文档库 最新最全的文档下载
当前位置:文档库 › Rashba自旋_轨道相互作用对一维谐振子势场中电子性质的影响

Rashba自旋_轨道相互作用对一维谐振子势场中电子性质的影响

Rashba自旋_轨道相互作用对一维谐振子势场中电子性质的影响
Rashba自旋_轨道相互作用对一维谐振子势场中电子性质的影响

Bi2Se3自旋轨道耦合计算

Bi 2Se 3自旋轨道耦合性质的计算 一、模型和基本参数: 图(a )黑色t 1、t 2、t 3基矢围成Bi 2Se 3菱形原胞,用于计算块体,红色方框包含一个五元层,是构成薄膜的一个QL 。 计算能带的布里渊区高对称点:Г(0 0 0)-Z(π π π)-F(π π 0)-Г(0 0 0)-L(π 0 0), 根据正空间和倒空间坐标的转换关系, 得到正空间中高对称点的坐标:Г(0 0 0)-Z(0.5 0.5 0.5)-F(0.5 0.5 0)-Г(0 0 0)-L(0 0 -0.5) 空间群: 166号~ R-3M (MS ) ) 3(5 3m R D d (文献) 结构分为:六角晶胞和菱形原胞(Rhombohedral )两种形式 六角晶胞(hexagon):含三个五元层,15个原子 菱形原胞(Rhombohedral ):含5个原子 晶格参数t=9.841, α=24.275 原子坐标: 弛豫值 实验值 Bi(2c) (0.400,0.400,0.400) Bi(2c) (0.398, 0.398, 0.398) Se(1a) (0,0,0) Se(1a) (0,0,0) Se(2c) (0.210, 0.210, 0.210) Se(2c) (0.216, 0.216, 0.216) 赝势:PAW_GGA_PBE E cut =340 eV 块体:Kpoints=11×11×11 薄膜:Kpoints=11×11×1 块体结构优化时,发现Ecut=580,KPOINTS=151515,得到的结构比较合理 计算薄膜真空层统一: 15 ?

ISMER取-5(或取0,对应SIGMA=0.05) 二、计算过程描述: 1)范德瓦尔斯作用力的影响。 手册中一共有5种方法: Correlation functionals:LUSE VDW = .TRUE. the PBE correlation correction AGGAC = 0.0000 Exchange交换functionals vdW-DF vdW-DF2 方法一方法二方法三方法四方法五revPBE optPBE optB88 optB86b rPW86 GGA = RE LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = OR LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = BO PARAM1 = 0.1833333333 PARAM2 = 0.2200000000 LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = MK PARAM1 = 0.1234 PARAM2 = 1.0000 LUSE_VDW = .TRUE. AGGAC = 0.0000 GGA = ML Zab_vdW = -1.8867 LUSE_VDW = .TRUE. AGGAC = 0.0000 经测试,发现方法二optimized Perdew-Burke-Ernzerhof-vdW (optPBE-vdW)是最合适的。并通过比较发现,范德瓦尔斯作用力对块体和单个QL厚度的薄膜的影响很小,对多个QL 厚度的薄膜结构影响比较大,所以优化时需要考虑QL之间的vdW相互作用,而范德瓦尔斯作用力对电子态的影响也比较小,所以,计算静态和能带的时候,可以不考虑。 此外,以往文献中的计算,有的直接采用实验给出的结构参数建模,不再弛豫,计算静态和能带,得到的结果也比较合理。 所以,我们对薄膜采用不优化结构和用optPBE方法优化结构,两种方式。 2)算SOC。 计算材料的自旋轨道耦合性质,一般在优化好的结构基础上,在静态和能带计算是加入特定参数来实现。一般,分两种方式: 第一种是从静态开始,就进行非线性的计算,能带也进行非线性自旋轨道耦合计算。 第二种,则是,在静态时进行非线性计算(按照一般的静态计算进行),产生CHGCAR、WA VECAR,进行能带非线性自旋轨道计算时,读入这两个参数。 V ASP手册推荐使用第二种。 我们通过多次比较发现,使用第一种方法,可以得到更为合理的结果。 3)关于d电子的考虑。 我们分别考虑了Bi原子的两种电子组态: 第一种,含有15个价电子,包含d电子,电子组态5d106s26p3; 第二种,含有5个价电子,不含d电子,电子组态是6s26p3。 通过比较计算结果,发现并没有明显的区别,所有我们选用第二种。

微波段电子自旋共振实验报告

微波段电子自旋共振实验 电子自旋共振(ESR )谱仪是根据电子自旋磁矩在磁场中的运动与外部高频电磁场相互作用,对电磁波共振吸收的原理而设计的。因为电子本身运动受物质微观结构的影响,所以电子自旋共振成为观察物质结构及其运动状态的一种手段。又因为电子自旋共振谱仪具有极高的灵敏度,并且观测时对样品没有破坏作用,所以电子自旋共振谱仪被广泛应用于物理、化学、生物和医学生命领域。 一. 实验目的 1. 本实验的目的是在了解电子自旋共振原理的基础上,学习用微波频段检测电子自旋共振信号的方法。 2. 通过有机自由基DPPH 的g 值和EPR 谱线共振线宽并测出DPPH 的共振频率,算出共振磁场,与特斯拉计测量的磁场对比。 3. 了解、掌握微波仪器和器件的应用。 4. 学习利用锁相放大器进行小信号测量的方法。 二. 实验原理 具有未成对电子的物质置于静磁场B 中,由于电子的自旋磁矩与外部磁场相互作用,导致电子的基态发生塞曼能级分裂,当在垂直于静磁场方向上所加横向电磁波的量子能量等于塞曼分裂所需要的能量,即满足共振条件B ?=γω,此时未成对电子发生能级跃迁。 Bloch 根据经典理论力学和部分量子力学的概念推导出Bloch 方程。Feynman 、Vernon 、Hellwarth 在推导二能级原子系统与电磁场作用时,从基本的薛定谔方程出发得到与Bloch 方程完全相同的结果,从而得出Bloch 方程适用于一切能级跃迁的理论,这种理论被称之为FVH 表象。 原子核具有磁矩: L ?=γμ; (1) γ称为回旋比,是一个参数;L 表示自旋的角动量; 原子核在磁场中受到力矩: B M ?=μ; (2)

VASP 自旋轨道耦合计算

VASP 自旋轨道耦合计算 已有4532 次阅读2011-9-13 20:37|个人分类:VASP|系统分类:科研笔记 将VASP 的makefile 文件中的 CPP 选项中的 -DNGXhalf, -DNGZhalf, -DwNGXhalf, -DwNGZhalf 这4个选项去掉重新编译VASP才能计算自旋轨道耦合效应。 以下是从VASP在线说明书整理出来的非线性磁矩和自旋轨道耦合的计算说明。 非线性磁矩计算: 1)计算非磁性基态产生WAVECAR和CHGCAR文件。 2)然后INCAR中加上 ISPIN=2 ICHARG=1 或 11 !读取WAVECAR和CHGCAR文件 LNONCOLLINEAR=.TRUE. MAGMOM= 注意:①对于非线性磁矩计算,要在x, y 和 z方向分别加上磁矩,如 MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个原子的y方向有磁矩 ②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR和CHGCAR文件)或者ICHARG=1 或11(有WAVECAR和CHGCAR文件),但是前一步的计算是非磁性的(ISPIN=1)。 磁各向异性能(自旋轨道耦合)计算:

注意: LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选项,且自旋轨道计算只适用于PAW赝势,不适于超软赝势。 自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在磁各向异性能(MAE),所以要定义初始磁矩的方向。如下: LSORBIT = .TRUE. SAXIS = s_x s_y s_z (quantisation axis for spin) 默认值: SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z方向有磁矩。 要使初始的磁矩方向平行于选定方向,有以下两种方法: MAGMOM = x y z ! local magnetic moment in x,y,z SAXIS = 0 0 1 ! quantisation axis parallel to z or MAGMOM = 0 0 total_magnetic_moment ! local magnetic moment parallel to SAXIS (注意每个原子分别指定) SAXIS = x y z !quantisation axis parallel to vector (x,y,z),如 0 0 1 两种方法原则上应该是等价的,但是实际上第二种方法更精确。第二种方法允许读取已存在的WAVECAR(来自线性或者非磁性计算)文件,并且继续另一个自旋方向的计算(改变SAXIS 值而MAGMOM保持不变)。当读取一个非线性磁矩计算的WAVECAR时,自旋方向会指定平行于SAXIS。 计算磁各向异性的推荐步骤是: 1)首先计算线性磁矩以产生WAVECAR 和CHGCAR文件(注意加入LMAXMIX)。 2)然后INCAR中加入: LSORBIT = .TRUE. ICHARG = 11 ! non selfconsistent run, read CHGCAR

电子自旋共振实验报告

微波电子自旋共振 【摘要】本文通过电子自旋共振实验,解释恒定磁场中的电子自旋磁矩在射频电磁场 的作用下会发生磁能级间的共振跃迁现象。 一、引言 电子自旋的概念首先由Pauli于1924年提出。而电子自旋共振实验则是从1945年开始才发展起来的一项新技术。 电子自旋共振研究的对象是具有未偶电子的物质,如具有奇数个电子的原子、分子、内电子壳层未被充满的离子、受辐射作用产生的自由基及半导体、金属等。通过共振谱线的研究,可以获得有关分子、原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构和化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛用途。 “自旋”概念的明确提出:1925年,两位年轻的荷兰学生乌伦贝克和哥德斯密特,“为了解释反常塞曼效应”,受泡利不相容原理的启发,明确提出了电子具有自旋的概念,并证明了“自旋”就是泡利提出的“新自由度”。1926年,海森伯和约旦引进自旋S,用量子力学理论对反常塞曼效应作出了正确的计算。1927年,泡利引入了泡利矩阵作为自旋操作符号的基础,引发了保罗-狄拉克发现描述相对论电子的狄拉克方程式。 电子自旋共振(ESR,Electron Spin Resonance)是一种奇妙的实验现象,也被称为电子顺磁共振(EPR,Electron Paramagnetic Resonance)。它利用具有未偶电子的物质在外加恒定磁场作用下对电磁波的共振吸收特性,来探测物质中的未偶电子,研究其与周围环境的相互作用,从而获得有关物质微观结构的信息。电子自旋共振现象直到1944年才由苏联喀山大学的扎沃伊斯基(E.K.Зabouchuǔ)在实验中观察到。 二、实验原理 1、量子力学解释 μ的关系为: 电子具有自旋,其自旋角动量Pe和自旋磁矩e 图1 自旋能级在磁场中的取向 g为朗德因子,Bμ为玻耳磁子,其值为5.7883785×1O-11MevT-1。若电子处于外磁场 μ在空间的取向是量子化的,Pe在Z方向的B(沿Z方向)中,据量子力学可知Pe和e

自旋和角动量

第六章 自旋和角动量 一、填空 1. ______实验是发现电子具有自旋的最早的实验之一.为了解释该实验,____和____提出了电子具有自旋角动量的说法. 2. 在),?(x 2σσ 的共同表象中,算符z y x σσσ、、对应的矩阵分别是_____、_____和_____. 二、概念与名词解释 1. 电子自旋 2. 泡利矩阵 3. 无耦合表象,耦合表象 4. 塞曼效应,正常塞曼效应和反常塞曼效应 三、计算 1. 求自旋角动量算符在(cos α, cos β, cos γ)方向的投影S n =S x cos α+S y cos β+S z cos γ的本征值和相应的本征矢. 在其两个本征态上,求S z 的取值概率及平均值. 2. 求下列状态中算符)S L J (J ,J z 2 +=的本征值: {} {}). ,()Y (S (4)),()Y (S ),()Y (S 231/ (3)),()Y (S ),()Y (S 231/ (2)) ,()Y (S (1)1- 1z 1/2- 41- 1z 1/2 10z 1/2- 311z 1/2- 10z 1/2211z 1/21?θχ=ψ?θχ+?θχ=ψ?θχ+?θχ=ψ?θχ=ψ 3. 对自旋态.)S ()S ( ,01)(S 2y 2x 21/2?????? ? ??=χ求 4. 一个由两个自旋为1/2的非全同粒子组成的体系. 已知粒子1处在S 1z =1/2的本征态,粒子2处在S 2x =1/2的本征态,取?=1,求体系

总自旋S 2的可能值及相应的概率,并求体系处于单态的概率. 5. 考虑三个自旋为1/2的非全同粒子组成的体系. 体系的哈密顿量是 , S )S S B(S S A H 32121 ?++?=A 、B 为实常数,试找出体系的守恒量,并确定体系的能级和简并度(取?=1为单位). 6. 设氢原子处于状态 ,)/2,((r)Y R 3-)/2,((r)Y R )r (10211121??? ? ???θ?θ=ψ 求轨道角动量z 分量 和自旋z 分量的平均值,进而求出总磁矩c /S e -c /2L -e μμ=μ 的z 分量的平均值. 7. 设总角动量算符为J ? ,记算符J 2与J z 的共同本征函数为|jm>,当j=1时: (1) 写出J 2、J x 的矩阵表示,并求出其共同本征矢|1m x >x ; (2) 若体系处于状态 ,2]/1-111[+=ψ求同时测J 2与J x 的取值概率; (3) 在|ψ>状态上,测量J z 得?时,体系处于什么状态上;在|ψ>状态上,计算J y 的平均值. 8. 在激发的氦原子中,若两个电子分别处于p 态和s 态,求出其总轨道角动量的可能取值. 9. 用柱坐标系,取磁场方向沿z 轴方向,矢势A φ=B ρ/2,A ρ=A z =0,求均匀磁场中带电粒子的本征能量. 10. 自旋为1/2的粒子,在均匀磁场中运动,磁场的绝对值不变,但各个分量随时间变化,满足B x =Bsin θcos ωt ,B y =Bsin θsin ωt ,B z =Bcos θ.设t=0时自旋在磁场方向上的分量等于1/2,求在时刻t 粒子跃迁到自旋在磁场方向上的分量等于-1/2的态中的概率. 11. 带电粒子在均匀磁场和三维谐振子势场U(r)=m e ω02r 2/2中运动,

自旋轨道耦合计算探索过程分析

自旋轨道耦合计算过程探索 1.经验总结 1)对于Bi2Se3家族材料,QL内是强的共价结合作用,QL之间是范德瓦尔斯作用力。所以,在优化结构的时候,需要考虑范德瓦尔斯相互作用。 一般,对于一种没有算过的新材料,可以尝试以上五种方法,哪一种最合理就用哪个。 Bi2Se3家族材料,经测试最合适的是optPBE-vdW方法。 3)测试发现,对于1QL和块体,范德瓦尔斯作用的影响不是很影响;对于多个QL厚度的薄膜,QL之间范德瓦尔斯作用的影响比较明显。 5)算soc加入LSORBIT=.TRUE.和LORBMOM=.TRUE., 比LSORBIT=.TRUE.和GGA_COMPAT = .FALSE.得到的结果更合理。 6)薄膜优化的时候,可以用ISIF=2。 7)计算静态的时候输出CHARG,能带的时候ISTART可以等于0,ICHARG等于11。 7)薄膜的结构需要中心对称,切得时候需要注意。 8)计算vdW,需要vasp5.2.12以上的版本,并且将vdw_kernel.bindat文件放到计算的文件夹中。9)vdW相互作用对结构的影响比较大,对后面的静态计算和能带计算电子态的影响比较小。10)取合适的K点,可以得到较为合理的结构,对后面电子态的计算影响也不是很大。 2. 结构优化 赝势:PAW_GGA_PBE E cut=340 eV Kpoints=10×10×10 ISMER取-5,计算能带时,取0,对应SIGMA=0.05 在MS中可以在build-Symmetry -中把Bi2Se3 rhombohedral representation(菱形表示)和hexagonal representation(六角表示)相互转换

顺磁共振实验报告

近代物理实验报告 顺磁共振实验 学院 班级 姓名 学号 时间 2014年5月10日

顺磁共振实验 实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR ”或“ESR ”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋g 因子,检波 【引言】 顺磁共振(EPR )又称为电子自旋共振(ESR ),这是因为物质的顺磁性主要来自电子的自旋。电子自旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子自旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演变,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH 的g 因子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。 【正文】 一、实验原理 (1)电子的自旋轨道磁矩与自旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为: 2l l e e P m μ=- ,负号表示方向同l P 相反。在量子力学中(1)l P l l =+,因而 (1)(1)2l B e e l l l l m μμ=+=+,其中2B e e m μ=称为玻尔磁子。电子除了轨道运动外

自旋和角动量-Oriyao

第六章 自旋和角动量内容简介:在本章中,我们将先从实验上引入自旋,分析自旋角动量的性质,然后讨论角动量的耦合,并进一步讨论光谱线在磁场中的分裂和精细结构。最后介绍了自旋的单态和三重态。 § 6.1 电子自旋 § 6.2 电子的自旋算符和自旋函数 § 6.3 角动量的耦合 § 6.4 电子的总动量矩 § 6.5 光谱线的精细结构 § 6.6 塞曼效应 § 6.7 自旋的单态和三重态 首先,我们从实验上引入自旋,然后分析自旋角动量的性质。 施特恩-盖拉赫实验是发现电子具有自旋的最早实验之一。如右图所示,由 源射出的处于基K 态的氢原子束经过狭缝和不均匀磁场,照射到底片PP 上。结果发现射线束方向发生了偏转,分裂成两条分立的线。这说明氢原子具有磁矩,在非均匀磁场的作用下受到力的作用而发生里偏转。由于这是处于s 态的氢原子,轨道角动量为零,s 态氢原子的磁矩不可能由轨道角动量产生。这是一种新的磁矩。另外,由于实验上只有两条谱线,因而这种磁矩在磁场中的取向,是空间量子化的,而且只取两个值。假定原子具有的磁矩为M ,则它在沿z 方向的外磁场H 中的势能为 cos U M H MH θ=-=- (6.1.1) θ为外磁场与原子磁矩之间的夹角。则原子z 方向所受到的力为 cos z U H F M z z θ??=- =?? (6.1.2) 实验证明,这时分裂出来两条谱线分别对应于cos 1θ=+ 和cos 1θ=-两个值。 为了解释施特恩-盖拉赫实验,乌伦贝克和歌德斯密脱提出了电子具有自旋角动量,他们认为: ① 每个电子都具有自旋角动量S ,S 在空间任何方向上的投影只能取两个值。若将空间 的任意方向取为z 方向,则 2z S =± (6.1.3) ② 每个电子均具有自旋磁矩s M ,它与自旋角动量之间的关系为 s s e e M S M S m mc =-=- (SI ) 或 (C G S)(6.1.4) s M 在空间任意方向上的投影只能取两个值:

自旋电子学简介

自旋电子学简介 今天,我们一起去听了王博士关于《自旋电子学简介》的讲座,通过这次的讲座,我对自旋电子学有了更加深刻的认识。 在传统的微电子学中,一般是利用电子的荷电性由电场来控制电子的输运过程的,而对电子的自旋状态是不予考虑的.为了能够进一步提高信息处理速度和存储密度,就必须对电子的自旋加以利用,由此发展出一门新的学科———自旋电子学。 自旋电子学(Spintronics or spin electronics),亦称磁电子学(Magneto—electronics),是一门结合磁学与微电子学的交叉学科。它是利用电子的自旋属性进行工作的电子学。早在19世纪末,英国科学家汤姆逊发现电子之后,人们就知道电子有一个重要特性,就是每一个电子都携带一定的电量,即基本电荷(e=1.60219x10-19库仑)。到20世纪20年代中期,量子力学诞生又告诉人们,电子除携带电荷之外还有另一个重要属性,就是自旋。电子的自旋角动量有两个数值,即±h/2。其中正负号分别表示“自旋朝上”和“自旋朝下”,h是量子物理中经常要遇到的基本物理常数,称为普朗克常数。 通过对电子电荷和电子自旋性质的研究,最近在电子学和信息技术领域出现了明显的进展。这个进展的重要标志之一就是诞生了自旋电子学。在传统的电子学中,数据处理集成电路所用的是半导体中电子的电荷,但并不是说电子的自旋自由度以前从没有用过,例如传统的数据存储介质,如磁盘,用的就是磁性材料中电子的自旋。 事实上,半导体中有很多类型的自旋极化现象,如载流子的自旋,半导体材料中引入的磁性原子的自旋和组成晶体的原子的核自旋等等。从某种意义上说,已有的技术如以巨磁电阻(GMR)为基础的存储器和自旋阀都是自旋起作用的自旋电子学最基本的应用。但是,其中自旋的作用是被动的,它们的工作由局域磁场来控制。这里所指的自旋电子学则要走出被动自旋器件的范畴,成为基于自旋动力学的主动控制的应用。因为自旋动力学的主动控制预计可以导致新的量子力学器件,如自旋晶体管、自旋过滤器和调制器、新的存储器件、量子信息处理器和量子计算。从这个意义上说,自旋电子学是在电子材料,如半导体中,主动控制载流子自旋动力学和自旋输运的一个新兴领域。已经证明,通过注入、输运和控制这些自旋态,可以执行新的功能。这就是半导体自旋电子学新领域所包含的内容,它涉及自旋态在半导体中的利用。 对于目前的自旋电子学,令人感兴趣的两个重要的物理学原理是:自旋作为一个动力学变数,它有量子力学固有的量子特性,这些特性将导致新的自旋电子学量子器件而不是传统的以电子电荷为基础的电子学。另一个是与自旋态有关的长驰豫时间或相干时间。在磁性半导体中,自旋朝上的载流子浓度往往多于自旋朝下的载流子,这些载流子运动会产生所谓自旋极化电流。自旋极化电流的大小、存在的时间长短取决于许多因素,如材料的特性、界面、外场及温度等等。事实上,半导体中的载流子自旋可以通过局域磁场,或通器件的栅极改变外加电场,甚至通过偏振光地进行操作。这一事实,是开发自旋电子学应用的一个重要的物理基础。 半导体自旋电子学器件的目的之一是利电子自旋和核自旋很长的相干时间,并基于半导体器件来执行量子信息处理。用半导体实现量子计算机有很多优点,不仅仅因为它是固体材料,可适合于大规模集成,而且通过量子约束可以自由控制其维度,并允许用外场,如光、电或磁场改变其特性。本节将简介利用半导体中的自旋如何构造固体量子计算机的基本原理。 半导体自旋电子学(spintronics)作为半导体物理发展的新分支,目前主要在两个方面着重展开研究:半导体磁电子学和半导体量子自旋电子学。前者希望在最近的将来会有实际的结果,后者则已成为21世纪的重要研究论题。半导体自旋电子学作为信息处理

顺磁共振实验报告

近代物理实验报告顺磁共振实验 学院 班级 姓名 学号 时间2014 年 5 月10 H

顺磁共振实验实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的周有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和周体中的磁矩主要是自旋磁矩的贡獻所以又被称为电子自旋共振。简称“EPR”或“ESR”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋兰闵子,检波 【引言】 顺磁共振(EPR)又称为电子肖旋共振(ESR),这是冈为物质的顺磁性主要来自电子的自旋。电子自'旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子肖旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演巫,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH的g闵子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。

【正文】 一、实验原理 (1)电子的肖旋轨道磁矩与肖旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为:刀儿,负 号表示方向同E相反。在量子力学中E=』(/+1)方,因而均=屮Q+1)-^― = Jo + “B = 4r~ -九,其中2叫称为玻尔磁子。电子除了轨道运动外 “、= y]s(S+\) —还具有自旋运动,因此还具有肖旋磁矩,其数值表示为:m 叫。 由于原子核的磁矩可以忽略不计,原子中电子的轨道磁矩和自旋磁矩合成原子 少 _ & 丄号&=] + 旳+Ta+i)+s(w) 的总磁矩:2他,其中弐是朗德闵子:2山+ 1) 。 在外磁场中原子磁矩要受到力的作用,其效果是磁矩绕磁场的方向作旋进,也e 就是巧绕着磁场方向作旋进,引入回磁比2叫,总磁矩可表示成H严泻。同 时原子角动量巧和原子总磁矩"丿取向是量子化的。勺在外磁场方向上的投影为: Pj =斤谄,m = jJ-\J-2,...-j o其中m称为磁量子数,相应磁矩在外磁场方向 上的投影为:“丿=ymh=-mg“B ; m = j,j-Xj-2、??.一j。 (2)电子顺磁共振

自旋电子学与自旋电子器件简述

自旋电子学与自旋电子器件简述 陈闽江,邱彩玉,孙连峰 (国家纳米科学中心 器件研究室 北京 100190) 一、引言 2007年10月,瑞典皇家科学院宣布,将该年度诺贝尔物理学奖授予在 1988年分别独立发现纳米多层膜中巨磁电阻效应的法国Albert Fert 教授和德国Peter Grunberg 教授。其随后的应用不啻为革命性的,因为它使得计算机硬盘的容量从几十兆、几百兆,一跃而提高了几百倍,达到几十G 乃至上百G 。越来越多的人开始了解这个工作及其对我们生活的影响,并意识到这个工作方向的重要意义。 1988年在磁性多层膜中发现巨磁电阻效应(Giant Magnetoresistance ,GMR),1993年和1994年在钙钛矿锰氧化物中发现庞磁电阻效应(Colossal Magnetoresistance ,CMR),特别是1995年在铁磁性隧道结材料中发现了室温高隧穿磁电阻效应(Tunneling Magnetoresistance ,TMR)以及后续形成的稀磁半导体等研究热潮,这些具有里程碑意义的人工合成磁性材料的成功制备和深入研究,不仅迅速推动了近20年凝聚态物理新兴学科——自旋电子学(spintronics)的形成与快速发展,也极大地促进了与自旋极化电子输运相关的磁电阻材料和新型自旋电子学器件的研制和应用。中国科学院物理研究所朱涛研究员表示:“Albert Fert 和Peter Grunberg 种下了一粒种子,随着20世纪90年代应用的突破,这粒种子长成了一棵小苗——自旋电子学,这是一个成长很快、前景广阔的磁学分支。” 二、电子自旋与自旋电子学 要阐明自旋电子学,就不得不先简述一下电子自旋这一概念。电子自旋不是电子的机械自转,电子自旋及磁矩是电子本身的内禀属性,所以也被称为内禀角动量和内禀磁矩。它们的存在标志电子还有一个新的内禀自由度。所以电子状态的完全描述不但包括空间三个自由度的坐标(r ),还必须考虑其自旋状态。更确切地说,要考虑自旋在某给定方向(例如z 轴方向)的投影的两个可能取值的波幅,即波函数中还应该包含自旋投影这个变量(习惯上取为),Z S 从而记为。与连续变量r 不同,只能取两个离散值。 (,)Z r s ψZ S 2± 接下来,认识电的和磁的相互作用在强度上的差异和不同的特点,可以了解自旋电子学的潜力。电荷周围存在电场,通过静电力和其他电荷发生相互作用,这种相互作用是强的和长程的。在常见的半导体中,两个相距5的元电A 荷间的相互作用能可达0.2eV ,它正比于距离的倒数。1V 的电压可使载流子1r 改变1eV 的能量。然而距离为5的一对电子自旋之间的磁偶极耦合能却只有A

自旋-轨道耦合调制下磁纳米结构中电子自旋极化效应

目录 摘要.......................................................................................................................................I Abstract...............................................................................................................................II 第1章 绪论.. (1) 1.1自旋电子学 (1) 1.2 磁纳米结构 (5) 1.3 磁纳米结构中电子自旋极化效应 (8) 1.4 硕士学位论文的研究工作 (11) 第2章 研究方法和理论 (13) 2.1 改进的转移矩阵法 (13) 2.2Landauer-Büttiker超微结构电导理论 (16) 2.3 本章小结 (18) 第3章 自旋-轨道耦合调制下磁垒纳米结构中电子自旋极化效应 (19) 3.1 引言 (19) 3.2 模型和公式 (20) 3.3 结果和讨论 (23) 3.4 本章小结 (30) 第4章 自旋-轨道耦合调制下复合磁电垒纳米结构中电子自旋极化效应 (31) 4.1 引言 (31) 4.2 模型和公式 (32) 4.3 结果和讨论 (36) 4.4 本章小结 (42) 第5章 结论与展望 (44) 参考文献 (46) 个人简历、申请学位期间的研究成果及发表的学术论文 (52) 致谢 (53) III 万方数据

磁化率实验报告1

磁化率的测定 08材化2 叶辉青200830750230 1 实验目的 1.1 掌握古埃(Gouy)法测定磁化率的原理和方法。 1.2 测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 1.3 了解磁天平的原理与测定方法。 1.4 熟悉特斯拉计的使用。 2 实验原理 2.1 磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度H′与外磁场强度H 之和称为该物质的磁感应强度B,即 B=H+H′(1) H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。物质的磁化可用磁化强度I来描述,H′=4πI。对于非铁磁性物质,I与外磁场强度H成正比 I=KH (2) 式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物质的磁性质,它的定义是 χm=K/ρ(3) χM=MK/ρ(4) 式中,ρ和M分别是物质的密度和摩尔质量。由于K是无量纲的量,所以χm 和χM的单位分别是cm3/g和cm3/mol,磁感应强度SI单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。 2.2 分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其χM就等于反磁化率χ反,且χM<0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即 χM=χ顺+χ反(5) 通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。顺磁化率与分子 永久磁矩的关系服从居里定律

电子顺磁共振 实验报告范本(完整版)

报告编号:YT-FS-7477-82 电子顺磁共振实验报告 范本(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

电子顺磁共振实验报告范本(完整 版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、实验目的 1. 学习电子顺磁共振的基本原理和实验方法;; 2. 了解、掌握电子顺磁共振谱仪的调节与使用; 3. 测定DMPO-OH 的EPR 信号。 二、实验原理 1.电子顺磁共振(电子自旋共振) 电子自旋共振(Electron Spin Resonance, ESR)或电子顺磁共振(Electron Paramagnanetic Resonance,EPR),是指在稳恒磁场作用下,含有未成对电子的原子、离子或分子的顺磁性物质,对微波发生的共振吸收。1944年,苏联物理学家扎沃伊斯基(Zavoisky)首次从CuCl2 、MnCl2等顺磁性盐类发现。

电子自旋共振(顺磁共振)研究主要对象是化学自由基、过渡金属离子和稀土离子及其化合物、固体中的杂质缺陷等,通过对这类顺磁物质电子自旋共振波谱的观测(测量因子、线宽、弛豫时间、超精细结构参数等),可了解这些物质中未成对电子状态及所处环境的信息,因而它是探索物质微观结构和运动状态的重要工具。由于这种方法不改变或破坏被研究对象本身的性质,因而对寿命短、化学活性高又很不稳定的自由基或三重态分子显得特别有用。近年来,一种新的高时间分辨ESR技术,被用来研究激光光解所产生的瞬态顺磁物质(光解自由基)的电子自旋极化机制,以获得分子激发态和自由基反应动力学信息,成为光物理与光化学研究中了解光与分子相互作的一种重要手段。电子自旋共振技术的这种独特作用,已经在物理学、化学、生物学、医学、考古等领域得到了广泛的应用。 2.EPR基本原理 EPR 是把电子的自旋磁矩作为探针,从电子自旋

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图 2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

电子自旋共振 实验报告

电子自旋共振 【实验原理】 1. 电子的轨道磁矩和自旋磁矩 电子的轨道磁矩为 2l l e e P m μ=- l P 为电子轨道运动的角动量,e 为电子电荷,e m 为电子质量。轨道角动量和轨道磁矩分别为 l l P μ== 电子的自旋磁矩 s s e e P m μ=- s P 为电子自旋运动的角动量,e 为电子电荷,e m 为电子质量。自旋角动量和自旋磁矩分别为 s s P μ== 由公式可以看出电子自旋运动的磁矩与动量之间的比值是轨道轨道磁矩与角动量之间比值的2倍。 对于单电子的原子,总磁矩 j μ与总角动量 j P 之间有 j j e e g P m μ=-

其中()()() () 111121j j l l s s g j j +-+++=++。对单纯轨道运动g 为1,对于单纯自旋运 动g 为2。 引入旋磁比γ,即有 j j e P e g m μγγ==- 在外磁场中 j P 和 j μ都是量子化的,因此 j P 在外磁场方向上投影为 ()(),1,,1,2π = =----z mh P m j j j j 相应的磁矩 j μ在外磁场方向上的投影为 ()(),1,,1,2γμπ = =----z mh m j j j j 由以上公式可得 4z B e mgeh mg m μμπ=- =- 4B e eh m μπ= 为玻尔磁子 2. 电子自旋共振(电子顺磁共振) 由于原子总磁矩 j μ的空间取向是量子化的,因此原子处在外磁场B 中时,磁矩 与外磁场的相互作用也是量子化的,为 2j B mhB E B mg B γμμπ=-=- =- 相邻磁能级之间的能量差为 2hB E γπ?= 当向能量差为 20hB E γπ?= 的原子发射能量为20 hB h γνπ= 光子时,原子将这个光子 跃迁到高磁能级,这是发生在原子中的共振吸收跃迁现象,磁能级分裂是由电子

电子自旋共振实验报告

电子自旋共振实验报告

电子自旋共振实验报告 一、实验目的 1.了解自旋共振的基本原理和实验方法 2.观察和研究电子自旋共振现象,测量二苯基—苦基肼基中电子的朗德因子g 因子 二、实验内容 1.观测电子自旋共振的共振波形,测量共振情况下的磁场0B ,并根据磁场计算g 因子 2.改变微波的频率,测量不同频率下的磁场0B ,并计算不同频率下的g 因子 三、实验原理 1.电子的轨道磁矩 电子的轨道磁矩为 2l l e e P m μ=- l P 为电子轨道运动的角动量,e 为电子电荷,e m 为电子质量。轨道角 动量和轨道磁矩分别为 l l P μ== 2.电子的自旋磁矩 s s e e P m μ=-

s P 为电子自旋运动的角动量,e 为电子电荷,e m 为电子质量。自旋角 动量和自旋磁矩分别为 s s P μ== 由公式可以看出电子自旋运动的磁矩与动量之间的比值是轨道轨道磁矩与角动量之间比值的2倍 3.电子的总磁矩 对于单电子的原子,总磁矩j μ 与总角动量j P 之间有 j j e e g P m μ=- 其中()()() () 111121j j l l s s g j j +-+++=+ +。对单纯轨道运动g 为1,对于 单纯自旋运动g 为2。 引入旋磁比γ,即有 j j e P e g m μγγ==- 在外磁场中j P 和j μ 都是量子化的,因此j P 在外磁场方向上投影为 ()()2,1,,1,z mh P m j j j j π= =---- 相应的磁矩j μ 在外磁场方向上的投影为 ()() 2,1,,1,z mh m j j j j γμπ = =----

电子自旋角动量

第七章电子自旋角动量 实验发现,电子有一种内禀的角动量,称为自旋角动量,它源于电子内禀性质,一种非定域的性质,一种量级为相对论性修正的效应。 本来,在Dirac相对论性电子方程中,这个角动量很自然地以内禀方式蕴含在该方程的旋量结构中。在对相对论性电子方程作最低阶非相对论近似,以便导出Schrodinger 方程的时候,人为丢弃了这种原本属于相对论性的自旋效应。于是,现在从Schrodinger 方程出发研究电子非相对论性运动时,自旋作用就表现出是一种与电子位形空间运动没有直接关系的、外加的自由度,添加在Schrodinger 方程上。到目前为止,非相对论量子力学所拟定的关于它的一套计算方法,使人们能够毫无困难地从理论上预测实验测量结果并计算它在各种实验场合下运动和变化。但是,整个量子理论对这个内禀角动量(以及与之伴随的内禀磁矩)物理根源的了解依然并不很透彻1。 §7.1 电子自旋角动量 1, 电子自旋的实验基础和其特点 早期发现的与电子自旋有关的实验有:原子光谱的精细结构(比如,对应于氢原子21 的跃迁存在两条彼此很靠 p s 近的两条谱线,碱金属原子光谱也存在双线结构等);1912 1杨振宁讲演集,南开大学出版社,1989年 155

156 年反常Zeeman 效应,特别是氢原子谱线在磁场中的偶数重分裂 ,无法用轨道磁矩与外磁场相互作用来解释,因为这只能将谱线分裂为()21l +奇数重;1922年Stern —Gerlach 实验,实验中使用的是顺磁性的中性银原子束,通过一个十分不均匀的磁场,按经典理论,原子束不带电,不受Lorentz 力作用。由于银原子具有一个永久磁矩,并且从高温下蒸发飞出成束时其磁矩方向必定随机指向、各向同性的。于是在穿过非均匀磁场时,磁矩和磁场方向夹角也是随机的。从而银原子束在通过磁场并接受非均匀磁场力的作用之后,应当在接受屏上相对于平衡位置散开成一个宽峰,但实验却给出彼此明显对称分开的两个峰,根据分裂情况的实测结果为 B ±μ,数值为 Bohr 磁子。 在上述难以解释的实验现象的压力下,1925年Uhlenbeck 和Goudsmit 大胆假设:电子有一种内禀的(相对 于轨道角动量而言)角动量,s ,其数值大小为2 ,这种内禀 角动量在任意方向都只能取两个值,于是有2 z s =± 。他们认 为这个角动量起源于电子的旋转,因此他们称之为自旋。为 使这个假设与实验一致,假定电子存在一个内禀磁矩μ 并且 和自旋角动量s 之间的关系为(电子电荷为-e ) (7.1) 这表明,电子自旋的廻磁比是轨道廻磁比的两倍。于是,电 子便具有了m,e,s,μ 共四个内禀的物理量。根据实验事实用外

相关文档
相关文档 最新文档