带在电动机带动下,始终保持v 0=4m/s 的速度匀速运行,传送带与水平地面的夹角 θ=30°,现把一质量m=10kg 的工件轻轻地放在传送带底端,由传送带送至h=2m 的高处.已知工件与传送带 间动摩擦因数μ=,g 取10m/s 2. (1)试通过计算分析工件在传送带上做怎样的运动? (2)工件从传送带底端运动至高h=2m 处的过程中摩擦力对工件做了多少功? (3)在运送工件过程中,电动机多消耗的电能. 5.如图所示,绷紧的传送带在电动机的带动下,始终保持v 0=2m/s 的速度匀速行驶,传送带与水平地面的夹 角θ=30°.现把一质量m=10kg 的工件轻轻地放在传送带底端,由传送带送至h=2m 的高处,已知工件与传 送带间动摩擦因数μ=,g=10m/s 2.求: (1)试通过计算分析工件在传送带上做怎样的运动? (2)在工件从传送带底端运动至h=2m 高处的过程中,摩擦力对工件做了多少功? (3)由于传送工件,电动机多消耗的能量△E 为多少? 6.如图,传送带AB 总长为l=10m ,与一个半径为R=0.4m 的光滑圆轨道BC 相切于B 点.传送带速度恒为v=6m/s ,方向向右.现有一个滑块以一定初速度v 0从A 点水平冲上传送带,滑块质量为m=10kg ,滑块与传送带间的动摩擦因数为μ=0.1.已知滑块运动到B 端时,刚好与传送带共速.求 (1)v 0; (2)滑块能上升的最大高度h ; (3)求滑块第二次在传送带上滑行时,滑块和传送带系统产生的内能.

传送带中的能量问题资料讲解

传送带中的能量问题

传送带中的能量问题 知识梳理 其中l 相对是物体间相对路径长度.如果两物体同向运动,l 相对为两物体对地位移大小之差;如果两物体反向运动,l 相对为两物体对地位移大小之和;如果一个物体相对另一物体做往复运动,则l 相对为两物体相对滑行路径的总长度 例1、电机带动水平传送带以速度v 匀速运动,一质量为m 的小木块由静止轻放在传送带上,若小木块与传送带之间的动摩擦因数为μ,如图所示,当小木块与传送带相对静止时,求: (1)小木块的位移; (2)传送带转过的路程; (3)小木块获得的功能; (4)摩擦过程产生的内能; (5)电机带动传送带匀速转动输出的总能量.

例2、如图5-4-4所示,AB为半径R=0.8 m的1/4光滑圆弧轨道,下端B 恰与小车右端平滑对接.小车质量M=3 kg,车长L=2.06 m,车上表面距地面的高度h=0.2 m.现有一质量m=1 kg的小滑块,由轨道顶端无初速释放,滑到 B端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运动了1.5 s时,车被地面装置锁定.(g=10 m/s2)试求: (1)滑块到达B端时,轨道对它支持力的大小; (2)车被锁定时,车右端距轨道B端的距离; (3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小; 例3、工厂流水线上采用弹射装置把物品转运,现简化其模型分析:如图5-4-24所示,质量为m的滑块,放在光滑的水平平台上,平台右端B与水平传送带相接,传送带的运行速度为v0,长为L;现将滑块向左压缩固定在平台上的轻弹簧,到达某处时由静止释放,若滑块离开弹簧时的速度小于传送带的速度,当滑块滑到传送带右端C时,恰好与传送带速度相同,滑块与传送带间的动摩擦因数为μ.求: (1)释放滑块时,弹簧具有的弹性势能; (2)滑块在传送带上滑行的整个过程中产生的热量.

“传送带”模型中的能量问题

微专题训练14 “传送带”模型中的能量问题 1.(单选)如图1所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体在滑下传送带之前能保持与传送带相对静止,对于物体从静止释放到与传送带相对静止这一过程,下列说法中正确的是 ( ). 图1 A .电动机多做的功为1 2mv 2 B .物体在传送带上的划痕长v 2 μg C .传送带克服摩擦力做的功为1 2mv 2 D .电动机增加的功率为μmgv 解析 小物块与传送带相对静止之前,物体做匀加速运动,由运动学公式知x 物 =v 2t ,传 送带做匀速运动,由运动学公式知x 传=vt ,对物块根据动能定理μmgx 物=1 2mv 2,摩擦产生的热量Q =μmgx 相=μmg (x 传-x 物),四式联立得摩擦产生的热量Q =1 2mv 2,根据能量守恒定律,电动机多做的功一部分转化为物块的动能,一部分转化为热量,故电动机多做的功等于 mv 2,A 项错误;物体在传送带上的划痕长等于x 传-x 物=x 物=v 2 2μg ,B 项错误;传 送带克服摩擦力做的功为μmgx 传=2μmgx 物=mv 2,C 项错误;电动机增加的功率也就是电动机克服摩擦力做功的功率为μmgv ,D 项正确. " 答案 D 2.(单选)如图2所示,水平传送带两端点A 、B 间的距离为l ,传送带开始时处于静止状态.把一个小物体放到右端的A 点,某人用恒定的水平力F 使小物体以速度v 1匀速滑到左端的B 点,拉力F 所做的功为W 1、功率为P 1,这一过程物体和传送带之间因摩擦而产生的热量为Q 1.随后让传送带以v 2的速度匀速运动,此人仍然用相同的恒定的水平力F 拉物体,使它以相对传送带为v 1的速度匀速从A 滑行到B ,这一过程中,拉力F 所做的功为W 2、功率为P 2,物体和传送带之间因摩擦而产生的热量为Q 2.下列关系中正确的是 ( ).

高中物理传送带问题知识难点讲解汇总(带答案)

图2—1 弄死我咯,搞了一个多钟 传送带问题 一、难点形成的原因: 1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误; 3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。 二、难点突破策略: (1)突破难点1 在以上三个难点中,第1个难点应属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。 摩擦力的产生条件是:第一,物体间相互接触、挤压; 第二,接触面不光滑; 第三,物体间有相对运动趋势或相对运动。 前两个产生条件对于学生来说没有困难,第三个条件就比较容易出问题了。若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。 若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。 若物体与传送带保持相对静止一起匀速运动,则它们之间无摩擦力,否则物体不可能匀速运动。 若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同的速度、相对传送带静止为止。因此该摩擦力方向一定与物体运动方向相反。 若物体与传送带保持相对静止一起匀速运动一段时间后,开始减速,因物体速度越来越小,故受到传送带提供的使它减速的摩擦力作用,方向与物体的运动方向相反,传送带则受到与传送带运动方向相同的摩擦力作用。 若传送带是倾斜方向的,情况就更为复杂了,因为在运动方向上,物体要受重力沿斜面的下滑分力作用,该力和物体运动的初速度共同决定相对运动或相对运动趋势方向。 例1:如图2—1所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少? 【审题】传送带沿逆时针转动,与物体接触处的速度方向斜向下,物体初速度为零,所以物体相对传送带向上滑动(相对地面是斜向下运动的),因此受到沿斜面向下的滑动摩擦力作用,这样物体在沿斜面方向上所受的合力为重力的下滑

传送带中的能量能量分析

传送带中的能量能量分析 象山中学 李铁林 传送带作为一种运输工具,其能量的转化主要考虑两个方面:①、增加物体的机械能(动能和势能)②、增加系统的内能(即由于物体和皮带之间发生相对运动因摩擦而产生的热量) 例1. 如图,电机带动传送带以速度v 匀速传动,一质量为m 的小木块由静止放在传送带上(传送 带足够长)若小木 块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,求: ⑴、小木块的位移。⑵、传送带经过的路程。⑶、小木块获得的动能。⑷、摩擦过程产生的 热量。⑸电机带动传送带匀速转动输出的总能量。 分析:木块刚放上时速度为零,必然受到传送带的滑动摩擦力作用做匀 加速直线运动,达到与传送带有共同速度后不再有相对运动,整个过程中木 块获得一定的动能,系统要产生摩擦热。 对木块:相对滑动时,a=μg,达到相对静止所用的时间为t=v g μ,木块的位移2 1122v s vt g μ==,传送带的位移22v s vt g μ==,木块相对传送带的位移2 212v s s s g μ=-=,小木块获得的动能212k E mv =,产生的热量221211()()2 Q fs f s s mg s s mv μ==-=-= ,电动机输出的总能量转化为小木块的动能和系统产生的热量2k E E Q mv =+= 注意:当木块的初速为零时,木块经过的位移和木块相对皮带的位移恰好相等,这一特点要记住,在解题中很有用处。 2.如图,已知传送带两轮的半径r =1m ,传动中传送带不打 滑,质量为1kg 的物体从光滑轨道A 点无初速下滑(A 点比B 点高 h =5m ),物体与传送带之间的动摩擦因数2.0=μ,当传送带静止时, 物体恰能在C 点离开传送带,则 (1)BC 两点间距离为多少? (2)若要使物体从A 点无初速释放后能以最短时间到达C 点,轮子转动的角速度大小应满足什么条件? (3)当传送带两轮以12rad/s 的角速度顺时针转动时,物体仍从A 点无初速释放,在整个过程中物体与皮带系统增加的内能为多少? 解:(1)设物体质量为m ,在C 点时运动速度为C v ,BC 间距离为s 。因物体恰在c 点离开传送带,则 r v m mg C 2=, 由动能定理,得221C mv mgs mgh =-μ,联立得,10=C v m/s ,5.22=s m (2)物体以最短时间到达C 点,因此BC 段物体以最大加速度做匀加速运动,设加速度为a ,物体在 B 、 C 两点的速度分别为B v 、' C v ,则2102.0=?==g a μm/s 2, 22 1B mv mgh =,as v v B C 222=-',

摩擦力做功及传送带中的能量问题

9月6日 摩擦力做功及传送带中的能量问题 高考频度:★★★★☆ 难易程度:★★★★☆ 如图所示,足够长的传送带与水平方向的夹角为θ,物块a 通过平行于传送带的轻绳跨过光滑定滑轮与物块b 相连,b 的质量为m 。开始时,a 、b 及传送带均静止,且a 不受摩擦力作用。现让传送带逆时针匀速转动,在b 由静止开始上升h 高度(未与定滑轮相碰)过程中 A .a 的重力势能减少mgh B .摩擦力对a 做的功等于a 机械能的增量 C .摩擦力对a 做的功等于a 、b 动能增加量之和 D .任意时刻,重力对a 、b 做功的瞬时功率大小相等 【参考答案】ACD 【知识补给】 摩擦力做功的特点 静摩擦力:可以不做功,可以做正功,也可以做负功;相互作用的系统内,一对静摩擦力所做共的代数和为零;在静摩擦力做功的过程重,只有机械能的相互转化,而没有机械能转化为其他形式的能。 滑动摩擦力;可以不做功,可以做正功,也可以做负功;相互作用的系统内,一对滑动摩擦力所做功的代数和总为负值,其绝对值等于滑动摩擦力与相对路程的乘积,等于系统损失的机械能,=f W f s E =?相对路程损,在滑动摩擦力做功的过程中,既有机械能的相互转移,又有机械能转化为其他形式

的能。 在传送带模型中,物体和传送带由于摩擦而产生的热量等于摩擦力乘以相对路程,即Q f s =?相对路程。 如图所示,白色传送带与水平面夹角为37°,以10 m/s 的恒定速率沿顺时针方向转动。在传送带上端A 处无初速度地轻放一个质量为1 kg 的小煤块(可视为质点),它与传送带间的动摩擦因数为0.5。已知传送带上端A 到下端B 的距离为16 m ,sin 37°=0.6,cos 37°=0.8,重力加速度g =10 m/s 2。则在小煤块从A 运动到B 的过程中 A .运动的时间为2 s B .小煤块在白色传送带上留下的黑色印记长度为6 m C .小煤块和传送带间因摩擦产生的热量为24 J D .小煤块对传送带做的总功为0 (2017·山西太原高一期末)关于重力,摩擦力做功的叙述,正确的是 A .重力对物体做功只与始、末位置有关,而与路径无关 B .物体克服重力做了多少功,物体的重力势能就减少多少 C .摩擦力对物体做功与路径无关 D .摩擦力对物体做功,物体动能一定减少 (2017·山西太原高三月考)如图所示,传送带以恒定速率顺时针运行。将物体轻放在传送带底端,第一阶段物体被加速,第二阶段物体做匀速运动到达传送带顶端。下列说法中正确的是 A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功 B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加 C .全过程摩擦力对物体做的功等于全过程物体机械能的增加

“传送带”模型问题专题分析

“传送带”模型问题专题分析 一.模型特点: 1.水平传送带 情景一 物块可能运动情况: (1)可能一直加速 (2)可能先加速后匀速 情景二 (1)v0>v时,可能一直减速,也可能先减速再匀速 (2)v0v返回时速度为v,当v0

传送带模型中的能量问题

传送带模型中的能量问题 1.如图所示,比较长的传送带与水平方向的夹角θ=37°,在电动机带动下以v 0=4 m/s 的恒定速率顺时针方向运行.在传送带底端P 处有一离传送带很近的固定挡板,可将传送带上的物体挡住.在距P 距离为L =9 m 的Q 处无初速度地放一质量m =1 kg 的物体,它与传送带间的动摩擦因数μ=0.5,物体与挡板的碰撞能量损失及碰撞时间不计,取g =10 m/s 2,sin37°=0.6,求物体 从静止释放到第一次返回上升至最高点的过程中: (1)相对传送带发生的位移; (2)系统因摩擦产生的热量; (3)传送带多消耗的电能; (4)物体的最终状态及该状态后电动机的输出功率. 【解析】 (1)要分上和下两个过程处理,注意相对路程和相对位移是不一样的。 解法1:力和运动法.物体由静止释放,沿传送带向下加速运动,相对传送带亦向下滑,受力如图1所示,有mgsin θ-μmgcos θ=ma 1,得a 1=2 m/s 2 与P 碰前速度v 1=2a 1L =6 m/s 设物体从Q 到P 的时间为t 1,则t 1=v 1a 1 =3 s 设物体对地位移为x 1,可知x 1=L =9 m ,相对传送带向下的位移Δx 1=x 1+v 0t 1=21 m 物体与挡板碰撞后,以速度v 1反弹,向上做减速运动,因v 1>v 0,物体相对传送带向上滑,设速度减小到与传送带速度相等的时间为t 2,此过程受力如图2所示,有mgsin θ+μmgcos θ=ma 2 得a 2=10 m/s 2,t 2=v 1-v 0a 2 =0.2 s 在t 2时间内物体对地向上的位移x 2=v 1+v 02t 2 =1 m 相对传送带向上的位移Δx 2=x 2-v 0t 2=0.2 m 物体速度与传送带速度相等后,由于mgsin θ>μmgcos θ物体不能匀速,将相对传送带向下滑,对地向 上做加速度大小为a 3=a 1=2 m/s 2的减速运动,设速度减小到零的时间为t 3,t 3=v 0a 3 =2 s 此过程中物体对地向上的位移x 3=v 02 t 3=4 m 相对传送带向下的位移Δx 3=v 0t 3-x 3=4 m 整个过程中两者相对滑动位移为Δx =Δx 1-Δx 2+Δx 3=24.8 m. 解法2:相对运动法.以传送带为参考系,在求出相对初速度和相对加速度后,三个阶段物体相对传送 带的位移分别为Δx 1=v 0t 1+12a 1t 21=21 m Δx 2=(v 1-v 0)t 2-12 a 2t 22=0.2 m Δx 3=12a 3t 23 =4 m 第二阶段物体相对传送带向上运动,两者相对滑动总位移为Δx =Δ x 1-Δx 2+Δx 3=24.8 m. 解法3:图象法.设沿传送带向上为正方向,画出如图3所示物体

传送带上有关摩擦力的分析

从传送带看有关摩擦力的分析 河北迁西一中王影 摩擦力问题是中学物理力学部分的重点和难点,一些同学往往因为对该部分的迷惑而对物理丧失信心。下面笔者试图通过对传送带中摩擦力的分析达到解惑之目的。 一. 水平传送带问题 水平传送带问题比较简单,一般主要分析传送带上的物体、传送带以及轮上各点所受摩擦力的情况。 例题1 水平传送带的装置如图1所示,O1为主动轮,O2为从动轮。当主动轮顺时针匀速转动时,物体被轻轻地放在A端皮带上。开始时物体在皮带上滑动,当它到达位置C后滑动停止,之后就随皮带一起匀速运动,直至传送到目的地B端。在传送的过程中,若皮 带和轮不打滑,则物体受到的摩擦力和皮带上P、Q两处(在连线上)所受摩擦力情况正确的是()。 图1 ①在AC段物体受水平向左的滑动摩擦力,P处受向上的滑动摩擦力 ②在AC段物体受水平向右的滑动摩擦力,P处受向下的滑动摩擦力 ③在CB段物体不受静摩擦力,Q处受向上的静摩擦力 ④在CB段物体受水平向右的静摩擦力,P、Q两处始终受向下的静摩擦力 A. ①② B. ①④ C. ②③ D. ③④ 解析:在AC段上,当物体轻轻放在传送带上时,传送带相对于物体向右运动(开始传送带的速度大于物体的速度),物体给传送带一个向左的滑动摩擦力,由作用力和反作用力的关系可知,传送带给物体一个向右的摩擦力,从而使物体加速前进。当物体运动到CB段上时,物体和传送带之间没有相对运动,此时它们之间无摩擦力。 主动轮、从动轮、皮带之间的转动关系:主动轮皮带从动轮,即主动轮先转,带动皮带运转,皮带又带动从动轮运转。在Q点轮子相对于皮带有向上运动的趋势,故皮带给轮子一个向下的摩擦力,同时轮子给皮带一个向上的摩擦力,此力拉动皮带运动。同时,在皮带上的P点相对于从动轮有向下运动的趋势,则从动轮给一个皮带一个向上的摩擦力,同时,皮带给从动轮一个向下的摩擦力,从动轮在该摩擦力的作用下运动。因此本题正确的选项为C。 二. 倾斜传送带问题 (1)物体和传送带一起匀速运动 匀速运动说明物体处于平衡状态,则物体受到的摩擦力和重力沿传送带的分力等大方 向,即物体所受到的静摩擦力的方向向上,大小为。 (2)物体和传送带一起加速运动 ①若物体和传送带一起向上加速,传送带的倾角为,则对物体有

“传送带”模型中的能量问题

“传送带”模型中的能量 问题 Prepared on 24 November 2020

微专题训练14 “传送带”模型中的能量问题 1.(单选)如图1所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体在滑下传送带之前能保持与传送带相对静止,对于物体从静止释放到与传送带相对静止这一过程,下列说法中正确的是 ( ). 图1 A .电动机多做的功为1 2m v 2 B .物体在传送带上的划痕长v 2 μg C .传送带克服摩擦力做的功为1 2m v 2 D .电动机增加的功率为μmg v 解析 小物块与传送带相对静止之前,物体做匀加速运动,由运动学公式知x 物=v 2t ,传 送带做匀速运动,由运动学公式知x 传=v t ,对物块根据动能定理μmgx 物=1 2m v 2,摩擦产 生的热量Q =μmgx 相=μmg (x 传-x 物),四式联立得摩擦产生的热量Q =1 2m v 2,根据能量 守恒定律,电动机多做的功一部分转化为物块的动能,一部分转化为热量,故电动机多做的功等于 m v 2,A 项错误;物体在传送带上的划痕长等于x 传-x 物=x 物=v 2 2μg ,B 项错 误;传送带克服摩擦力做的功为μmgx 传=2μmgx 物=m v 2,C 项错误;电动机增加的功率也就是电动机克服摩擦力做功的功率为μmg v ,D 项正确. 答案 D 2.(单选)如图2所示,水平传送带两端点A 、B 间的距离为l ,传送带开始时处于静止状态.把一个小物体放到右端的A 点,某人用恒定的水平力F 使小物体以速度v 1匀速滑到左端的B 点,拉力F 所做的功为W 1、功率为P 1,这一过程物体和传送带之间因摩擦而产生的热量为Q 1.随后让传送带以v 2的速度匀速运动,此人仍然用相同的恒定的水平力F 拉物体,使它以相对传送带为v 1的速度匀速从A 滑行到B ,这一过程中,拉力F 所做的功为W 2、功率为P 2,物体和传送带之间因摩擦而产生的热量为Q 2.下列关系中正确的是 ( ). 图2 A .W 1=W 2,P 1

Q 2 C .W 1>W 2,P 1=P 2,Q 1>Q 2 D .W 1>W 2,P 1=P 2,Q 1=Q 2 解析 因为两次的拉力和拉力方向的位移不变,由功的概念可知,两次拉力做功相等,

专题三传送带中的动力学和能量问题

专题三、传送带问题及其典例剖析 (动力学和能量问题) (一)动力学中的传送带问题 一、传送带模型中要注意摩擦力的突变 ①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向 二、传送带模型的一般解法 ①确定研究对象; ②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响; ③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。 难点疑点:传送带与物体运动的牵制。牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。 一、水平放置运行的传送带 例1.(2003年·江苏理综)水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A、B始终保持v=1m/s的恒定速率运行;一质量为m=4kg的行李无初速地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB间的距离l=2m,g取10m/s2. (1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小; (2)求行李做匀加速直线运动的时间; (3)如果提高传送带的运行速率,行李就能被较快地传送到B处.求行李从A处传送到B处的最短时间和传送带对应的最小运行速率. 例2.(2006年全国理综I第24题)一水平的浅色长传送带上放置一煤块(可视为质点), 煤块与传送带之间的动摩擦因数为μ。初始时,传送带与煤块都是静止的。现让传送带以 恒定的加速度a0开始运动,当其速度达到v0后,便以此速度做匀速运动,经过一段时间, 煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度. 解法1 力和运动的观点 根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度 a小于传送带的加速度a0。根据牛顿第二定律,可得 =① aμ g 设经历时间t,传送带由静止开始加速到速度等于v0,煤块则由静止加速到v,有

传送带中的能量分析

传送带中的能量分析 1如图,电机带动传送带以速度v 匀速传动,一质量为m 的小木块由静止放在传送带上(传送带足够长)若小木 块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,求:⑴、小木块的位移。⑵、传送带经过的路程。⑶、小木块获得的动能。⑷、摩擦过程产生的热量。⑸电机带动传送带匀速转动输出的总能量。 2.如图,已知传送带两轮的半径r =1m ,传动中传送带不打滑,质量为1kg 的物体从光滑轨道A 点无初速下滑(A 点比B 点高h =5m ),物体与传送带之间的动摩擦因数2.0=μ,当传送带静止时,物体恰能在C 点离开传 送带,则 (1)BC 两点间距离为多少? (2)若要使物体从A 点无初速释放后能以最短时间到达C 点,轮子转动的角速度大小应满足什么条件? (3)当传送带两轮以12rad/s 的角速度顺时针转动时,物体仍从A 点无初速释放,在整个过程中物体与皮带系统增加的内能为多少? 3、传送带以恒定速度υ=1.2m/S 运行, 传送带与水平面的夹角为37o。现将质量m=20kg 的物品轻放在其底端,经过一段时间物品被送到1.8m 高的平台上,如图所示。已知物品与传送带之间的摩擦因数μ=0.85,则 (1)物品从传送带底端到平台上所用的时 间是多少? (2)每送一件物品电动机需对传送带做的 功是多少? (总时间为)(25.321s t t t =+= )(6.489J W =) 4.如图所示,传递皮带以1 m/s 的速度水平匀速运动,砂斗以20 kg/s 的流量向皮带上装砂子. (ΔP =20 W.) 5.一传送带装置示意图如图2所示,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,为画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的 高度差为h 。稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L 。每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动)。已知在一段相当长的时间T 内,共运送小货箱的数目为N 。这装置由电动机带动,传送带与 轮子间无相对滑动,不计轮轴处的摩擦。求电动机的平均输出功率P 。 (][22 2gh T L N T Nm P += ) 6 某商场安装了一台倾角为30°的自动扶梯,该扶梯在电压为380V 的电动机带动下以0.4m/s 的 恒定速率向斜上方移动,电动机的最大输出功率为4.9kW 。不载人时测得电动机中的电流为5A ,若载人时扶梯的移动速率与不载人时相同,则这台自动扶梯可同时乘载的最多人数为 。(设人的平均质量为60kg ,g=10m/s2)(25人) 例:如图3-1-7所示,水平传送带长为L =10m ,以v 0=4m/s 的速度逆时针 匀速转动,质量为m =1kg 的小物体以初速度v =3m/s 滑上传送带的左端, 小物体与传送带间动摩擦因数μ=0.1。求物体离开传送带时的速度大小和 物体与传送带之间产生的热量。(g=10m/s 2) (全部过程的总热量24J ) 图3-1-7

传送带模型中的能量问题

传送带模型中的能量问题 Prepared on 24 November 2020

传送带模型中的能量问题 1.如图所示,比较长的传送带与水平方向的夹角θ=37°,在电动机带动下以v 0=4 m/s 的恒定速率顺时针方向运行.在传送带底端P 处有一离传送带很近的固定挡板,可将传送带上的物体挡住.在距P 距离为L =9 m 的Q 处无初速度地放一质量m =1 kg 的物体,它与传送带间的动摩擦因数μ=,物体与挡板的碰撞能量损失及碰撞时间不计,取g =10 m/s 2,sin37°=,求物体从静 止释放到第一次返回上升至最高点的过程中: (1)相对传送带发生的位移; (2)系统因摩擦产生的热量; (3)传送带多消耗的电能; (4)物体的最终状态及该状态后电动机的输出功率. 【解析】 (1)要分上和下两个过程处理,注意相对路程和相对位移是不一样的。 解法1:力和运动法.物体由静止释放,沿传送带向下加速运动,相对传送带亦向下滑,受力如图1所示,有mgsinθ-μmgcosθ=ma 1,得a 1=2 m/s 2 与P 碰前速度v 1=2a 1L =6 m/s 设物体从Q 到P 的时间为t 1,则t 1=v 1a 1 =3 s 设物体对地位移为x 1,可知x 1=L =9 m ,相对传送带向下的位移Δx 1=x 1+v 0t 1=21 m 物体与挡板碰撞后,以速度v 1反弹,向上做减速运动,因v 1>v 0,物体相对传送带向上滑,设速度减小到与传送带速度相等的时间为t 2,此过程受力如图2所示,有mgsinθ+μmgcosθ=ma 2 得a 2=10 m/s 2,t 2=v 1-v 0a 2 = s 在t 2时间内物体对地向上的位移x 2=v 1+v 02t 2 =1 m 相对传送带向上的位移Δx 2=x 2-v 0t 2= m 物体速度与传送带速度相等后,由于mgsinθ>μmgcosθ物体不能匀速,将相对传送带向下滑,对地向上 做加速度大小为a 3=a 1=2 m/s 2的减速运动,设速度减小到零的时间为t 3,t 3=v 0a 3 =2 s 此过程中物体对地向上的位移x 3=v 02 t 3=4 m 相对传送带向下的位移Δx 3=v 0t 3-x 3=4 m 整个过程中两者相对滑动位移为Δx =Δx 1-Δx 2+Δx 3= m. 解法2:相对运动法.以传送带为参考系,在求出相对初速度和相 对加速度后,三个阶段物体相对传送带的位移分别为Δx 1=v 0t 1+12a 1t 21 =

传送带模型中的能量问题

传送带模型中的能量问题 1.如图所示,比较长的传送带与水平方向的夹角θ=37°,在电动机带动下以v 0=4 m/s 的恒定速率顺时针方向运行.在传送带底端P 处有一离传送带很近的固定挡板,可将传送带上的物体挡住.在距P 距离为L =9 m 的Q 处无初速度地放一质量m =1 kg 的物体,它与传送带间的动摩擦因数μ=0.5,物体与挡板的碰撞能量损失及碰撞时间不计,取g =10 m/s 2,sin37°=0.6,求物体 从静止释放到第一次返回上升至最高点的过程中: (1)相对传送带发生的位移; (2)系统因摩擦产生的热量; (3)传送带多消耗的电能; (4)物体的最终状态及该状态后电动机的输出功率. 【解析】 (1)要分上和下两个过程处理,注意相对路程和相对位移是不一样的。 解法1:力和运动法.物体由静止释放,沿传送带向下加速运动,相对传送带亦向下滑,受力如图1所示,有mgsin θ-μmgcos θ=ma 1,得a 1=2 m/s 2 与P 碰前速度v 1=2a 1L =6 m/s 设物体从Q 到P 的时间为t 1,则t 1=v 1a 1 =3 s 设物体对地位移为x 1,可知x 1=L =9 m ,相对传送带向下的位移Δx 1=x 1+v 0t 1=21 m 物体与挡板碰撞后,以速度v 1反弹,向上做减速运动,因v 1>v 0,物体相对传送带向上滑,设速度减小到与传送带速度相等的时间为t 2,此过程受力如图2所示,有mgsin θ+μmgcos θ=ma 2 得a 2=10 m/s 2,t 2=v 1-v 0a 2 =0.2 s 在t 2时间内物体对地向上的位移x 2=v 1+v 02t 2 =1 m 相对传送带向上的位移Δx 2=x 2-v 0t 2=0.2 m 物体速度与传送带速度相等后,由于mgsin θ>μmgcos θ物体不能匀速,将相对传送带向下滑,对地向 上做加速度大小为a 3=a 1=2 m/s 2的减速运动,设速度减小到零的时间为t 3,t 3=v 0a 3 =2 s 此过程中物体对地向上的位移x 3=v 02 t 3=4 m 相对传送带向下的位移Δx 3=v 0t 3-x 3=4 m 整个过程中两者相对滑动位移为Δx =Δx 1-Δx 2+Δx 3=24.8 m. 解法2:相对运动法.以传送带为参考系,在求出相对初速度和相对加速度后,三个阶段物体相对传送 带的位移分别为Δx 1=v 0t 1+12a 1t 21=21 m Δx 2=(v 1-v 0)t 2-12 a 2t 22=0.2 m Δx 3=12a 3t 23 =4 m 第二阶段物体相对传送带向上运动,两者相对滑动总位移为Δx =Δ x 1-Δx 2+Δx 3=24.8 m. 解法3:图象法.设沿传送带向上为正方向,画出如图3所示物体

相关文档
相关文档 最新文档