文档库 最新最全的文档下载
当前位置:文档库 › 输气管道受力分析的ANSYS实现

输气管道受力分析的ANSYS实现

输气管道受力分析的ANSYS实现
输气管道受力分析的ANSYS实现

现代CAE 技术及应用

(ANSY)S

输气管道受力分析的ANSYS实现

一、问题描述

一天然气输送管道的横截面及受力简图如图所示,在其内表面承受气体压力P的作用,求管壁的应力场分布。

图i管道受力简图

管道几何参数:外径 R1=0.6m ;内径R2=0.4m ;壁厚t=0.2m。

管道材料参数:弹性模量E=200Gpa ;泊松比v =0.26。

载荷:P=1Mpa。

二、问题分析

由于管道沿长度方向的尺寸远大于管道的直径,在计算过程中忽略管道的端面效应,认为在其长度方向无应变产生,即可将该问题简化为平面应变问题,选取管道横截面建立几何模型进行求解。

三、求解步骤

1.定义单元类型

定义单元类型为 Structural Solid , Quad 8node 82。设置选项为 Plane strain。

图2定义单元类型

WP 丼 0

UP ¥

tl Rnadi-l

The

t) Rad-2

eTfi Tht-td-2

OK

no set

Gance 1

Help

图4生产部分圆环面 图5生产的几何模型结果显示

2. 定义材料性能参数 输入弹性模量和泊松比。

3. 生成几何模型,划分网格

在ANSYS 窗口创建几何模型,如图 格,

如图6所示。然后保存。 4。转换成圆柱坐标系后划分网

图3定义材料性能参数

Pic ]<

Unvlclf

WP X

图6划分网格结果显示

4、加载求解

1)选择分析类型为 Static,对线段2和9施加X方向的位移约束,对线段4和7施加Y方向的位移约束。对管道内环面施加压力。

图7选择分析类型

图8施加位移约束对话框

图9施加位移约束、压力之后的模型保存之后求解,出现图所示的提示。

图10求解结果提示

Ansys管道分析

Modeling and Meshing Guide | Chapter 10. Piping Models | 10.3. Sample Input Consider the following sample piping data input: ! Sample piping data input ! /FILNAM,SAMPLE /TITLE, SAMPLE PIPING INPUT /UNITS,BIN ! A reminder that consistent units are U. S. Customary inches ! /PREP7 ! Define material properties for pipe elements MP,EX,1,30e6 MP,PRXY,1,0.3 MP,ALPX,1,8e-6 !thermal expansion coefficient 热膨胀系数 MP,DENS,1,.283 PUNIT,1 ! Units will be read as ft+in+fraction and converted to ! decimal inches PSPEC,1,8,STD ! 8" standard pipe POPT,B31.1 ! Piping analysis standard: ANSI B31.1 PTEMP,200 ! Temperature = 200° PPRES,1000 ! Internal pressure = 1000 psi PDRAG,,,-.2 ! Drag = 0.2 psi in -Z direction at any height (Y) BRANCH,1,0+12,0+12 ! Start first pipe run at (12",12",0") RUN,,7+4 ! Run 7'-4" in +Y direction RUN,9+5+1/2 ! Run 9'-5 1/2" in +X direction RUN,,,-8+4 ! Run 8'-4" in -Z direction RUN,,8+4 ! Run 8'-4" in +Y direction /PNUM,NODE,1 !图示节点及编号 /VIEW,1,1,2,3 EPLOT ! Identify node number at which 2nd run starts BRANCH,4 ! Start second pipe run at node 4 RUN,6+2+1/2 ! Run 6'-2 1/2" in +X direction TEE,4,WT ! Insert a tee at node 4 T形管 /PNUM,DEFA 恢复编号为默认值 /PNUM,ELEM,1 EPLOT ! Identify element numbers for bend and miter inserts BEND,1,2,SR ! Insert a "short-radius" bend between elements 1 and 2 MITER,2,3,LR,2 ! Insert a two-piece miter between elements 2 and 3

ANSYS Flotran分析指南

No Boundaries ANSYS/FLOTRAN分析指南 目录 第一章FLOTRAN计算流体动力学(CFD)分析概述 1 第二章FLOTRAN分析基础 3 第三章 FLOTRAN设置命令14 第四章 FLOTRAN边界条件59 第五章 FLOTRAN层流和湍流分析算例65

第一章 FLOTRAN 计算流体动力学(CFD)分析概述 FLOTRAN CFD 分析的概念 ANSYS程序中的FLOTRAN CFD分析功能是一个用于分析二维及三维流体流动场的先进的工具,使用ANSYS中用于FLOTRAN CFD分析的FLUID 141和FLUID 142 单元,可解决如下问题: ?作用于气动翼(叶)型上的升力和阻力 ?超音速喷管中的流场 ?弯管中流体的复杂的三维流动 同时,FLOTRAN还具有如下功能: ?计算发动机排气系统中气体的压力及温度分布 ?研究管路系统中热的层化及分离 ?使用混合流研究来估计热冲击的可能性 ?用自然对流分析来估计电子封装芯片的热性能 ?对含有多种流体的(由固体隔开)热交换器进行研究 FLOTRAN 分析的种类 FLOTRAN可执行如下分析: ?层流或紊流 ?传热或绝热 ?可压缩或不可压缩 ?牛顿流或非牛顿流 ?多组份传输 这些分析类型并不相互排斥,例如,一个层流分析可以是传热的或者是绝热的,一个紊流分析可以是可压缩的或者是不可压缩的。 层流分析 层流中的速度场都是平滑而有序的,高粘性流体(如石油等)的低速流动就通常是层流。 紊流分析 紊流分析用于处理那些由于流速足够高和粘性足够低从而引起紊流波动的流体流动情况,ANSYS中的二方程紊流模型可计及在平均流动下的紊流速度波动的影响。如果流体的密度在流动过程中保持不变或者当流体压缩时只消耗很少的能量,该流体就可认为是不可压缩的,不可压缩流的温度方程将忽略流体动能的变化和粘性耗散。 热分析 流体分析中通常还会求解流场中的温度分布情况。如果流体性质不随温度而变,

ANSYS新手入门学习心得

(1) 如果你模拟结构体中裂缝扩展过程的模拟,在Ansys中可以用全解耦损伤分析方法来近似模拟裂缝扩展,我曾用Ansys软件中提供的可以定义10,000个材料参数和单元ekill/alive 功能完成了层状路面体中表面裂缝和反射裂缝在变温作用下的扩展过程的模拟。我模拟的过程相对来说比较简单,模拟过程中我们首先要知道裂缝的可能扩展方向,这样在裂缝可能扩展的带内进行网格加密处理,加密到什么程度依据计算的问题来确定。 (2) 如果采用断裂力学理论计算含裂缝结构体的应力强度因子,建模时只需在裂尖通过命令kscon生成奇异单元即可。Ansys模块中存在的断裂力学模块可以计算I、II、III型应力强度因子(线弹性断裂力学)和J积分(弹塑性断裂力学),在Ansys中verification里面有一个计算I型应力强度因子的例子vm143,参见该例子就可以了。 (3) 如果通过断裂力学模拟裂缝的扩展过程,需要采用动态网格划分,这方面我没有做,通过Ansys的宏命令流应该可以实现。技术参考可参阅文献:杨庆生、杨卫.断裂过程的有限元模拟.计算力学学报,1997,14(4). (4) 我现在做动荷载作用下路面结构体中应力强度因子的分布规律,我是通过位移插值得到不同时间点处的应力强度因子。如果想这样做,可参阅理论参考中关于应力强度因子计算说明。 1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中;

ANSYS中的模态分析与谐响应分析

ANSYS中的模态分析与谐响应分析 作者:未知时间:2010-4-15 8:59:49 模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载 NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。不知道这种理解是否正确,我也没有用ANSYS这样做过。如果正确的话,时域分析和频域分析的结果应该是一致的。 模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模

ansys-FLOTRAN层流和湍流分析算例

FLOTRAN层流和湍流分析算例 一、问题描述 二、分析方法及假定 三、几何尺寸及流体性质 四、分析过程 第1步:进入ANSY S 第2步:设置分析选择 第3步:定义单元类型 第4步:生成分析区域的几何面 第5步:定义单元形状 第6步:划分有限元网格 第7步:生成并应用新的工具栏按钮 第8步:施加边界条件 第9步:求解层流 第10步:观察层流分析的结果 第11步:确定流体粘性如何影响流场特性 第12步:进行湍流分析 第13步:对新的出口区划分网格 第14步:施加湍流分析的载荷 第15步:改变FLOTRAN分析选项和流体性 第16步:进行求解 第17步:将流体速度结果以向量图和路径图的方式进行显示 第18步:绘制压力等值线图 第19步:退出ANSYS 问题描述 该算例是一个二维的导流管分析,先分析一个雷诺数为400的层流情况,然后改变流场参数再重新分析,最后再扩大分析区域来计算其湍流情况。该算例所用单位制为国际单位制。分析区域图示如下: 分析方法及假定 用FLUID141单元来作二维分析,本算例作了如下三个分析: ·雷诺数为400的假想流的层流分析 ·降低流体粘性后(即增大雷诺数)的假想流的层流分析 ·雷诺数约为260000的空气流的湍流分析 分析时假定进口速度均匀,并且垂直于进口流场方向上的流体速度为零。在所有壁面上施加无滑移边界条件(即所有速度分量都为零);假定流体不可压缩,并且其性质为恒值,在这种情况下,压力就可只考虑相对值,因此在出口处施加的压力边界条件是相对压力为零。 第一次分析时,流场为层流,着可以通过雷诺数来判定,其公式如下:

第二次分析时,将流体粘性降低到原来的十分之一(雷诺数相应增大)后再在第一次分析的基础上重启动分析 对于内流来说,当雷诺数达到2000至3000时,流场即由层流过渡到湍流,故第三次分析(空气流,雷诺数约为260000)时,流场是湍流。对于湍流分析,上图所示的导流管的后端应加长,以使流场能得到充分发展。此时,应在该次求解之前改变ANSYS的工作名以防止程序在上一次分析结果的基础上作重启动分析。 几何尺寸及流体性质 进口段长度 4 m 进口段高度 1 m 过渡段长度 2 m 出口段高度 2.5 m 层流分析时出口段长度 6 m 湍流分析时出口段长度12 m 假设流体密度 1 Kg/m3 假设流体粘性第一次分析0.01Kg/m-s;第二次分析0.001 Kg/m-s 空气密度 1.205 Kg/m3 空气粘性 1.8135*10-5 Kg/m-s 进口速度 2.0 m/s 出口压力0 nt/m2 分析过程如下: 第1步:进入ANSYS 参见ANSYS Operation Guide 第2步:设置分析选择 1 进入Main Menu>Preference 2 点取FLOTRAN CFD项 3 点取OK 第3步:定义单元类型 1 进入Main Menu>Preprocessor>Element Type>Add/Edit/Delete 2 点取Add 3 在弹出菜单的左框中点取FLOTRAN CFD,右框中点取2D FLOTRAN 141 4 点取OK 5 点取Close 第4步:生成分析区域的几何面 该步定义三个面:分别表示进口和出口的两个矩形面,以及一个表示过渡段的面。 1 生成进口段,进入Main Menu>Preprocessor>-Modeling-Create>-Areas- Rectangle>By Dimensions 2 在弹出菜单中的相应区域输入以下值:

ANSYS学习心得

一学习ANSYS需要认识到的几点 相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来 毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。 作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一

定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。 在涉及到复杂的非线性问题时(比如接触问题),一方面,不同的问题对应着不同的数值计算方法,求解器的选择直接关系到程序的计算代价和问题是否能顺利解决;另一方面,需要对非线性的求解过程有比较清楚的了解,知道程序的求解是如何实现的。只有这样,才能在程序的求解过程中,对计算的情况做出正确的判断。因此,要能对具体的问题选择什么计算方法做出正确判断以及对计算过程进行适当控制,对《计算方法》里面的知识必须要相当熟悉,将其理解运用到ANSYS的计算过程中来,彼此相互加强理解。要知道ANSYS是基于有限元单元法与现代数值计算方法的发展而逐步发展起来的。因此,在解决非线性问题时,千万别忘了复习一下《计算方法》。此外,对《计算固体力学》也要有所了解(一门非常难学的课),ANSYS对非线性问题处理的理论基础就是基于《计算固体力学》里面所讲到的复杂理论。 作为学工程力学的学生,提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后

ansys心得

1. 讨论两种Ansys求极限荷载的方法 (1)力加载 可以通过对应的方法(比如说特征值屈曲)估计结构的极限荷载的大致范围,然后给结构施加一个稍大的荷载,打开自动荷载步二分法进行非线性静力分析,最后计算会因不收敛终止,则倒数第二个子步对应的就是结构的极限荷载;另外,也可以选择弧长法,采用足够的子步(弧长法可以一直分析到极限承载力之后的过程)同样可以从绘制的荷载位移曲线或计算结果中找出结构的极限荷载。 (2)位移加载 给结构施加一个比较大的位移,打开自动荷载步二分法进行非线性分析,保证足够的子步数,这样也可以分析到极限荷载以后,通过绘制荷载位移曲线或查看相应结果文件也可知道结构的极限荷载。 希望众高手讨论一下 (1)弧长法求极限荷载的收敛性问题,如何画到荷载位移曲线的下降段? (2)位移法求极限荷载的具体步骤? 2. 需要注意的问题 1. 由于SOLID 65单元本身是基于弥散裂缝模型和最大拉应力开裂判据,因此在很多情况下会因为应力集中而使混凝土提前破坏,从而和试验结果不相吻合,因此,在实际应用过程中应该对单元分划进行有效控制,根据作者经验,当最小单元尺寸大于5cm 时,就可以有效避免应力集中带来的问题; 2. 支座是另一个需要注意的问题。在有限元分析中,很多时候约束是直接加在混凝土节点上,这样很可能在支座位置产生很大的应力集中,从而使支座附近的混凝土突然破坏,造成求解失败。因此,在实际应用过程中,应该适当加大支座附近单元的尺寸或者在支座上加一些弹性垫块,避免支座的应力集中; 3. 六面体的SOLID 65 单元一般比四面体的单元计算要稳定且收敛性好,因此,只要条件允许,应该尽量使用六面体单元; 4. 正确选择收敛标准,一般位移控制加载最好用位移的无穷范数控制收敛,而用力控制加载时可以用残余力的二范数控制收敛。在裂缝刚刚出现和接近破坏的阶段,可以适当放松收敛标准,保证计算的连续性; 3. 关于下降段的问题 1)在实际混凝土中都有下降段,但是在计算的时候要特别小心下降段的问题。 2)下降段很容易导致计算不收敛,有时为了计算的收敛要避免设置下降段,采用rush模型。 3)利用最大压应变准则来判断混凝土是否破坏。 4. Solid65单元中的破坏准则 1)采用Willam&Warnke五参数破坏准则 2)需要参数: 单轴抗拉强度,单轴,双轴抗压强度,围压压力,在围压作用下双轴,单轴抗压强度 5. 近来我对混凝土单元进行了一点思考,有一些想法,贴在下面,共同探讨: 1)分析混凝土结构,选择合理的材料特性是建立模型的关键,所以有必要弄清混凝土的材料特性。混凝土是脆性材料,并具有不同的拉伸和压缩特性。典型混凝土的抗拉强度只有抗压强度的8%-15%。 在ANSYS中,对于混凝土单元,材料特性ANSYS要求输入以下数据(为了清楚起见,我将几个系数均译为了中文):弹性模量、泊松比、张开与闭合滑移面的剪切强度缩减系数、抗拉与抗压强度、极限双轴抗压强度、周围静水应力状态、静水应力状态下单轴与双轴压缩的

ANSYS谐响应分析命令流

/FILNAME, Beam,1 !定义工作文件名。 /TITLE, Beam Analysis !定义工作标题。/PREP7 !定义单元。 ET,1,BEAM188 !定义材料属性。 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2.1e5 MPDATA,PRXY,1,,0.3 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,DENS,1,,7.9e-6 ! 定义杆件截面■200。 SECTYPE, 1, BEAM, RECT, , 0 SECOFFSET, CENT SECDATA,10,10,0,0,0,0,0,0,0,0 !建立几何模型。 K,1, ,, , K,2,350,, , !生成立柱。 LSTR, 1, 2 !以上完成几何模型。 !以下进行网格划分。 FLST,5,1,4,ORDE,1 FITEM,5,1 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,50, , , , ,1 !定义单元大小。!分配、划分平板结构。 LMESH, 1 !分析类型施加载荷并求解。 ANTYPE,2 !定义分析类型及求解设置。MSAVE,0 !模态提取方法。MODOPT,LANB,40 EQSLV,SPAR

MXPAND,40, , ,0 !模态扩展设置。 LUMPM,0 PSTRES,0 MODOPT,LANB,40,0,0, ,OFF !施加约束。 FLST,2,2,3,ORDE,2 FITEM,2,1 FITEM,2,-2 /GO DK,P51X, , , ,0,ALL, , , , , , !求解。 FINISH /SOL /STA TUS,SOLU SOLVE !以下进入谐响应分析模式。 *AFUN,DEG !指定角度单位为度。FLST,2,1,1,ORDE,1 FITEM,2,81 /GO FINISH /SOL !重新进入ANSYS求解器。ANTYPE,3 !分析类型为谐响应分析。HROPT,FULL !求解方法为FULL法。HROUT,ON LUMPM,0 EQSLV,FRONT,0, PSTRES,1 !包含了预应力。 !施加载荷。 FLST,2,1,1,ORDE,1 FITEM,2,24 /GO F,P51X,FY,-400*cos(30),-400*sin(30) FLST,2,1,1,ORDE,1 FITEM,2,36 /GO F,P51X,FY,300*cos(5),300*sin(5)

ansys工程实例(4经典例子)解析

输气管道受力分析(ANSYS建模) 任务和要求: 按照输气管道的尺寸及载荷情况,要求在ANSYS中建模,完成整个静力学分析过程。求出管壁的静力场分布。要求完成问题分析、求解步骤、程序代码、结果描述和总结五部分。所给的参数如下: 材料参数:弹性模量E=200Gpa; 泊松比0.26;外径R?=0.6m;内径R?=0.4m;壁厚t=0.2m。输气管体内表面的最大冲击载荷P为1Mpa。 四.问题求解 (一).问题分析 由于管道沿长度方向的尺寸远大于管道的直径,在计算过程中忽略管道的端面效应,认为在其长度方向无应变产生,即可将该问题简化为平面应变问题,选取管道横截面建立几何模型进行求解。 (二).求解步骤 定义工作文件名 选择Utility Menu→File→Chang Jobname 出现Change Jobname对话框,在[/FILNAM] Enter new jobname 输入栏中输入工作名LEILIN10074723,并将New log and eror file 设置为YES,单击[OK]按钮关闭对话框 定义单元类型 1)选择Main Meun→Preprocessor→Element Type→Add/Edit/Delte命令,出现Element Type 对话框,单击[Add]按钮,出现Library of Element types对话框。 2)在Library of Element types复选框选择Strctural、Solid、 Quad 8node 82,在Element type reference number输入栏中出入1,单击[OK]按钮关闭该对话框。 3. 定义材料性能参数 1)单击Main Meun→Preprocessor→Material Props→Material models出现Define Material Behavion 对话框。选择依次选择Structural、Linear、Elastic、Isotropic选项,出现Linear Isotropic Material Properties For Material Number 1对话框。 2)在EX输入2e11,在Prxy输入栏中输入0.26,单击OK按钮关闭该对话框。 3)在Define Material Model Behavion 对话框中选择Material→Exit命令关闭该对话框。 4.生成几何模型、划分网格 1)选择Main Meun→Preprocessor→Modeling→Create→Areas→Circle→Partail→Annulus出现Part Annulus Circ Area对话框,在WP X文本框中输入0,在WP Y文本框中输入0,在Rad1文本框中输入0.4,在Theate-1文本框中输入0,在Rad2文本框中输入0.6,在Theate-2文本框中输入90,单击OK按钮关闭该对话框。 2)选择Utility Menu→Plotctrls→Style→Colors→Reverse Video,设置显示颜色。 3)选择Utility Menu→Plot→Areas,显示所有面。 4) 选择Main Menu→Preprocessor→Modeling→Reflect→Areas,出现Reflect Areas拾取菜

ANSYS分析报告

《大型结构分析软件的应用及开发》 学习报告 学院:建筑工程学院 专业班级:工程力学141 姓名:付贤凯 指导老师:姚激 学号:201411012111

1.模型介绍 如下图所示的一桁架结构,受一集中力大小为800N的作用,杆件的弹性模量为200GPa,泊松比为0.3。杆件的截面为正方形达长为1m,横截面面积为1m2。现求它的变形图与轴力图。 图1 桁架模型与受力简图(单位:mm) 2.建模与划分网格 利用大型有限元软件ANSYS,采用Link,2Dspar 1的单元进行模拟,通过网格的划分得到如图2所示的有限元模型。 图2 有限元模型

结合有限元模型中的约束条件为左侧在X与Y方向铰支固定,荷载条件为最右侧处施加向下的集中力P=800N。施加约束与荷载后的几何模型如图4所示。 图3 施加荷载与约束的几何模型 3.位移与轴力图 因在Y方向受力,所以主要做Y方向的位移图,又因为杆件在轴线方向有变形,故在X 方向仍有一定的位移。则图5为变形前后的板件形状。图6为模型沿Y方向的位移图,图7为模型沿X方向的位移图,图8为模型的总位移图。 图4 桁架变形前后形状图

图5 Y方向位移图 图6 X方向位移图

图7总位移图 分析所有的位移图可以看出从以看出左端变形最小,为零,右端变形最大。从总位移图可以看出最大的位移在左下点处,大小为0.164×10?5m。从X方向位移图可以看出,左下点处在X方向位移最大为0.36×10?6。从Y方向位移图可以看出最大位移在左下点处为0.164×10?5。都符合实际情况,图9为模型的轴力图。 图8 轴力图

ANSYS分析报告分析

有限元与CAE分析报告 专业: 班级: 学号: 姓名: 指导教师: 2016年 1 月 2 日

简支梁的静力分析 一、问题提出 长3m的工字型梁两端铰接中间1.5m位置处受到6KN的载荷作用,材料弹性模量E=200e9,泊松比0.28,密度7850kg/㎡ 二、建立模型 1.定义单元类型 依次单击Main Menu→Preprocessor→Elementtype→Add/Edit/Delete,出现对话框如图,单击“Add”,出现一个“Library of Element Type”对话框,在“Library of Element Type”左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择3 node 189,单击“OK”。

2设置材料属性 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Linear→Elastic→Isotropic”,出现对话框,输入弹性模量EX=2E+011,PRXY=0.28,单击“OK”。 依次单击Main Menu→Preprocessor→MaterialProps>Material Modes,出现“Define Material ModelBehavior”对话框,在“Material Model Available”下面的对话框中,双击打开“Structural→Density”弹出对话框,输入DENS为7850 3.创建几何模型 1)设定梁的截面尺寸

利用ANSYS谐响应分析结果导入LMS-Virtual-lab中进行声学分析步骤

1.前期用ANSYS对模型进行动力学分析,然后保存结果文件.rst格式的,然后导入到Vritual lab12中进行声学分析,可能步骤有些长,大家尽量慢慢看,如果有不明白的,或者我的步骤有错误的,大家可以指正,还有我的VL版本是12的,12的版本和以前的微有不同,在后边大家会发现的。我的Q1728993717. 2.进入声学模块:开始—Acoustics—Acoustics Harmonic BEM ; 3.导入Ansys分析结果文件.rst格式:文件—Import—默认即可,看好单位,与模型统一; 4.更改文件名称,便于后续操作:在特征树中点开Nodes and Elements—右键点其子选项 (就是带有齿轮标志那个)—属性—特征属性—更改名称—StructuresMesh. 5.提取声学面网格:开始—Structures—Cavity Meshing—插入—Pre/Acoustics Meshers— Pre/Acoustics Meshers—Skin Meshers,出现一下图框, 在Grid to Skin 区域选择结构网格即:StructuresMesh,其余都默认不用改,之后点击应用,Close。 6.在次回到声学模块:开始—Acoustics—Acoustics Harmonic BEM ; 7.命名声学网格:点开特征树中的Nodes and Elements—右键Skin Meshpar1.—属性—特征 属性—改名称—AcousticsMesh;到这步之后为了方便起见,可以将结构网格StructuresMesh隐藏:右键StructuresMesh—Hide/Show; 8.设定分析类型:工具—Edit the Model Type Definitions—点击“是”出现对话框如下:

ANSYS流体分析CFD

第一章 FLOTRAN 计算流体动力学(CFD)分析概述 FLOTRAN CFD 分析的概念 ANSYS程序中的FLOTRAN CFD分析功能是一个用于分析二维及三维流体流动场的先进的工具,使用ANSYS中用于FLOTRAN CFD分析的FLUID 141和FLUID 142 单元,可解决如下问题: ?作用于气动翼(叶)型上的升力和阻力 ?超音速喷管中的流场 ?弯管中流体的复杂的三维流动 同时,FLOTRAN还具有如下功能: ?计算发动机排气系统中气体的压力及温度分布 ?研究管路系统中热的层化及分离 ?使用混合流研究来估计热冲击的可能性 ?用自然对流分析来估计电子封装芯片的热性能 ?对含有多种流体的(由固体隔开)热交换器进行研究 FLOTRAN 分析的种类 FLOTRAN可执行如下分析: ?层流或紊流 ?传热或绝热 ?可压缩或不可压缩 ?牛顿流或非牛顿流 ?多组份传输 这些分析类型并不相互排斥,例如,一个层流分析可以是传热的或者是绝热的,一个紊流分析可以是可压缩的或者是不可压缩的。 层流分析 层流中的速度场都是平滑而有序的,高粘性流体(如石油等)的低速流动就通常是层流。 紊流分析 紊流分析用于处理那些由于流速足够高和粘性足够低从而引起紊流波动的流体流动情况,ANSYS中的二方程紊流模型可计及在平均流动下的紊流速度波动的影响。如果流体的密度在流动过程中保持不变或者当流体压缩时只消耗很少的能量,该流体就可认为是不可压缩的,不可压缩流的温度方程将忽略流体动能的变化和粘性耗散。 热分析 流体分析中通常还会求解流场中的温度分布情况。如果流体性质不随温度而变,就可不解温度方程。在共轭传热问题中,要在同时包含流体区域和非流体区域(即固

ansys数据处理总结

!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!!~~~~~!!!!! !!!!!~~~~~~~~~ansys数据处理的相关命令流~~~~~~~~~~~!!!!! !(1)数据输入的相关命令 !利用*TREAD命令读取数据文件并填充TABLE表格 *TREAD, Par, Fname, Ext, --, NSKIP !以下利用*TREAD命令读取1维数据表格 !tdata.txt文本文件含有如下内容 STRAIN STRESS 00 0.0025 0.0046 0.0067 *DIM,Ttxy,table,4,1,,TIME,ACEL *TREAD,Ttxy,tdata,txt,,1 !以下利用*TREAD命令读取2维数据表格 !要特别注意2维数据的行数 !tdata.txt文本文件含有如下内容 TIME X Y Z 0000 0.020.10.20.3 0.040.20.40.6 0.060.30.60.9 !希望输入地震波激励,X、Y、Z三个方向 *DIM,Ttxy,table,3,3,,TIME,ACEL *TREAD,Ttxy,tdata,txt,,1 !以下利用*TREAD命令读取3维数据表格 !tdata.txt文本文件含有如下内容 TEMP X Y Z 0000 0.020.10.20.3 0.040.20.40.6 0.060.30.60.9 5000 0.030.20.30.4 0.050.40.60.8 0.070.60.90.9 !希望读取不同温度下,不同时刻的泊松比 *DIM,Ttxy,table,3,3,2,TIME,NUXP,TEMP *TREAD,Ttxy,tdata,txt,,1 !利用*SREAD命令读取字符文件 *SREAD, StrArray, Fname, Ext, --, nChar, nSkip, nRead 页: 1

学习ansys的一些心得

学习ansys的一些心得 学习ansys的一些心得(送给初学者和没有盟币的兄弟) 1 做了布尔运算后要重画图形(删除实体)时:需拾取Utility Menu>Plot>Replot 2 标点的输入是在英文状态下,―,‖。 3 线段中点的建立:Modling>Creat>Keypoints>Fill between kps 4 还不会环形阵列。 5 所谓杆系结构指的是长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁,桁架,钢架等。 6 静力学分析的结果包括结构的位移,应变,应力和反作用力等,一般是使用POST1处理(普通后处理器)和查看这些结果。 7 干系结构的静力学分析—平面桁架的建模,用NODE(节点),ELEMENT(元素)创建。复杂体积的建模一般用KPS(关键点),LINE(Straight line—直线),再生成面,再生成体。 8 如果输入的数据单位是国际单位制单位,则输出的数据单位也是国际制单位。 9 创建正六边形:Creat>Areas>Polygon>Hexagon.指定中心和半径。 10 由面沿线挤出体:Modling>Operate>Extrude>Areas>Along Lines. 11 Ansys中没有Undo命令.需及时保存数据库文件. Def Shape Only:只显示变形图.Def + Undeformed:显示未变形的图.Def + Udef egde:显示未变形的图形的边界. 13 用等高线显示:Plot Results>Contour Plot>Nodal Solu.

14 模态分析用于分析结构的振动特性,即确定结构的固有频率和振型,它也是谐响应分析,瞬态动力学分析以及谱分析等其他动力学分析的基础。 15 Ansys的模态分析是线型分析。任何非线型分析,例如,塑性,接触单元等,即使被定义了也将被忽略。 16 平面桁架:Beam(2D elastic 3) 厚壁圆筒:Solid(8 node 13)>Options(K3—Plane strain) 17 一般材料的弹性模量(EX):2e11.泊松比(PRXY):0.3.密度:7800 18 做完静力学分析后,再做模态分析时,要再次求解,同时预应力效果也应该打开(PSTRES,on).可以在命令行中输入:pstres,on 也可以用菜单路径:Solution>Analysis Type>Analysis Options. 19 弹簧阻尼器单元:Combination-Spring damper 14. 20 接触问题属于状态非线性问题,是一种高度非线性行为,需要较多的计算资源。接触问题有两个基本类型:刚体-柔体的接触,柔体-柔体的接触(许多金属成型的接触问题)。在刚体-柔体的接触问题中,有的接触面与它接触的变形体相比,有较大的刚度而被当做刚体。而柔体-柔体的接触,是一种更普遍的类型,此时两个接触体具有近似的刚度,都为变形体。 21 1 点-点接触:过盈装配问题是用点点接触单元模拟面面接触的典型例子。 2 点-面接触:不必预先知道准确的接触位置,接触面之间也不需要保持一致的网格,并且允许有较大的变形和相对滑动。典型实例:模拟插头插入插座里。 3 面-面接触:刚性面作为目标面,柔性面作为接触面。 22 打开自动时间步长:Solution>Load Step Opts>Time Frequenc>Time And Substps.

ansys谐响应分析

问题描述 本实例是对如下图所示的有预应力的吉他弦进行谐响应分析。形状均匀的吉他弦直径为d ,长为l 。在施加上拉伸力F1后紧绷在两个刚性支点间,用于调出C 音阶的E 音符。在弦的四分之一长度处以力F2弹击此弦,要求计算弦的一阶固有频率f1,并验证仅当弹击力的频率为弦的奇数阶固有频率时才会产生谐响应。 几何尺寸:l =710mm c =165mm d =0.254mm 材料特性:杨氏模量EX =1.9E5 Mpa ,泊松比PRXY =0.3,密度DENS =7.92E-9Tn/mm 3 。 载荷为:F1=84N F2=1N 取弹击力的频率范围为从0到2000Hz ,并求解频率间隔为2000/8=250Hz 的所有解,以便观察在弦的前几阶固有频率处的响应,并用POST26时间-历程后处理器绘制出位移响应与频率的关系曲线。 一.选取菜单路径Utility Menu | File | Change Jobname ,将弹出Change Jobname (修改文件名)对话框,如图13.2所示。在Enter new jobname (输入新文件名)文本框中输入文字“CH13”,然后单击对话框中的ok 按钮,完成对本实例数据库文件名的修改。 选取菜单路径Main Menu | Preference ,将弹出Preference of GUI Filtering (菜单过滤参数选择)对话框,单击Structural(结构)选项使之被选中,以将菜单设置为与结构分析相关的选项。单击按钮,完成分析范畴的指定。 二.定义单元类型 1.选取菜单路径Main Menu | Preprocessor | Element Type | Add/Edit/Delete ,将弹出Element Types (单元类型定义)对话框。单击对话框中的按钮,将会弹出Library of Element Types (单元类型库)对话框 2.在图13.4所示的对话框左边的滚动框中单击“Structural Link ”,选择结构连接单元类型。接着在右边的滚动框中单击“2D Spar 1”,使其高亮度显示,选择2维弹性单元。单击对话框中的按钮,关闭单元类型库(Library of Element Types)对话框。 3.在Element Types (单元类型定义)对话框中的已定义单元类型列表框中将会列出定义的单元类型为:“Type 1 LINK1”。单击对话框中的按钮,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 三.定义材料性能和实常数 选取菜单路径Main Menu | Preprocessor | Material Props | Material Models ,2.依次双击Structural , Linear ,Elastic 和Isotropic ,将弹出1号材料的弹性模量EX 和泊松比PRXY 的定义对话框。在EX 文本框中输入1.9E5,PRXY 文本框中输入0.3。定义材料的弹性模量为1.9E5Mpa ,泊松比为0.3。单击对话框中的ok 按钮,关闭对话框。接着双击Density , 在DENS 文本框中输入7.92E-9,设定1号材料密度为7.92E-9Tn/mm 3 。单击ok 按钮,完成

ANSYS使用心得体会

ANSYS使用心得体会 本次结构力学课程设计是学习使用ANSYS软件对框架结构内力进行计算,在未学习该软件前,对于此类问题,通常会采用力矩分配法来进行计算,计算过程繁复,计算量大。导致过程缓慢。 通过对ANSYS软件的学习和了解,知道了它的一些明显的优点。 相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对我们提出了很高的要求,一方面,需要我们有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要我们不断摸索出软件的使用经验不断总结以提高解决问题的效率。 刚开始接触ANSYS时,没有限元,单元,节点,形函数等的基本概念没有清楚的了解话,会感觉还没入门,只是在僵硬的模仿,即使已经了解了,必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。 ANSYS在对结构力学的静力学分析非常方便,用来求解外载荷引起的位移、应力和力。静力分析很适合求解惯性和对结构的影响并不显著的问题。ANSYS 程序中的静力分析不仅可以进行线性分析,而且也可以进行非线性分析,如塑性、膨胀、大变形、大应变及接触分析。 但是学习的过程是充满烦恼和惊喜的,因为总是会碰到许多的新问题,需要较好的耐心去解决这些问题,这是在学习过程中遇到的最大的难题。然而,在解决问题之后,就会有恍然大悟的喜悦,可以说是痛苦和快乐并存的。所以对于初学者,缺乏经验是非常难的。必须保持良好的心态,对于不断出现的ERROR提示要坚定自己的信心,坚信自己可以解决这些问题。所有困难都会迎刃而解。 本次的学习让我认识到了提高建模能力是非常急需加强的一个方面。在做偏向于理论的分析时,可能对建模能力要求不是很高,但对于实际的工程问题,有限元模型的建立可以说是一个最重要的问题,而后面的工作变得相对简单。建模能力的提高,需要掌握好的建模思想和技巧。 ANSYS软件是一款在建模等方面非常实用的软件,本次的学习我其实并没有完全熟练地掌握它的应用,以后还要加强对它的学习,相信在以后的学习和工作中会带来巨大的便利。

相关文档