文档库 最新最全的文档下载
当前位置:文档库 › MIKE Flood一二维耦合计算溃堤

MIKE Flood一二维耦合计算溃堤

MIKE Flood一二维耦合计算溃堤
MIKE Flood一二维耦合计算溃堤

MIKE FLOOD 一二维耦合计算溃堤

笔记本:MIKE

创建时间:2015/9/23 10:05更新时间:2015/9/23 11:10

作者:wushangqingliang@https://www.wendangku.net/doc/5a6490355.html,

一二维耦合计算,分别用一二维建模,然后连接。

一维模型可先按照mike11建模,先不考虑溃口对一维模型的影响,将模型调试通过,率定等。

二维模型尽量不设置开边界,溃口流量通过两个模型连接传递。二维模型优先选用矩形网格。

****************************************************************************************

一维模型

一维模型建成后,在network文件中设置溃口位置和溃口基本信息。

由图可知,溃坝采用的是溃坝模型,然后通过侧连接(side structure)与洪泛区连接。Dam Geometry 设置溃堤堤防的顶高程和溃口宽度,breach calc.Method 设置溃堤的计算方法,有能量方程法和NWS 溃堤算法。Failure Moment and Mode栏,主要设置溃堤控制条件——某时刻溃堤或者某水位溃堤,Failure Mode设置采用时间序列控制溃堤过程还是根据堤防冲刷能力控制,一般选用时间序列控制。

一维模型里,还需要在Bondary文件里设置溃堤接口

设置建筑物边界,溃坝模式,Branch name的位置,需要填SS_河道名称_溃口累加距(SS应该是side structure的缩写,累加距需要保留一位小数,并加M),Chaigage一般给50,GateID要与network里的一致。

Dam break level、width、slope分别代表溃堤的高程,宽度和溃口两侧的坡比。可以把这三个要素做到

一个dfs0文件里,格式如下

溃堤水位,一般比最高水位低一些(5cm或者其他)。增加了溃口以后,即便溃口不溃,也会影响局部水面线——有点类似在两个断面中又加了一个断面。所以,加了溃口以后,可以在network设置一个较高水位保证不溃,对水位进行以下率定。然后提取溃口位置最高水位,修改network里溃堤水位。

选择合适的时间步长(要协调二维计算)

至此,一维模型部分就完成了。

****************************************************************************************

二维模型(矩形网格)

二维模型建模与mike21类似,地形网格和糙率网格建好以后,新建m21文件,导入地形和糙率。

时间步长设置,步长应与一维的时间步长一致。

Boundary一般不设置边界。

干湿边界可以调小,保证模型运算稳定。

涡粘系数项选用Smagorinsky Formula,取值0.1——何哥经验总结。

其他设置,与mike21无差别。

至此二维模型部分也设置完成

***************************************************************************************连接一二维模型

新建一个couple文件

在Linkage Files中载入做好的一二维模型文件

在Link Definitions中设置连接位置

River Chainage就是溃口在一维模型中的累加距。M21 Coord1中是二维模型的单元格,J和K代表行列数。

Side Structure Link Options中设置Depth Adjust 为Yes,在Exponential smoothing factor处设置一个接近1的数字。Exponential smoothing factor表示建筑物上下游水位的平滑,越趋近于1越不平滑,越接近实际计算,但对模型稳定没有好处。

计算点击菜单栏的run,选择Start simulation就可以了。

***************************************************************************************

调试模型

计算过程中可能会各种报错,也可能计算到一半就跳出了。

出现这种情况,可能有以下原因:

1、一维模型本身稳定性差,可以通过调整一维模型的方法进行优化。

2、一二维连接部分,二维网格高程较溃口高程高,水不能通过。可以通过调整局部地形的方法优化。

3、二维模型初始计算不稳定。可以通过初始水位赋值,给溃口处网格一个初始水深,计算会顺利很多。

4、二维的时间步长可以是一维的整数倍数,如果这样,虽然也可以计算,但容易引起不稳定,建议两个模型步长一致。

5、调二维模型的涡流粘滞系数和干湿边界,有助于模型稳定。

6、可以检测计算过程中,一维模型文件夹中生成的溃口位置过程文件,检查溃口处流量是否会很奇怪。

ANSYS流固耦合计算实例

ANSYS流固耦合计算实例 Oscillating Plate with Two-Way Fluid-Structure Interaction Introduction This tutorial includes: , Features , Overview of the Problem to Solve , Setting up the Solid Physics in Simulation (ANSYS Workbench) , Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre , Obtaining a Solution using ANSYS CFX-Solver Manager , Viewing Results in ANSYS CFX-Post If this is the first tutorial you are working with, it is important to review the following topics before beginning: , Setting the Working Directory , Changing the Display Colors Unless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File. Sample files referenced by this tutorial include:

ansys workbench 流固耦合计算实例

Oscillating Plate with Two-Way Fluid-Structure Interaction Introduction This tutorial includes: ?Features ?Overview of the Problem to Solve ?Setting up the Solid Physics in Simulation (ANSYS Workbench) ?Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre ?Obtaining a Solution using ANSYS CFX-Solver Manager ?Viewing Results in ANSYS CFX-Post If this is the first tutorial you are working with, it is important to review the following topics before beginning: ?Setting the Working Directory ?Changing the Display Colors Unless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File. Sample files referenced by this tutorial include: ?OscillatingPlate.pre ?OscillatingPlate.agdb ?OscillatingPlate.gtm ?OscillatingPlate.inp 1.Features This tutorial addresses the following features of ANSYS CFX.

基于MpCCI的Abaqus和Fluent流固耦合案例1

CAE联盟论坛精品讲座系列 基于MpCCI的Abaqus和Fluent流固耦合案例 主讲人:mafuyin CAE联盟论坛总监 摘要:通过MpCCI流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus和Fluent相结合的流固耦合仿真分析。信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。 1 分析模型 用三维建模软件solidworks建立了一个管径为1m的弯管,结构尺寸如图1a所示,管的结构如图1b所示,流体的模型如图1c所示。值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。 a. 尺寸关系 b. 管壁结构 c. 流体模型 图1. 几何模型示意图 图2. 流固耦合传热分析模型示意图 内壁面(耦合面) 速度入口 v=6m/s; T in=600K 外壁面 压力出口 P=0Pa;T out=300K

由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。需要求解流体和管壁的温度场分布情况。 2 流体模型 将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit中,如图3a所示。设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。 a. 导入Gambit软件中的流体模型 b. 流场的网格模型 图3. 流体模型及网格示意图 进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。然后定义流体属性,名称定义为air,类型为Fluid。这些定义的目的是能够在Fluent软件中识别出这些特征,具体类型和参数都可以在Fluent软件中进行设置和修改。定义完后点击【Export】,选择【Mesh】,选择路径和文件名称并进行输出。 打开Fluent6.3.26或以上的版本,选择3D求解器,点击【File】→【Read】→【Case】,然后选择Gambit中输出的msh文件,即可将网格文件读入Fluent 软件中。读入模型后,进行求解参数和条件的设置。

[P]ABAQUS流固耦合之--增量步参数设置

1. ABAQUS流固耦合分析步参数设置 (1)abaqus流固耦合分析步参数设置-BASIC TIME PERIOD为该分析步总时间,例如图中设定为86400s(该单位与建模时设置的系统单位一致,以下时间单位均默认为秒),则认为该分析步在86400s即24h内完成。 (2)EDIT STEP—INCREMENTATION,增量步的设置 通常type选择automatic选项,即系统根据计算速度及收敛程度自动调整增量步(fixed为固定增量步,如每一步设置8640,则进行10步,最终总时间为86400,该选项不建议适用,模型复杂时易导致不收敛) Maximum number of increments,默认为100,模型复杂不易收敛时,可将其调大,即最大迭代次数增加(通常设置1000即足够)。 Initial,初始增量步,通常设定为time period的0.1~0.01倍,若模型收敛性较好,则系统将通过automatic功能自动调大增量步,加快计算速度。 Max.pore pressure change per increment,允许每步最大增量,该选项建议调大,例如本模型初始孔压最大值为6e5pa,则该选项可设定大于e5的数量级(设置过小,如e-5,则每步允许增量步太小,反复迭代次数过多易导致不收敛),End step when pore pressure change rate is less than可不设置,即认为其计算至最后终止。

(3)other其他选项 非线性模型求解通常勾选unsymmetric。 以下为网络帖子,其所遇到问题正是由于增量步设置导致(尤其最大允许增量步的设置),供参考。 2. 帖1 [流固耦合] abaqus流固耦合进行瞬态分析时,设定的UTOL是什么意义? 如题,最近模拟的是注水试验过程,在进行瞬态渗流分析时,采用自动时间步长里要设置一个UTOL的值,书中说这个值是增量步中允许的孔压变化最大值,决定了孔压对时间积分的精确度。 我想说的是,一开始我设置的这个UTO值比较小,但是计算怎么都不收敛,老是提醒我说time increment required is less than the minimum specified. 后来尝试了很多办法还是解决不了,最后将我原本设定的UTOL值放大了100倍,就计算成功了。 实在是想不通是为什么,这个UTOL到底是什么意思?论坛里也没有关于这个值的具体解释,希望提出来有哪位大侠指点一二,万分拜谢!

基于MpCCI的Abaqus和Fluent流固耦合案例

基于MpCCI 的Abaqus 和Fluent 流固耦合案例 mafuyin 摘要:通过MpCCI 流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus 和Fluent 相结合的流固耦合仿真分析。信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。 1 分析模型 用三维建模软件solidworks 建立了一个管径为1m 的弯管,结构尺寸如图1a 所示,管的结构如图1b 所示,流体的模型如图1c 所示。值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。 a. 尺寸关系 b. 管壁结构 c. 流体模型 图1. 几何模型示意图 图2. 流固耦合传热分析模型示意图 内壁面(耦合面) 速度入口 v=6m/s; T in =600K 外壁面 压力出口 P=0Pa ;T out =300K

由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。需要求解流体和管壁的温度场分布情况。 2 流体模型 将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit 中,如图3a所示。设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。 a. 导入Gambit软件中的流体模型 b. 流场的网格模型 图3. 流体模型及网格示意图 进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。然后定义流体属性,名称定义为air,类型为Fluid。这些定义的目的是能够在Fluent软件中识别出这些特征,具体类型和参数都可以在Fluent软件中进行设置和修改。定义完后点击【Export】,选择【Mesh】,选择路径和文件名称并进行输出。 打开Fluent6.3.26或以上的版本,选择3D求解器,点击【File】→【Read】→【Case】,然后选择Gambit中输出的msh文件,即可将网格文件读入Fluent 软件中。读入模型后,进行求解参数和条件的设置。 (1)模型缩放:为了便于分析结果数据特征,统一采用国际单位制进行仿真,

血管流固耦合分析实例

Ansys14 workbench血管流固耦合实例 根据收集的一些资料,进行学习后,试着做了这个ansys14workbench的血管流固耦合模拟,感觉能够耦合上,仅是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。谢谢! 1、先在proe5中建立血管与血液流体区的模型(两者装配起来),或者直接在workbench中建模。 图1 模型图 2、新建工程。在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure. 图2 计算工程 3、修改engineering data,因为系统缺省材料是钢,需要构建血管材料,如图3所示。先复制steel,而后修改密度1150kg/m3,杨氏模量4.5e8Pa,泊松比0.3,重新命名,最后在主菜单中点击“update project”保存.

图3 修改工程材料 4、模型导入,进入gemetry模块,import外部模型文件。 图4 模型导入图 5、进入FLUENT网格划分。 在workbench工程视图中的Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。我们这里需要去掉血管部分,只保留血液几何。

图5 进入网格划分

图6 禁用血管模型 6、设置网格方法。 默认是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面的边均分为10份,网格结果如图8所示。另外在这个界面中要设置边界的几何面,如inlet、outlet、symmetry 图7 设置网格划分方式 图8 最终出网格

(完整版)流固耦合教学

1、打开ANSYS Workbench, 拖动各模块到空白区,并照此连接各模块。 2 2、打开第一个模块当中的Geometry,建立几何模型: (1)在XY Plane内建立Ship Shell 船长:0.4、船宽:0.14、型深0.11 将第一个Solid重命名为Ship Solid 在Concept中选择Surfaces From Faces,选中模型的六个面,然后Apply、Generate。 重命名第二个Ship Solid为Ship Shell 右击Ship Solid, 选择Hide Body,显示Ship Shell, 然后对Ship Shell执行同样操作(即隐去)

(2)在YZ Plane内建立液舱 单击(New Plane),选择YZ plane,,Apply一下 将YZ Plane 向X正方(图中为法向,即Z)向偏移0.02m Generate一下,然后Show body 一下Ship Solid 与Ship Shell 可以看到YZ Plane已平移到Body内了 再将Ship Solid 与Ship Shell 都Hide,选择Plane 4,调为正视,Generate一下 新建一个Sketch:单击,显示,在此Sketch中建立液舱模型草图

单击约束(Constrains),将草图中的“水平线”调整为水平,“垂直线”调整为垂直: 事实上仅用Horizontal(水平)和Vertical(垂直)就OK了。以水平约束为例,先单击Horizontal,再依次单击草图中的水平线段。调整后如下图所示: 定义尺寸: 左下角空缺的部分是预留贴“应变片”的部分,需要单独建模 单击Extrude(拉伸),设置Operation(下拉列表中改选为Add Frozen)与拉伸尺寸(0.1m): 然后Generate一下

几个耦合的例子

一般说来,ANSYS的流固耦合主要有4种方式: 1,sequential 这需要用户进行APDL编程进行流固耦合 sequentia指的是顺序耦合 以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。ANSYS CD中包含有MpCCI库和一个相关实例。关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin 2,FSI solver 流固耦合的设置过程非常简单,推荐你使用这种方式 3,multi-field solver 这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合 4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵 一个流固耦合的例子 length=2 width=3 height=2 /prep7 et,1,63 et,2,30 !选用FLUID30单元,用于流固耦合问题 r,1,0.01 mp,ex,1,2e11 mp,nuxy,1,0.3 mp,dens,1,7800 mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水 mp,sonc,2,1400 mp,mu,0, ! block,,length,,width,,height esize,0.5 mshkey,1 ! type,1 mat,1 real,1 asel,u,loc,y,width amesh,all alls ! type,2 mat,2 vmesh,all

道路运输与宏观经济的耦合协调度分析

龙源期刊网 https://www.wendangku.net/doc/5a6490355.html, 道路运输与宏观经济的耦合协调度分析 作者:代晶晶李灿灿 来源:《经营管理者·上旬刊》2017年第01期 摘要:本文运用耦合协调度模型测算了道路运输和宏观经济的耦合协调度,研究结果显示:道路运输与宏观经济之间耦合协调程度不断增强,但是耦合协调度还没有达到理想值。因此,需要政府和企业加强对道路运输业的管理和规划,增加投资,优化运输结构。 关键词:道路运输宏观经济耦合协调度模型 一、引言 道路运输对经济发展起着重要的作用,这是由道路运输的基础性决定的。为了保证经济活动的健康发展和正常运行,需要适度超前发展的道路运输系统。适度超前发展的道路运输系统能够积极有效地拉动经济的发展,反之,则会阻碍经济的发展。因此,掌握我国道路运输与宏观经济之间的协调性显得至关重要。为了更好地探索道路运输与宏观经济之间的协调关系,本文采用耦合协调度模型来定量分析它们之间的耦合度及耦合协调度。 二、道路运输与宏观经济综合发展水平的测算 1.测算方法。测算各个系统第年的综合发展水平公式如下式(1):式中为系统第年的综合发展水平,为系统中指标的权重,为系统第年的指标的功效值。 1.1各指标功效值的测算。为了更方便地分析选取的不同评价指标之间的差异,本文对选取的指标进行无量纲化处理,使指标间能够进行清楚的比较,功效值计算公式如下: 式中:为第年指标的功效值,取值范围为[0,1]。分别为第项指标实际观测值中最大、最小的数值。 1.2各指标权重的测算。为了能够客观地计算指标权重,本文采用熵值赋权法来确定。步骤如下: 设表示第年的第个指标的数值() 第一步:指标作比重变换(3) 第二步:计算第项指标的熵值(4) 第三步:熵值逆向化(5)

(完整版)5流固耦合

第五章 轴流泵的流固耦合 5-1 流固耦合概论 流固耦合问题一般分为两类,一类是流‐固单向耦合,一类是流‐固双向耦合。单向耦合 应用于流场对固体作用后,固体变形不大,即流场的边界形貌改变很小,不影响流场分布的, 可以使用流固单向耦合。先计算出流场分布,然后将其中的关键参数作为载荷加载到固体结 构上。典型应用比如小型飞机按刚性体设计的机翼,机翼有明显的应力受载,但是形变很小, 对绕流不产生影响。当固体结构变形比较大,导致流场的边界形貌发生改变后,流场分布会 有明显变化时,单向耦合显然是不合适的,因此需要考虑固体变形对流场的影响,即双向耦 合。比如大型客机的机翼,上下跳动量可以达到5 米,以及一切机翼的气动弹性问题,都是 因为两者相互影响产生的。因此在解决这类问题时,需要进行流固双向耦合计算。下面简单 介绍其理论基础。 连续流体介质运动是由经典力学和动力学控制的,在固定产考坐标系下,它们可以被表 达为质量、动量守恒形式: ()0v t ρρ?+??=? (1) ()B v vv f t ρρτ?+??-=? (2) 式中,ρ为流体密度;v 为速度向量;B f 流体介质的体力向量;τ为应力张量;在旋 转的参考坐标系下,控制方程变为: ()0r v v t ρρ?+??=? (3) (-)+B r r c v v v f f t ρρτ?+??=? (4) 形式和固定坐标系下基本相同,只是速度变成了相对速度,另外就是增加了附加力项 c f 。 固体有限元动力控制方程为: []{}[]{}{}...[]{}M u C u K u F ++= (5) 式中,[]M ,[]C ,[]K 分别是质量矩阵,阻尼矩阵以及刚度矩阵,{}F 为载荷矩阵。 流固耦合遵循最基本的守恒原则,所以在流固耦合交界面处,应满足流体与固体应力、 位移、热流量、温度等变量的相等或守恒,即满足如下四方程: f f s s n n ττ?=? (6) f s d d = (7) f s q q = (8) f s T T = (9) 5-2 单向流固耦合

fluent单项流固耦合

流固耦合(Fluid-solid interaction,FSI)计算,通常用于考虑流体与固体间存在强烈的相互作用时,对流体流场与固体应力应变的考察。FSI计算按数据传递方式可分两类:单向耦合与双向耦合。所谓单向耦合,主要是指数据只从流体计算传递压力到固体,或者只从固体计算传递网格节点位移到流体。双向耦合则在每一时刻都同时向对方发送相应的物理量(流体计算发送压力数据,固体计算发送位移数据)。 ANSYS Workbench中可以利用Fluent与DS进行单向流固耦合计算。我们这里来举一个最简单的单向耦合例子:风吹挡板。我们假定挡板位移可忽略不计,固体变形对流场影响可以忽略,所考虑的是流体压力作用在固体上,固体的应力分布。当然这里的压力可以换成温度等其他物理量。 1、新建工程。注意是从Fluent –> Static Structure。连接图如1所示。 图1 计算工程关 系图2 进入DM建模 2、进入Fluent中的DM进行模型创建,如图2所示。 流固耦合计算中的几何模型与单纯的流体模型或固体模型不同,它要求同时具有流体和固体模型,而且流体计算中只能有流体模型,固体计算中只能有固体模型。建好后的模型如图3,4,5所示。由于固体模型需要从这里导入,所以我们保留固体与流体模型。

图3 实体模型 图4 固体模型

图5 流体模型 3、进入FLUENT网格设置。 在FLUENT工程视图中的Mesh上点击右键,选择Edit…,如图6所示,进入网格划分meshing界面,如图7所示。我们这里需要去掉固体部分,只保留流体几何。 图6 进入网格划 分图7 禁用固体模型

最新fluent流固耦合传热设置问题

FLUENT流固耦合传热设置问题 看到很多网友对于fluent里模拟流固耦合传热(同时有对流和导热)有很多疑问,下面说说我的解决方法。 1,首先要分清你的问题是否是流固耦合传热。 (1)如果你的传热问题只是流体与固体壁面的传热,不涉及到固体壁面内部的导热,那么这就是一个对流传热问题,不是流固耦合传热问题, 这时候你只需要设置壁面的对流换热系数即可。如下图 注意右边这几个参数的含义:从上往下依次为:壁面外部的对流传热系数;外部流体温度;壁面厚度;壁面单位体积发热率。 这里没有内部流体的对流传热设置,因为fluent会根据流体温度以及壁面温度,利用能量守恒,自动计算内壁流体与壁面的对流换热情况。 (2)流固耦合传热问题。在建模的时候你应该定义两个区域,流体区域和固体区域,并且在切割区域的时候,你应该选中connect,如下图所 示 边界条件设置:交界面为wall。在导入fluent以后,fluent就会自动生成wall-shadow。这样在流固交界面上就生成了一对耦合的面,如下图所示,

。 2,耦合传热设置问题 (1)首先就是求解器的设置问题,应该选择耦合求解器,虽然计算速度会慢一些,但是这更符合实际情况,更容易收敛,误差更小。如果是非 稳态过程还应选择unsteady。如下图所示 (2)交界面设置问题,这个是关键。不用过多的设置只需要选择coupled。 这样fluent就会自动计算耦合面的传热问题。如下图所示

(3)当然还要选择能量方程。其他诸如湍流模型、材料设置、进出口条件等等,需要你根据实际情况设定,这里不再雷述。1.在国际单位制中,电荷的单位是 A. 伏特 B. 安培 C. 库仑 D.瓦特 2.小明家装修房屋需要购买导线,关于导线种类的选择,最恰当的是: A.强度大的铁丝B.细小价格较便宜的铝丝 C.粗一点的铜丝D.性能稳定的镍铬合金丝 3.小明在研究通过导体的电流时,根据测量数据绘制出如图 所示的I-U图像。对此作出的判断中,错误 ..的是: A.通过R1的电流与它两端所加电压成正比 B.通过R2的电流与它两端所加电压不成正比 C.将它们串联接入到同一电路中时,通过R1的电流较小 D.将它们并联连接到两端电压为1.5V的电路中时,通过 干路的电流大约是0.46A 4.小灯泡L上标有“2.5V”字样,它的电阻随它两端电压变化的图像如图甲所示。将小灯泡L和电阻R0接入图乙所示的电路中,电源电压为6V,且保持不变。当开 关S闭合时,小灯泡L恰好能正常发光。 下列说法正确的是: A.开关S断开时,小灯泡L的电阻为0Ω B.开关S闭合时,小灯泡L的电阻为8Ω C.小灯泡L的额定功率为0.5W D.电阻R0的阻值为14Ω 5.假设导体没有电阻,当用电器通电时,下列说法正确的是() A.白炽灯仍然能发光B.电动机仍然能转动 C.电饭锅仍然能煮饭D.电熨斗仍然能熨衣服 6.在图8所示电路中,闭合开关S后,在滑片P 向右滑动过程中,各电表示数变化正确的 是() A.A1、A3示数不变,A2、V示数变小 B.A1、V 示数不变,A2、A 3示数变大R1 R2

abaqus与fluent流固耦合

基于MPCCI的流固耦合成功案例 基于MPCCI的流固耦合成功案例 (一)机翼气动弹性分析 1 问题陈述 机翼绕流问题是流固耦合中的经典问题。以前由于缺乏考虑流固耦合的软件,传统的分析方法是将机翼视为刚体,不考虑其弹性变形,通过CFD软件来计算机翼附近的流场。这个强硬的假设很难准确的描述流场的实际情况。更无法预测机翼的振动。MPCCI是基于代码耦合的并行计算接口,它可以同时调用结构和流体的软件来实现流固耦合。我们通过MPCCI,能很好的预测真实情况下的机翼绕流问题。采用ABAQUS结构分析软件来求解结构在流畅作用下的变形和应力分布,通过Fluent软件来计算由于固体运动和变形对整个流场的影响。 2 模拟过程分析顺序 MpCCI的图形用户界面可以方便的读入结构和流体的输入文件。后台调用ABAQUS和FLUENT。在MPCCI耦合面板中选择耦合面,然后选择在相应耦合面上流体和固体需要交换的量。启动MpCCI进行耦合。 3 边界条件设置

图1 无人机模型和流体计算模型 结构部分单个机翼跨度在1.5m左右,厚度为0.1m左右。边界条件为机翼端部的固定,三个方向的位移完全固定,另一端完全自由。在固体中除了固定端的面外,其他三个面为耦合面。流体部分采用四面体网格,采用理想气体作为密度模型。流体的入口和出口以及对称性边界条件如下图所示。 图2 固体有限元模型 4 计算方法的选择 通过结合ABAQUS和FLUENT,使用MPCCI计算流固耦合。在本例中,固体在流场作用下产生很大的变形和运动。在耦合区域,固体结构部分计算耦合面上的节点位移,通过MPCCI传输给FLUENT的耦合界面,FLUENT 计算出耦合区域上的节点力载荷,然后通过MPCCI传给结构软件ABAQUS。在MPCCI的耦合面板中选择的耦合面如图所示,交换量为:节点位移、相对受力。采用ABAQUS中的STANDARD算法,时间增量步长为0.1毫秒。 5 计算结论 通过MPCCI结合ABAQUS和FLUENT,成功地计算在几何非线性条件下的气动弹性问题,得到了整个流体区域的流场分布以及结构的动态响应历程。

双向流固耦合实例

双向流固耦合实例(Fluent与structure) 说明:本例只应用于FLUENT14.0以上版本。 ANSYS 14.0是2011年底新推出的版本,在该版本中,加入了一个新的模块System Coupling,目前只能用于fluent与ansys mechanical的双向流固耦合计算。官方文档中有介绍说以后会逐渐添加对其它求解器的支持,不过这不重要,重要的是现在FLUENT终于可以不用借助第三方软件进行双向流固耦合计算了,个人认为这是新版本一个不小的改进。 模块及数据传递方式如下图所示。 一、几何准备 流固耦合计算的模型准备与单独的流体计算不同,它需要同时创建流体模型与固体模型。在geometry模块中同时创建流体模型与固体模型。到后面流体模型或固体模块中再进行模型禁用处理。 模型中的尺寸:v1:32mm,h2:120mm,h5:60mm,h3:3mm,v4:15mm。 由于流体计算中需要进行动网格设置,因此推荐使用四面体网格。当然如果挡板刚度很大网格变形很小时,可以使用六面体网格,划分六面体网格可以先将几何进行slice切割。这里对流体区域网格划分六面体网格,固体域同样划分六面体网格。 二、流体部分设置 1、网格划分 双击B3单元格,进入meshing模块进行网格划分。禁用固体部分几何。设定各相关部分的尺寸,由于固体区域几何较为整齐,因此在切割后只需设定一个全局尺寸即可划分全六面体网格。这里设定全局尺寸为1mm。划分网格后如下图所示。

2、进行边界命名,以方便在fluent中进行边界条件设置 设置左侧面为速度进口velocity inlet,右侧面为自由出流outflow,上侧面为壁面边界wall_top,正对的两侧面为壁面边界wall_side1与wall_side2(这两个边界在动网格设定中为变形域),设定与固体交界面为壁面边界(该边界在动网格中设定为system coupling类型)。 操作方式:选择对应的表面,点击右键,选择菜单create named selection,然后输入相应的边界名称。注意:FLUENT会自动检测输入的名称以使用对应的边界类型,当然用户也可以在fluent进行类型更改。完成后的树形菜单如下图所示。 本部分操作完毕后,关闭meshing模块。返回工程面板。 3、进入fluent设置 FLUENT主要进行动网格设置。其它设置与单独进行FLUENT仿真完全一致。 设置使用瞬态计算,使用K-Epsilon湍流模型。 这里的动网格主要使用弹簧光顺处理(由于使用的是六面体网格且运动不规律),需要使用TUI命令打开光顺对六面体网格的支持。使用命令 /define/dynamic-mesh/controls/smoothing-parameters。 动态层技术与网格重构方法在六面体网格中失效。因此,建议使用四面体网格。我们这里由于变形小,所以只使用光顺方法即可满足要求。 点击Dynamic mesh进入动网格设置面板。如下图所示,激活动网格模型。

滚筒洗衣机ABAQUS流固耦合实例分析步骤共24页.docx

例子的来源是Abaqus CLE的官方教程,可是写的太粗线条,我还是搞了两天才做 出了这个例子。其实就是个滚筒洗衣机带着洗衣机里的水一起转的问题。 1. 分别为Eulerian domain和Lagrangian domain建立两个part 建立Lagrangian domain的Part,类型设置为Discrete rigid,并设置Reference Point。 建立Eulerian domain的Part,类型设置为Eulerian,要注意Eulerian domain 和Lagrangian domain要保证有重叠的部分,这是一种弱耦合,数据在两个区域间抛来抛去,所以网格要有重叠部分。这导致在Eulerian domain里有的部分是有材料的,有的地方是没有材料的。为了之后设置材料分布时候方便,要把part实现划出几个辅助的partition。黄色虚线是在划分partition时,为了指明 Extrude/Sweep方向用到的辅助坐标轴。

2. 定义水的材料属性 选择状态方程模型EOS中Us-Up,设置声速c0=1483m/s;密度为1000kg/m3;粘度为0.001kg/ms。并把截面属性赋给Eulerian domain。

3. 把两个Part组装起来

4. 新建一个Step-1 5. 为Eulerian domain和Lagrangian domain划分网格

6. 设置接触 新建一个Contact Property,因为不是普通的面和面的接触,水中的任何的一个部

分可能在流动区域里的任何一个地方和Lagrangian domain接触,设置Tangential Behavior为Rough,赋给水和洗衣机之间的关系。新建一个Interaction,把刚才的Contact Property赋给它。 更重要的是设置接触的两个Surface。其中一个Surface是Lagrangian domain 部分的内侧面,为Geometry类型,另一个Surface是Eulerian domain的全部网格,为Mesh类型。

【达尔整理】ANSYS流固耦合分析实例命令流

达尔文档DareDoc 分享知识传播快乐 ANSYS流固耦合分析实例命令流 本资料来源于网络,仅供学习交流 2015年10月达尔文档|DareDoc整理

目录 ANSYS流固耦合例子命令流.......................................................................... 错误!未定义书签。ANSYS流固耦合的方式 (3) 一个流固耦合模态分析的例子1 (3) 一个流固耦合模态分析的例子2 (4) 一个流固耦合建模的例子 (7) 一加筋板在水中的模态分析 (8) 一圆环在水中的模态分析 (10) 接触分析实例---包含初始间隙 (14) 耦合小程序 (19) 流固耦合练习 (21) 一个流固耦合的例子 (22) 使用物理环境法进行流固耦合的实例及讲解 (23) 针对液面晃动问题,ANSYS/LS-DYNA提供三种方法 (30) 1、流固耦合 (30) 2、SPH算法 (34) 3、ALE(接触算法) (38) 脱硫塔于浆液耦合的分析 (42) ANSYS坝-库水流固耦合自振特性的例子 (47) 空库时的INP文件 (47) 满库时的INP文件 (49) 计算结果 (52)

ANSYS流固耦合的方式 一般说来,ANSYS的流固耦合主要有4种方式: 1,sequential 这需要用户进行APDL编程进行流固耦合 sequentia指的是顺序耦合 以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。ANSYS CD中包含有MpCCI库和一个相关实例。关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin 2,FSI solver 流固耦合的设置过程非常简单,推荐你使用这种方式 3,multi-field solver 这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合 4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵 一个流固耦合模态分析的例子1 这是一个流固耦合模态分析的典型事例,采用ANSYS/MECHANICAL可以完成。处理过程中需要注意以下几个方面的问题: 1、单元的选择; 2、流体材料模式; 3、流固耦合关系的定义; 4、模态提取方法。 length=2 width=3 height=2 /prep7 et,1,63 et,2,30 !选用FLUID30单元,用于流固耦合问题 r,1,0.01 mp,ex,1,2e11 mp,nuxy,1,0.3 mp,dens,1,7800 mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水 mp,sonc,2,1400 mp,mu,0, ! block,,length,,width,,height esize,0.5 mshkey,1

三个流固耦合分析实例

length=2 !定义体各种变量参数,长宽高 width=3 height=2 /prep7 et,1,63 !选用壳模型 et,2,30 !选用FLUID30单元,用于流固耦合问题r,1,0.01 增加实常数,壳厚为0.01 mp,ex,1,2e11 mp,nuxy,1,0.3 mp,dens,1,7800 !定义壳单元的各种单元属性 mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水mp,sonc,2,1400 !定义声单元声速 mp,mu,0, !定义吸声系数 ! block,,length,,width,,height !建立长方体 esize,0.5 mshkey,1 ! type,1 !选择壳单元 mat,1 real,1 asel,u,loc,y,width !选择面 amesh,all !划分面单元 alls !选择所有项 ! type,2 !选择声单元 mat,2 vmesh,all !划分体单元 fini /solu antype,2 modopt,unsym,10 !非对称模态提取方法处理流固耦合问题eqslv,front mxpand,10,,,1 nsel,s,loc,x, nsel,a,loc,x,length nsel,r,loc,y d,all,,,,,,ux,uy,uz, nsel,s,loc,y,width, d,all,pres,0 !上面几步为定义边界条件和约束 alls asel,u,loc,y,width, sfa,all,,fsi !定义流固耦合界面

alls !选择所有项 solv !求解 fini /post1 !后处理 set,first plnsol,u,sum,2,1 !显示图形 fini /PREP7 !定义壳材料与性质 !壳元素与材料 ET,1,shell63 $MP,EX,1,201E9 $MP,prxy,1,0.26 $MP,dens,1,7.85E3 $r,1,0.006 !流体元素与材料 ET,2,FLUID80 $MP,EX,2,1.5e9 $MP,DENS,2,0.84e3 $mp,visc,2,1.0e-10 !以下这个keyoption怎么用? 如过用1,就会显示[Element 877 may not have a positive Z coordinate IF KEYOPT(2) = 1.],显示这个错误代表要做什么修正吗?所以我暂时用KEYOPT(2) = 0就可以跑。 KEYOPT,2,2,0 !建立壳关键点 K,1,10,0,0 $K,2,10,0,12 !建立中心线关键点 k,3,0,0,0 $k,4,0,0,20 !定义壳壁线 L,1,2 $L,1,3 !以关键点3,4为中心线旋转360度生成壳体 AROTAT,all,,,,,,3,4,360 !划分壳体网格 AATT,1,1,1 $esize,2 $mshape,0,3D $mshkey,2 $amesh,all $alls !延伸出水位体积 VEXT,2,8,2,0,0,10,0,0,0 $vglue,all

ADINA流固耦合实例

实例3 隧道内具有柔性结构的流固耦合分析 问题:隧道内具有柔性结构的流固耦合如图3-1所示。 图3-1 流体-固体结构示意图 一、目的 1. 掌握流固耦合作用FSI在Adina-AUI中的操作过程。 2. 掌握用伸缩比例因子画流固耦合模型。 3. 定义引导点(leader-follower points)。 二、定义模型主控数据 1. 定义标题: 选Control→Heading→敲入标题“exe03: Fluid flow over a flexible structure in a channel, ADINA input”→and click OK。 2. FSI分析: 在右边Analysis Type区选FSI按钮。 3. 主控自由度 选Control→Degrees of Freedom→不选X-Translation, X-Rotation, Y-Rotation and Z-Rotation按钮→and click OK。 4. 分析假设:大位移,小应变。 选Control→Analysis Assumptions→Kinematics→设置“Displacements/Rotations”为 Large→ click OK。(注:非常薄的结构,因此为小应变)。

三、力学模型 1. 柔性结构建立模型 1). 柔性结构几何模型 坐标点如表3-1,几何结构如图3-2所示。 其几何面见表3-2所示。 ①选Define Points 图标→按表3-1输入几何点坐标→ click OK . ②选Define Surfaces 图标→设置TYPE 为Vertex → click OK(如图3-2所示)。 2). 施加固定边界条件和流- 固边界条件 ①. 图3-2中,在L2线上施加固定约束,其过程可用Adina-AUI 完成。 ②. 流-固边界,选Model →Boundary Conditions →FSI Boundary →add FSI boundary number 1→在表中头两行敲入流固边界线编号1和 3 and click OK 。 3). 定义材料特性 弹性模量1.0×106(dyne/cm 2),泊松比0.3。(线弹性问题) 选Model →Materials →Elastic_Isotropic →add material 1, 设置弹性模量1.0E6→泊松比 0.3 and click OK . 4).定义单元和单元划分 (1). 2-D 实体单元,此问题属平面应变问题。 Element group : 选 Meshing →Element Groups → 增加单元组号 1→ 设置 the Type to 2-D Solid →设置 the Element 柔性结构 图3-2 几何模型 表3-1 模型几何点坐标 几何点 X1 X2 X3 坐标系 1 30.025 15.0 0 2 30.0 0.0 0 3 30.05 0.0 图3-3 结构网格

相关文档
相关文档 最新文档