文档库 最新最全的文档下载
当前位置:文档库 › 2015-2016学年高中数学 1.4.1正弦函数、余弦函数的图象练习手册 新人教A版必修4

2015-2016学年高中数学 1.4.1正弦函数、余弦函数的图象练习手册 新人教A版必修4

2015-2016学年高中数学 1.4.1正弦函数、余弦函数的图象练习手册 新人教A版必修4
2015-2016学年高中数学 1.4.1正弦函数、余弦函数的图象练习手册 新人教A版必修4

【红对勾】2015-2016学年高中数学 1.4.1正弦函数、余弦函数的图

象练习手册 新人教A 版必修4

1.函数y =-sin x ,x ∈??????-π2

,3π2的简图是( )

解析:用特殊点来验证.x =0时,y =-sin0=0,排除选项A ,C ;又x =-π

2

时,y =

-sin ? ??

??-π2=1,排除选项B. 答案:D

2.方程x +sin x =0的根有( ) A .0个 B .1个 C .2个

D .无数个

解析:设f (x )=-x ,g (x )=sin x ,在同一直角坐标系中画出 f (x )和g (x )的图象,如图所示.

由图知f (x )和g (x )的图象仅有一个交点,则方程x +sin x =0仅有一个根. 答案:B

3.用“五点法”画y =1-cos x ,x ∈[0,2π]的图象时,五个关键点的坐标是________.

答案:(0,0),? ????π2,1,(π,2),? ??

?

?3π2,1,(2π,0) 4.函数y =2cos x -2的定义域是________. 解析:由2cos x -2≥0得cos x ≥2

2

, 借助y =cos x 的图象可得cos x ≥

2

2

的解集为 ??????x |2k π-π4≤x ≤2k π+π

4,k ∈Z .

答案:????

??x |2k π-π4≤x ≤2k π+π

4,k ∈Z

5.在[0,2π]内用五点法作出y =-sin x -1的简图. 解:(1)按五个关键点列表

x 0 π

2 π 3π2 2π y

-1

-2

-1

-1

(2)描点并用光滑曲线连接可得其图象,如图所示:

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

正弦函数、余弦函数的图像

正弦函数、余弦函数的图像 撰稿:游斌 修订:高一备课组 学生姓名:__________第___小组 一、学习目标,心中有数: 1、了解用正弦线作正弦函数的图像的方法;能通过适当的图形变换由正弦函数的图像得到余 弦函数的图像; 2、掌握用“五点法”作正弦函数、余弦函数的简图; 3、能用“五点法。”作正弦型和余弦型函数的简图。 二.自主学习,体验成功: (一)、知识梳理 形成体系 1、多媒体演示利用正弦线作正弦函数在[]π2,0上的图像 2、怎样可以得到R x x y ∈=,sin 的图像? 因为终边相同的角有相同的三角函数值,所以函数 []0,)1(2,2,sin ≠∈+∈=k Z k k k x x y 且ππ的图像与函数[]π2,0,sin ∈=x x y 的图像的形状完全一致,于是我们只要将函数[]π2,0,sin ∈=x x y 的图像向左、向右平行移动(每次π2单位长度),就可以得到R x x y ∈=,sin 的图像,正弦函数的图像叫做正弦曲线。 3、因为)2 sin( cos x x +=π ,而)2 sin( x y +=π 的图像可以由x y sin =的图像向左平移 2 π 得到,

所以x y cos =的图像也可以由x y sin =的图像向左平移 2 π 得到。 余弦函数的图像叫做余弦曲线。 4、观察正弦函数在[]π2,0上的图像,其中起关键作用的点有哪些?利用这些关键点作出正弦函数x y sin =在[]π2,0上的简图。 (1)列表: (2)在直角坐标系中描点、并用平滑曲线连接起来。 这种作图方法叫做“五点法”。 (二)、课前热身 自我检测 画出下列函数的简图: (1)x y sin 1+=,[]π2,0∈x (2)x y cos -=,[]π2,0∈x x y o

高一数学之抽象函数专题集锦-含详细解析

高一数学之抽象函数专题集锦 一、选择题(本大题共14小题,共70.0分) 1. 设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(?2),f(?π),f(3)的大小顺序是( ) A. B. C. D. 2. 函数f(x)在(0,+∞)上单调递增,且f(x +2)关于x =?2对称,若f(?2)=1,则f(x ?2)≤1的x 的取值范围 是( ) A. [?2,2] B. (?∞,?2]∪[2,+∞) C. (?∞,0]∪[4,+∞) D. [0,4] 3. 已知函数y =f(x)定义域是[?2,3],则y =f(2x ?1)的定义域是( ) A. [0,5 2] B. [?1,4] C. [?1 2,2] D. [?5,5] 4. 函数f(x)在(?∞,+∞)上单调递减,且为奇函数.若f(1)=?1,则满足?1≤f(x ?2)≤1的x 的取值范围是 ( ) A. B. C. [0,4] D. [1,3] 5. 若定义在R 上的奇函数f(x)在(?∞,0)单调递减,且f(2)=0,则满足xf(x ?1)?0的x 的取值范围是( ) A. [?1,1]∪[3,+∞) B. [?3,?1]∪[0,1] C. [?1,0]∪[1,+∞) D. [?1,0]∪[1,3] 6. 已知f(x)={ x 2+4x x ≥0 , 4x ?x 2 , x <0 若f(2?a 2)>f(a),则实数a 的取值范围是( ) A. (?2 , 1) B. (?1 , 2) C. (?∞ , ?1)?(2 , +∞) D. (?∞ , ?2)?(1 , +∞) 7. 已知定义在R 上的函数f(x)满足f(2?x)=f(x),且在[1,+∞)上为增函数,则下列关系式正确的是 A. f(?1)0,则f (x 1)+ f (x 2)的值( ) A. 恒为负值 B. 恒等于零 C. 恒为正值 D. 无法确定正负

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

2017高中数学抽象函数专题

三、值域问题 例4.设函数f(x)定义于实数集上,对于任意实数x 、y ,f(x+y)=f(x)f(y)总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数f(x)的值域。 解:令x=y=0,有f(0)=0或f(0)=1。若 f(0)=0,则 f(x)=f(0+x)=f(x)f(0)=0恒成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故 f(0)≠0,必有 f(0)=1。由于f(x+y)=f(x)f(y)对任意实数x 、y 均成立,因此,0 )2()(2 ≥? ? ? ? ? =x f x f , 又因为若f(x)=0,则f(0)=f(x-x)=f(x)f(-x)=0与f(0)≠0矛盾,所以f(x)>0. 四、求解析式问题(换元法,解方程组,待定系数法,递推法,区间转移法, 例6、设对满足x ≠0,x ≠1的所有实数x ,函数f(x)满足,()x x x f x f +=?? ? ??-+11 ,求f(x)的解析式。 解:(1)1),x 0(x x 1)x 1x (f )x (f ≠≠+=-+且Θ---- ,1 2)11()1(:x 1-x x x x f x x f x -=-+-得代换用 (2) :)1(x -11 得中的代换再以x .12)()x -11f(x x x f --=+---(3)1)x 0(x x 2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 例8.是否存在这样的函数f(x),使下列三个条件: ①f(n)>0,n ∈N;②f(n 1+n 2)=f(n 1)f(n 2),n 1,n 2∈N*;③f(2)=4同时成立? 若存在,求出函数f(x)的解析式;若不存在,说明理由. 解:假设存在这样的函数f(x),满足条件,得f(2)=f(1+1)=4,解得f(1)=2.又f(2)=4=22,f(3)=23,…,由此猜想:f(x)=2x (x ∈N*) 小结:对于定义在正整数集N*上的抽象函数,用数列中的递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解. 练习:1、.23 2|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:0 2)x (x f 3 x ,x 1)x (f 2)x 1(f ,x x 12 =++=-与已知得得代换用,. 23 2 |)x (f |,024)x (9f 02 ≥ ∴≥?-≥?得由 3、函数f (x )对一切实数x ,y 均有f (x +y)-f (y)=(x +2y+1)x 成立,且f (1)=0, (1)求(0)f 的值; (2)对任意的11 (0,)2 x ∈,21(0,)2 x ∈,都有f (x 1)+2

有关高中数学抽象函数问题专题

抽象函数问题专题 抽象函数是相对于具体函数而言的,它是指没有给出具体函数的解析式,仅仅给出函数的部分性质,如函数f (x )满足f (x +y )=f (x )+f (y )等,解题时依据题设所给的条件解决相关问题的一类函数。通过抽象函数设置的考题,主要考查函数的基本性质(单调性、奇偶性和周期性),考查学生的抽象思维、理性思维和严谨细腻的逻辑推理能力,因而它具有抽象性、综合性和技巧性等特点。因此对抽象函数的考查是历年高考的热点、焦点和难点。 由于抽象函数没有给出具体的函数解析式,具有一定的隐藏性和抽象性,不少学生在解决这类问题时不能透彻理解题设条件,缺乏严谨的推理和全面的思考,容易忽视某些隐藏的函数性质。对于抽象函数的考查,主要以选择题、填空题为主,有时也会在大题出现。 一、抽象函数与函数的函数值、定义域、值域、解析式以及复合函数 【例1】⑴(04全国IV )设函数f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)= ········································································································································· ( ) A .0 B .1 C .52 D .5 ⑵(2010陕西)下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满足 f (x +y )=f (x )f (y )”的是 ······························································································· ( C ) A. 幂函数 B. 对数函数 C. 指数函数 D. 余弦函数 ⑶(2011广东文10)设f (x ),g (x ),h (x )是R 上的任意实值函数.如下定义两个函数(f g )(x )和(f ?g )(x );对任意x ∈R ,(f g )(x )=f (g (x ));(f ?g )(x )=f (x )g (x ).则下列等式恒成立的是( ) A. ((f g ) ?h ) (x )=((f ?h )(g ?h ))(x ) B. ((f ?g ) h ) (x )=((f h )?(g h ))(x ) C. ((f g ) h ) (x )=((f h )(g h ))(x ) D. ((f ?g ) ?h ) (x )=((f ? h )?(g ?h ))(x ) 【例2】⑴已知函数f (x )的定义域是[1,4],则f (x +2)的定义域是 ; ⑵已知函数f (x )的定义域是[1,4],则f (x 2)的定义域是 ; ⑶已知函数f (x +2)的定义域是[1,4],则f (x )的定义域是 ; ⑷已知函数f (x 2)的定义域是[1,4],则f (x )的定义域是 ; ⑸已知函数f (x )的值域是[1,4],则函数g (x)=f (x )+4f (x )的值域是 . 【例3】已知f (x )是二次函数,且f (x +1)+f (x -1)=2x 2-4x ,求f (x ).

抽象函数常见题型解法

如果您需要使用本文档,请点击下载按钮下载! 抽象函数常见题型解法 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类 函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。常见的特殊模型: 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f = -或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1)y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 目录:一、定义域问题 二、求值问题 三、值域问题 四、解析式问题 五、单调性问题 六、奇偶性问题 七、周期性与对称性问题 八、综合问题 一、定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。 评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ??-x f 3log 21 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。[] 11log ,13

正弦、余弦函数的图象

1.3.2 三角函数的图象与性质 第1课时 正弦、余弦函数的图象 正弦曲线、余弦曲线 (1)正弦曲线、余弦曲线 正弦函数y =sin x (x ∈R )和余弦函数y =cos x (x ∈R )的图象分别叫正弦曲线和余弦曲线(如图). (2)“五点法”画图 画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),? ???? π2,1,(π, 0),? ?? ?? 3π2,-1,(2π,0). 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),? ???? π2,0,(π, -1),? ?? ?? 3π2,0,(2π,1).

(3)正弦、余弦曲线的联系 依据诱导公式cos x =sin ? ???? x +π2,要得到y =cos x 的图象,只需把y =sin x 的 图象向左平移π 2个单位长度即可. 思考:作正、余弦函数的图象时,函数自变量能用角度 制吗? [提示] 作图象时,函数自变量要用弧度制,自变量与函数值均为实数,因此在x 轴、y 轴上可以统一单位,这样作出的图象正规便于应用. 1.思考辨析 (1)正弦曲线的图象向左右无限延展.( ) (2)y =sin x 与y =cos x 的图象形状相同,只是位置不同.( ) (3)函数y =cos x 的图象与y 轴只有一个交点.( ) [答案] (1)√ (2)√ (3)√ 2.用“五点法”作y =2sin 2x 的图象时,首先描出的五个点的横坐标是________. [答案] 0,π4,π2,3π 4,π 3.不等式cos x <0,x ∈[0,2π]的解集为________. [答案] ? ?? ?? π2,3π2 利用“五点法”作简图 【例1】 用“五点法”作出下列函数的图象. (1)y =sin x -1,x ∈[0,2π]; (2)y =2+cos x ,x ∈[0,2π]; (3)y =-1-cos x ,x ∈[0,2π]. 思路点拨:先分别取出相应函数在[0,2π]上的五个关键点,再描点连线.

人教版高中数学抽象函数专题教师版

抽象函数 概念:没有给出具体的解析式的函数,我们称为抽象函数. 函数部分有一类抽象函数问题,它给定函数的某些性质,要证明它的其他性质,或利用这些性质解一些不等式或方程.这些题目的设计一般都有一个基本函数作为“模型”,若能分析猜测出这个函数模型,联想这个函数的其他性质来思考解题方法,那么这类问题就能简单获解. 常见的抽象函数的性质与对应的特殊模型的对照表:

一、定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2], (1)函数2 (1)f x +的定义域为 ; (2)函数(1)(1)y f x f x =++-的定义域为 。 解析:定义域指的是“自变量”(一个字母)的取值范围, (1)解不等式,2 212x -≤+≤,得11x -≤≤,[1,1]x ∈-; (2)解不等式组,212 212 x x -≤+≤?? -≤-≤?,得11x -≤≤,[1,1]x ∈-. 练习:已知函数()f x 的定义域是[0,2], (1)函数(21)y f x =-的定义域为13[,]22 ; (2)函数11()()22y f x f x =++-的定义域为13[,]22 . 例2:已知函数()3log y f x =的定义域为[3,27],则函数()y f x =的定义域为 . 解析:换元法,令3log t x =,因为327x ≤≤,3log t x =为增函数,所以33log 3log 27t ≤≤, ()y f t =,[1,3]t ∈,所以()y f x =,[1,3]x ∈. 练习:(1)已知函数()2log y f x =的定义域为[1,5],则函数()y f x =的定义域为2[0,log 5]. (2)已知函数()43y f x =+的定义域为[2,7],则函数()y f x =的定义域为[11,31]. 综合练习:已知函数(21)f x -的定义域为[0,1),求函数(13)f x -的定义域. 解析:令21t x =-,因为01x ≤<,所以11t -≤<,所以()y f t =,[1,1)t ∈-; 解不等式1131x -≤-<得,203x <≤ ,所以函数(13)f x -的定义域为2(0,]3 .

正弦、余弦函数图像

1.4.1 正弦函数、余弦函数的图像 (一) 给定任意一个角,其正弦值、余弦值均存在,且满足唯一性,即角与正弦、余弦值之间可以建立一一对应关系,符合函数的要求。 形如y =Asin(ωx +φ)(ω≠0)的函数称为正弦函数; 形如y =Acos ωx +φ (ω≠0)的函数称为余弦函数; 其中y =sinx 、y =cosx 是正弦函数与余弦函的基本形式:所有的正弦函数、余弦函数,通过“换元”思想,都可以转化为y =sinx 与 y=cosx 的形式,故二者是研究正弦函数与余弦函数的基石。 (二) 在诱导公式的帮助下,我们可以将任意一个角的三角函数值转化为求某一个锐角的三角函数,再以有序实数对(角,三角函数)的形式在坐标系内描点,从而得到三角函数的图象;除了基础的描点法,我们也可以利用三角函数线,得到函数的图象。 (三) 0到2π,是任意角的冰山一角;0到2π一段上的函数图象,也仅仅是三角函数图象的一部分.另一方面,当角的终边旋转一周后继续旋转,角的大小在逐渐变化的同时,角的正弦线“玩接力”样依次重复出现,可以预见,2π到4π,4π到6π,6π到8π,…,是0到2π一段上函数图象的“复制”与“粘贴”,每一段的首尾相接,便是函数图象的“真身”。 (四) 正弦函数、余弦函数的图象告诉我们: ①从自变量x 的角度看,函数图象可沿着x x 轴上任何一个故正弦函数、R ; ②从因变量y 的角度看,正弦函数、余弦y =1与y =?1两条互相[?1,1],好比正弦函数、余弦函数为一个“加工厂”,投入的角多大多小,产成品----“函数值”只能在[?1,1]; ③正弦函数、余弦函数的图象可以看作某一部分(如图中的阴影部分)的重复拼接,故画函数图象时,可以以此为单元。 (五) 基于正弦函数、余弦函数图象的特征,有了重复单元,就有了整个正弦函数、余弦函数的图象;在画函数图象时,重复单元的绘

正弦函数余弦函数图像教案及反思

1.4.1 正弦函数、余弦函数的图象 教材分析 三角函数是基本初等函数之一,是描述周期现象的重要数学模型,是函数大家庭的一员。除了基本初等函数的共性外,三角函数也有其个性的特征,如图像、周期性、单调性等,所以本节内容有着承上启下的作用;另外,学习完三角函数的定义之后,必然要研究其性质,而研究函数的性质最常用、最形象直观的方法就是作出其图像,再通过图像研究其性质。 由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图. 教学目标 1.通过简谐振动实验演示,让学生对函数图像有一些直观的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力. 2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象. 3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观. 重点难点 教学重点:正弦函数、余弦函数的图象. 教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系. 教学用具:多媒体教学、几何画板软件、ppt控件 教学过程 导入新课 1.(复习导入)首先复习相关准备知识:三角函数、三角函数线。遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们是如何画出它们图象的(列表描点法:列表、描点、连线)? 2.(物理实验导入)视频观看“简谐运动”实验.得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象. 推进新课 新知探究 提出问题 问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢? 问题②:如何得到y=sinx,x∈R时的图象? 对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2π这一段分

《正弦函数、余弦函数的图像》教案设计

正弦函数、余弦函数的图像 一、内容和内容解析: 本节课是高中新教材《数学》必修4§1.4《正弦函数、余弦函数的图象和性质》的第一节,是学生在已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法。.为今后学习正弦型函数y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用。 二、教学目标 (1)了解如何利用正弦线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像。 (2)掌握“五点法”画正弦函数、余弦函数的简图。 (3)探究利用“五点法”画与正弦函数、余弦函数有关的某些简单函数在长度为一个周期的闭区间上的简图。 (4)体验利用图象变换作图的方法,体会数形结合的思想。 三、教学支持条件分析: 1.资料的收集 “简谐运动”的实验装置. 2.课件的制作 采用flash软件辅助设计“简谐运动”动画,用flash软件或“几何画板”制作正弦函数图像的几何画法过程. 3.活动的准备: 利用多媒体、实物教具等手段可帮助学生更直观地认识正、余弦函数曲线,以及它们之间的图像变换,并且通过教师的讲解法、谈话法、发现法、启发式教学法,使学生通过一定的观察、思考、分析以及动手操作,更有利学生的自主探索,使学生在学习活动中获得成功感,整堂课在师生的合作学习氛围中进行数学思维,使学生更好的发现数学规律。 四、教学过程 课题导入: 以前,我们已经学习过一次函数、二次函数、反比例函数、指数函数、对数函数等,对于各种函数,我们都可以通过它的图像研究它的一些相关性质,那么,我们今天学习的正、余弦函数的图像是什么样子的呢? 探索新知: 1、情景设置:

高中数学-抽象函数问题专题

高中数学-抽象函数问题专题目录 一、求表达式方法 (2) 1.换元法: (2) 2.拼凑法: (2) 3.待定系数法: (2) 4.利用函数性质法 (3) 5.赋值法 (3) f x的有关问题 (4) 二、利用函数性质,解() 1.判断函数的奇偶性 (4) 2.求参数的取值范围 (4) 3.解不定式 (4) 三、抽象函数五类题型及解法 (5) 1、线性函数型抽象函数 (5) 2、指数函数型抽象函数 (6) 3、对数函数型抽象函数 (6) 4、三角函数型抽象函数 (7) 5、幂函数型抽象函数 (8) ◆方法总结:抽象函数常见考点解法综述 (9) 1、定义域问题 (9) 2、求值问题 (10) 3、值域问题 (10) 4、解析式问题 (11) 5、单调性问题 (11) 6、奇偶性问题 (12) 7、对称性问题 (12) 8、网络综合问题 (13)

高中数学-抽象函数问题专题 -----含有函数记号“()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式方法 1.换元法: 即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。 例1:已知 ()211 x f x x =++,求()f x . 解:设 1x u x =+,则1u x u =-∴2()2111u u f u u u -=+= --∴2()1x f x x -=- 2.拼凑法: 在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。 例2:已知3311 ()f x x x x +=+,求()f x 解:∵22211111 ()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+ ≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法: 先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图像(附答案) 海黄和紫檀哪个更有价值 怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网 北京十里河古玩市场,美不胜收的各类手串让记者美不胜收。“黄花梨和紫檀是数一数二的好料,市场认可度又高,所以我们这里专注做这两种木料的手 串。”端木轩的尚女士向记者引见说。 海黄紫檀领风骚 手串是源于串珠与手镯的串饰品,今天曾经演化为集装饰、把玩、鉴赏于一体的特征珍藏品。 怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网 “目前珍藏、把玩木质手串的人越来越多,特别是海黄和印度小叶檀最受藏家追捧,有人把黄花梨材质的手串叫做腕中黄金。”纵观海南黄花梨近十年的价钱行情,不难置信尚女士所言非虚。 一位从事黄花梨买卖多年的店主夏先生通知记者,在他的记忆中,2000年左右黄花梨上等老料的价钱仅为60元/公斤,2002年大量收购时,价

格也仅为2万元/吨左右,而往常,普通价钱坚持在7000-8000元/公斤,好点的1公斤料就能过万。“你看这10年间海南黄花梨价钱涨了百余倍,都说 水涨船高,这海黄手串的价钱自然也是一路飙升。” “这串最低卖8000元,能够说是我们这里海黄、小叶檀里的一级品了,普通这种带鬼脸的海黄就是这个价位。”檀梨总汇的李女士说着取出手串 让记者感受一下,托盘里一串直径2.5m m的海南黄花梨手串熠熠生辉,亦真亦幻的自然纹路令人入迷。当问到这里最贵的海黄手串的价钱时,李女士和记者打起了“太极”,几经追问才通知记者,“有10万左右的,普通不拿出来”。 同海南黄花梨并排摆放的是印度小叶檀手串,价位从一串三四百元到几千元不等。李女士引见说,目前市场上印度小叶檀原料售价在1700元/公斤左 右,带金星的老料售价更高,固然印度小叶檀手串的整体售价不如海黄手串高,但近年来有的也翻了数十倍,随着老料越来越少,未来印度小叶檀的升值空间很大。 “和海黄手串比起来,印度小叶檀的价钱相对低一些,普通买家能消费得起。”正说着店里迎来一位老顾客,这位顾客通知记者,受经济条件所限,他是先从1000元以内的小叶檀手串玩起,再一步一步升级的。“我这算是以藏养藏吧,往常手里面也有上万元的了。”

相关文档
相关文档 最新文档