文档库 最新最全的文档下载
当前位置:文档库 › β-葡聚糖测定方法

β-葡聚糖测定方法

β-葡聚糖测定方法
β-葡聚糖测定方法

β-葡聚糖酶活力测定方法(NY/T911-2004)

? 1.原理

β-葡聚糖酶能将木聚糖降解成还原性糖。还原性糖在沸水浴条件下可以与3,5-二硝基水杨酸(DNS)试剂反应显色反应。反应液颜色的深度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中β-葡聚糖酶的活力成正比。因此,通过分光比色测定反应液颜色的强度,可以计算反应液中β-葡聚糖酶的活力。

? 2. 操作

? 2.1.标准葡萄糖曲线的制作

2.1.1 吸取PH5.5的0.1M乙酸-乙酸钠+缓冲溶液4.0mL,加入DNS试剂5.0mL,

沸水浴加热5min。用自来水冷却至室温,用水定容至25.0mL,制成标准空白样。

2.1.2 分别吸取葡萄糖溶液1.00mL、2.00mL、

3.00mL、

4.00mL、

5.00mL、

6.00mL

和7.00mL,分别用PH5.5的0.1M醋酸缓冲溶液定容至100mL,配制成浓度为

0.10mg/mL、0.20mg/mL、0.30mg/mL、0.40mg/mL、0.50mg、0.60mg/mL和0.70mg/mL

葡萄糖标准溶液。

2.1.3 分别取上述浓度系列的葡萄糖标准溶液各2.00mL(做两个平行),分别

加入到刻度试管中,再分别加入2.0mL缓冲液94.4)和5.0mLDNS试剂。电磁振荡3s-5s,沸水浴加热5min。然后用自来水冷却到室温,在用水定溶液至25mL。

以标准空白为对照调零,在540min处测定吸光度A值。

以葡萄糖糖浓度为Y轴、吸光度A值为X轴,绘制标准曲线。每次新配制DNS试剂均需要重新绘制标准曲线

? 3. 酶样测定

吸取10.0mLβ-葡聚糖溶液,37℃平衡20min。

吸取10.0经过适当稀释的酶液,37℃平衡10min。

?吸取2.00mL经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入5mLDNS试剂,电磁振荡3s-5s。然后加入8.0g/lβ-葡聚糖溶液2.0ml,37℃保温30min,沸水浴加热5min。用自来水冷却至室温,加水定容至25mL,电磁振荡3s-5s。以标准空白样(2.1.1)为空白对照,在540min处测定吸光度A

B

?

?吸取2.00mL经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入8.0g/lβ-葡聚糖溶液2.0ml(已经过37℃平衡),电磁振荡3s-5s。37℃保温30min。加入5mLDNS试剂,电磁振荡3s-5s,以终止酶反应。沸水浴加热5min.

用自来水冷却至室温,加水定容至25mL,电磁振荡3s-5s。以标准空白样(2.1.1)为空白对照,在540min处测定吸光度A。

? 3. 计算

? 3.1酶活定义:

? 1g酶粉或1ml酶液在37℃、pH为5.50的条件下,每分钟从浓度为5mg/mL的β-葡聚糖溶液中降解释放1umol还原糖所需的酶量为一个酶活力单位U。

? 3.2 用于酶解反应的稀释酶液中β-葡聚糖酶的活力按式(1)和式(2)计算:

X

D =【(A

E

- A

E

)*K+C

】/(M*t)*1000 (1)

式中:

X

D

-稀释酶液中β-葡聚糖酶的活力,U/ml;

A

E

-酶反应液的吸光度;

A

B

-酶空白样的吸光度;

K-标准曲线的斜率;

C

-标准曲线的截距;

M-葡萄糖的摩尔质量,M(C

6H

12

O

6

)=180.2g/mol;

t-酶解反应时间,min;

1000-转化因子,1mmol=1000umol。

? X D值应在0.04U/m~0.08U/ml之间。如果不在这个范围内,应重新选择酶液的稀释度,再进行分析测定。

? X=X D*D f (2)

式中:

X-试样中β-葡聚糖酶的活力,U/g(或UmL);

? D f-试样的稀释倍数

酶活力的计算保留三位有效数字。

4.试剂

? 4.1 标准葡糖糖溶液:葡萄糖80℃烘干至恒重。标准称取1.000g无水葡萄糖,加PH5.5的0.1M醋酸缓冲溶液溶解,定容至100ml。

4.2 8.0g/lβ-葡聚糖溶液:称取β-葡聚糖0.40g,乙醇

5.0ml润湿β-葡聚糖,

再加入40mlPH5.5醋酸缓冲液,磁力搅拌,同时缓慢加热,至β-葡聚糖完全溶解后,停止加热,继续搅拌30min,用PH5.5的0.1M醋酸缓冲溶液定容至50ml。

4.3 DNS显色剂

4.4 0.1M乙酸-乙酸钠缓冲溶液(PH

5.5)

称取三水乙酸23.14,加入冰乙酸1.70mL。再加水溶解,定容至2000mL。

QS2631内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书

货号:QS2631 规格:50管/24样 内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书 分光光度法 正式测定前务必取 2-3 个预期差异较大的样本做预测定 测定意义: Cx存在于细菌、真菌和动物体内,是纤维素酶系的组份之一,Cx主要作用于非晶态纤维素和水溶性纤维素衍生物,随机水解糖苷键,将其分解成葡萄糖、纤维二糖、纤维三糖和其他寡聚体。 测定原理: 采用3,5-二硝基水杨酸法测定Cx催化羧甲基纤维素钠降解产生的还原糖的含量。 需自备的仪器和用品: 可见分光光度计、水浴锅、离心机、可调式移液器、1mL 玻璃比色皿、研钵、冰和蒸馏水。 试剂的组成和配制: 提取液:液体 50mL×1 瓶,4℃保存; 试剂一:液体 15mL×1 瓶,4℃保存; 试剂二:液体 60mL×1 瓶,4℃保存; 样品测定的准备: 1、细菌或培养细胞:先收集细菌或细胞到离心管内,离心后弃上清;按照细菌或细胞数量(104 个):提取液体积(mL)为 500~1000:1 的比例(建议 500 万细菌或细胞加入 1mL 提取液),超声波破碎细菌或细胞(冰浴,功率 20%或 200W,超声 3s,间隔 10s,重复 30 次);8000g 4℃离心 10min,取上清,置冰上待测。 2、组织:按照组织质量(g):提取液体积(mL)为 1:5~10 的比例(建议称取约 0.1g 组织, 加入 1mL 提取液),进行冰浴匀浆。8000g 4℃离心 10min,取上清,置冰上待测。 3、血清(浆)样品:直接检测。 测定步骤: 1、分光光度计预热 30min 以上,调节波长至 540nm,蒸馏水调零。 混匀, 90℃水浴 10min(盖紧,防止水分散失),冷却后,测 540nm 下吸光值 A,计 算ΔA=A 测定管-A 对照管。每个测定管需设一个对照管。 第1页,共2页

真菌 D葡聚糖检测反应机理

真菌(1-3)-?-D葡聚糖检测反应机理 目前临床上随着广谱抗生素、各类免疫抑制剂、移植插管等新技术的不断发展应用,其真菌感染尤其是深部真菌感染出现明显上升趋势,而作为临床诊断的细菌培养其阳性率很低,且检测周期长,不能适应临床治疗诊断的要求,因此迫切需要快速、准确的检测方法.因此对血液中的早期(1-3)-?-D 葡聚糖快速定量检测,将对临床对症治疗具有很深的现实意义。人体血浆中(1-3)-?-D葡聚糖快速检测对早期诊断深部真菌感染具有重要的参考价值。该试验的基本原理是试剂中含凝固酶原及凝固蛋白原的冷冻干燥品. 在适宜条件下, 微量(1-3)-?-D葡聚糖能激活试剂中的凝固酶原产生凝集反应,通过测定凝集反应过程中的浊度变化从而定量检测血浆中(1-3)-?-D葡聚糖含量. 内毒素定量检测的反应机理 细菌内毒素作为革兰阴性菌细胞壁外层中的脂多糖成份(LPS), 具有多种的生物活性, 微量的内毒素进入机体将会出现发热、血压降低、寒战、引起DIC、内毒素败血症等一系列临床反应, 因此对血液中的早期内毒素快速定量检测,将对临床对症治疗具有很深的现实意义。人体血浆中内毒素检测对分别诊断革兰阴性杆菌感染具有重要的参考价值。反应试剂中含凝固酶原及凝固蛋白原的冷冻干燥品. 在适宜条件下, 微量革蓝氏阴性菌内毒素能激活试剂中的凝固酶原产生凝集反应形成凝胶,通过测定在形成凝胶过程中的浊度变化从而定量检测血浆中革蓝氏阴性菌内毒素. 一、检测体液内毒素的临床意义

由革兰氏阴性菌所引起的内毒素血症及脓毒血症是目前临床上的主要死亡原因之一。在各类抗生素杀灭革兰氏阴性菌的同时,也会使后者释放出一定数量的内毒素,从而加重内毒素血症。早期诊断的细菌学培养需时长,而且由于抗生素的应用,其培养阳性率低。早期的数小时内作为临床上抢救感染性休克的关键,临床医师仅能根据临床特征与体征推断病源学而带有一定的盲目性,因此,早期体液中内毒素的正确、快速定量检测及相应的对症治疗就显得格外重要。过去的内毒素检测能定性而不能定量,而且个体差异和实验室间的误差较大,无法成为有价值的临床检验项目,北京金山川公司研制的MB-80微生物快速动态检测系统能定量检测体液内毒素的含量,经国内多家单位使用现已在其他省市开始作为临床检验项目进行收费。该仪器检测内毒素具有结果稳定、检测快(1小时)、重复性好、准确率高、不同的检测人员操作引起的误差小等优点。 内毒素定量检测在重症病人、感染病人(如脑膜炎)以及其他有严重创伤等疾病的病人均有重要的临床意义,这使得内毒素研究一直是热点,但过去由于方法的限制,内毒素检测也是临床的难点。 二、深部真菌检测的临床意义 动态定量检测体液中真菌含量是应用MB-80微生物快速动态检测系统进行的。该方法可以快速诊断用常规方法难以确诊的深部真菌感染,应用MB-80检测真菌,其检出率远远高于传统的血培养方法,使病原体的监测更加准确,更快速,MB-80系统具有很高的灵敏度和优异的数据分析功能,检测低限5pg/ml的真菌1-3--β-D葡聚糖量。

酶活力测定方法

蛋白酶活力测定: 参照中华人民共和国专业标准SB/ T10317-1999蛋白酶活力测定方法( Asha 等, 2007)。 纤维素酶DNS酶活力测定方法 DNS, 活力, 纤维素酶, 测定 1 定义" |0 `. y6 t9 b" ^ 2 x 1g固体酶粉在40℃和pH值4.2条件下,每分钟水解纤维素生成1微克葡萄糖的量为1个酶活力单位,以u/g表示。 2 原理 纤维素酶分解纤维素,产生纤维二糖、葡萄糖等还原糖,纤维二糖、葡萄糖等还原糖能将3,5二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,利用比色法测定其还原物生成量,表示酶的活力。! Y" m& p' q; I& K B& e$ T( B4 } 3.试剂和溶液 3.1 1%葡萄糖标准溶液(同β-葡聚糖酶酶活测定) 3.2 羧甲基纤维素钠(CMC)溶液 取1g羧甲基纤维素钠(粘度300~600厘泊),加入pH4.2的磷酸氢二钠-柠檬酸缓冲液(甲液414ml和乙液586ml并用pH计校正至pH为4.2)混合均匀,水浴加热至溶,冷却后用2M 盐酸或氢氧化钠调节pH到4.2,定溶至100ml,再用二层纱布过滤,此溶液在4℃冰箱贮存,有效期3天。取滤液100ml,20ml,蒸馏水40ml,混匀,贮冰箱备用。4 C) c+ }( l2 R( M( p! L 3.3 DNS 试剂(同β-葡聚糖酶酶活测定); h1 a. l3 Z3 k6 t2 | 4仪器和设备 4.1恒温水浴锅(40℃±0.2℃) 4.2分光光度计 含10mm比色皿,可在550nm处测量吸光度。$ ]1 h& A) p) K 5测定步骤 5.1 标准曲线绘制. [* |! P6 u* G& u2 ^6 J4 Q 分别吸取1%葡萄糖标准溶液0、1.0、2.0、3.0、4.0、5.0、6.0ml于50ml容量瓶中,用蒸馏水制成每ml分别含有葡萄糖0、200、400、600、800、1000、1200mg的稀标准液。各取不同浓度的稀标准液0.5ml于试管中,加入CMC溶液1.5ml、DNS试剂3.0ml,于沸水浴中沸腾7min,取出后立即加入蒸馏水10ml混匀。冷却后,用10mm比色皿,在波长550nm处用分光光度计分别测定其吸光度。以吸光度为纵坐标,相对应的葡萄糖浓度为横坐标,绘制标准曲线或计算回归方程。1 H, `% F/ `7 X/ U. W 5.2待测酶液的制备(同β-葡聚糖酶酶活测定) 1 L- {5 h8 W; q+ V4 u2 Y 5.3 比色测定 精确吸取经待测稀释酶液0.5ml,40℃预热5min,加入经40℃预热的CMC液1.5ml(每个样品同时作3支平行试管),于40℃水浴精确反应10min,立即加入DNS试剂3.0ml终止反应,以后按标准曲线制作步骤测定样品吸光度。 同时进行空白对照测定,取稀释酶液0.5ml,先加入DNS试剂3.0ml,再加入CMC液1.5ml,其余步骤同于样品测定。 6.计算0 W+ i$ S: }( _1 o7 ], R5 m( N

葡聚糖检测方法

葡聚糖检测方法(试剂盒方法翻译) 一.提供试剂 瓶1:exo-1,3-β-Glucanase (100 U/mL) plus β-Glucosidase(20 U/mL) suspension, 2.0 mL 瓶2:Amyloglucosidase (1630 U/mL) plus invertase(500 U/mL) solution in 50 % v/v glycerol, 20 mL 瓶3:GOPOD Reagent Buffer. Buffer (48 mL,pH 7.4), p-hydroxybenzoic acid and sodium azide(0.4 % w/v). 瓶4:GOPOD Reagent Enzymes. Glucose oxidaseplus peroxidase and 4-aminoantipyrine. Freeze-dried powder. 瓶5:D-Glucose standard solution (5 mL, 1.00 mg/mL) in0.2 % w/v benzoic acid 瓶6:Contr ol yeast β-glucan preparation ( 2 g, β-glucan content stated on the bottle label). 二.提供试剂的处理 1.向瓶1中加入8ml醋酸钠缓冲液,分装-20℃存放。 2.直接使用瓶2中的试剂,稳定在4°C ~ 2年或者-20°C > 4 年。 3.将瓶3的GOPOD试剂用纯化稀释水定容到1L,稳定在4°C > 2年。 4.将瓶4的GOPOD试剂用纯化稀释水定容到1L,黑暗环境存放, 稳定在4 °C 2 - 3个月,在-20°C或> 12个月。

酶活测定方法

酶活测定方法 还原法 酶与底物在特定的条件下反应,酶可以促使底物释放出还原性的基团。在此反应体系中添加 化学试剂,酶促反应的产物可与该化学试剂发生反应,生成有色物质。通过在特定的波长下 比色,即可求出还原产物的含量,从而计算出酶活力的大小。 色原底物法 通过底物与特定的可溶性生色基团物质结合,合成人工底物。该底物与酶发生反应后,生色基团可被释放出来,用分光光度法即可测定颜色的深浅,在与已知标准酶所做的曲线比较后,即可求出待测酶的活力。 粘度法 该法常用于测定纤维素酶、木聚糖酶和β-葡聚糖酶的活力。木聚糖和β-葡聚糖溶液通常 情况下可形成极高的粘度,当酶作用于粘性底物时木聚糖和β-葡聚糖会被切割成较小的分子 使其粘度大为降低。基于Poiseuille定律我们知道,只要测定一定条件下溶剂和样品溶液的运动粘度,便可计算特性粘数,并以此来判断酶的活力。 高压液相色谱法 酶与其底物在特定的条件下充分反应后,在一定的色谱条件下从反应体系中提取溶液进行 色谱分析,认真记录保留时间和色谱图,测量各个样的峰高和半峰高,计算出酶促反应生成物 的含量,从而换算出酶活力的数值。 免疫学方法 常用于酶活性分析的免疫学方法包括:免疫电泳法、免疫凝胶扩散法。这两种方法都是根据酶与其抗体之间可发生特定的沉淀反应,通过待测酶和标准酶的比较,最终确定酶活力。 免疫学方法检侧度非常灵敏,可检侧出经过极度稀释后样品中的酶蛋白,但其缺点是不同厂 家生产的酶产品需要有不同特定的抗体发生反应。 琼脂凝胶扩散法 将酶作用的底物与琼脂混合熔融后,倒入培养皿中或载波片上制成琼脂平板。用打孔器在 琼脂平面上打出一个约4-5mm半径的小孔。在点加酶样并培养24h以后,用染色剂显色或用展开剂展开显出水解区,利用水解直径和酶活力关系测定酶活力。 蛋白酶活力的测定

蛋白酶活力测定方法

酸性蛋白酶产品概述: 蛋白质由氨基酸组成,是自然界中发现的最复杂的有机化合物之一。由盐酸和蛋白酶分解成易被高等动物的肠道和微生物有机体的细胞膜吸收的氨基酸。包括人类在内的每种动物,必须要有足够的蛋白质来维持自身生长,来生成每个细胞所必需的氨基酸,一些特种蛋白质还是某些特殊细胞、腺体分泌物、酶和激素的功能性组成元素。蛋白酶是指一些有催化功能的酶,能够水解(断裂)蛋白质,因此也被称为蛋白水解酶。蛋白水解酶在许多的生理和病理过程中发挥着重要作用,在食品和乳品加工业也有着广泛应用。工作机理 蛋白水解酶制剂本产品能在酸性条件下水解蛋白质食品中的缩氨酸键,释放氨基酸或者多肽。在酒精、葡萄酒、果汁、啤酒、黄油和酱油生产中,添加酸性蛋白酶可澄清发酵液中的雾气。酵母在发酵阶段的生长可以通过悬浮蛋白质转化的氨基酸来加以促进,从而加速发酵并提高产量。本产品是一种酸性蛋白酶制剂,在酸性条件下具有较高活性,由酸性蛋白酶高产菌株——曲霉菌深层发酵而成。它广泛应用于饲料、纺织、废水处理和果汁提纯方面。 酸性蛋白酶(Acid protease )是指蛋白酶具有较低的最适pH,而不是指酸性基团存在于酶的活性部位,酸性蛋白酶的最适PH从2左右(胃蛋白酶)到4左右。从酶的活力-PH曲线分析,在酶的活性部位中含有一个或更多的羟基。这一类蛋白酶中研究最彻底的是胃蛋白酶。(酸性蛋白酶537容易失活)

简介:酸性蛋白酶是由隆科特黑曲霉优良菌种经发酵精制提炼而成,它能在低PH条件下,有效水解蛋白质,广泛应用于酒精、白酒、啤酒、酿造、食品加工、饲料添加、皮革加工等行业。 1、产品规格:,规格有5万u/g~10万u/g 液体型为黑褐色液体,规格有50000u/ml~10000u/ml. 2、酶活力定义:一个酶活力单位是1g酶粉或1ml酶液在40℃,PH3.0条件下,1分钟水解酪素产生1ug酪氨酸为一个酶活力单位(u/g或u/ml) 特性1、温度范围为:最适温度范围为40℃-50℃2、PH为:最适PH范围为2.5~3.5 使用方法 1、白酒工业: 本品用以淀粉为原料的生产酒精及白酒行业,提高出酒率0.25%个酒分,提高发酵速度。 2、食品工业: 食品上用以淀粉改良,提高食品风味、改良品质,因能提高氨基酸含量 3、啤酒生产: 能有效阻断双乙酰生成,缩短啤酒成熟期。 4 饲料添加剂:提高饲料利用率。 5、毛皮软化: 提高上色率,手感丰满,增加毛皮光泽。

真菌(1-3)-β-D葡聚糖测定试剂盒(显色法)产品技术要求kehe

真菌(1-3)-β-D葡聚糖测定试剂盒(显色法) 适用范围:用于体外定量测定人血清样本中真菌(1-3)-β-D葡聚糖的含量。1.1 规格 24人份/盒、48人份/盒 1.2 主要组成成分 校准品靶值批特异,详见靶值单 质控范围批特异,详见靶值单 2.1 外观 反应主剂为白色冻干块状物,样品处理液、溶解液和主剂复溶液为无色透明液体。 2.2 装量 处理液、溶解液和主剂复溶液装量不小于标示量。 2.3 准确度

试剂盒的回收率须在85%~115%范围内。 2.4 重复性 检测浓度为125pg/mL的溶液,重复检测10次,其变异系数(CV)值应不大于10%。 2.5 线性 2.5.1在浓度[31.25,500]pg/mL范围内,其线性相关系数的绝对值r≥0.990; 2.5.2在浓度[31.25 ,125)pg/mL范围内,其线性绝对偏差的绝对值不大于12.5 pg/mL;在浓度[125 ,500]pg/mL范围内,其线性相对偏差的绝对值不大于10%。 2.6 空白限 试剂盒的空白限不大于16 pg/mL。 2.7 溯源性 根据GB/T21415的有关规定提供校准品的来源、赋值过程及测量不确定等内容,溯源至企业工作校准品。 2.8 质控品赋值有效性 检测质控品,检测结果应在质控范围内。 2.9 批内瓶间差 同一批号的10个待检试剂盒对浓度为250pg/mL的标准溶液进行测试,重复10次,瓶间差的变异系数不得大于10%。 2.10 批间差 3个批号的试剂盒检测结果的变异系数应不大于15%。 2.11 稳定性 2.11.1 2℃~8℃保存,有效期12个月,取过有效期3个月以内的试剂盒进行测定,应符合2.3、2.3、2.5、2.6、2.7、2.8的要求; 2.11.2校准品溶解后,-20℃保存10天后进行测定,应符合2.3的要求; 2.11.3质控品溶解后,-20℃保存10天后进行测定,应符合2.8的要求; 2.11.4反应主剂溶解后,立即冻存至-20℃保存7天后进行测定,应符合2.3、2.5的要求。

真菌βD葡聚糖检测与真菌感染诊断

真菌β-D-葡聚糖检测与真菌感染诊断 一、概述 经研究表明,(1-3)-β-D-葡聚糖是一种广泛存在于真菌细胞壁的抗原成分, 占其干燥重量的80%~90%,其它微生物、动物及人的细胞成分和细胞外液均不含有。深部真菌感染患者中血浆(1-3)-β-D-葡聚糖含量增高,两者存在相关性。? 当真菌进入人体血液或深部组织后,经吞噬细胞的吞噬、消化代谢后,(1-3)-β-D葡聚糖可从胞壁中释放出来,从而使血液或其它体液中(1-3)-β-D葡聚糖含量增高。当真菌在体内含量减少时,机体免疫可迅速对其清除。而在浅部真菌感染中,(1-3)-β-D葡聚糖未被释放出来,故其在体液中的量不增高,它在血液及无菌体液中的存在可以很大程度上视为IFI(深部真菌感染)的标志。 二、深部真菌感染的诊治 近年来,由于造血干细胞移植、实体器官移植的广泛开展、高强度免疫抑制剂和大剂量化疗药物的应用以及各种导管的体内介入、留置等,临床上侵袭性真菌感染(invasive fungal infections,IFI)的患病率明显上升。IFI也日益成为导致骨髓及器官移植受者、接受化疗的恶性血液病和恶性肿瘤患者、AIDS以及其他危重病患者的严重并发症及重要死亡原因之一。由于缺少有效的早期诊断手段,深部真菌感染病死率居高不下。对深部真菌感染治疗成败的关键在于早期诊断,及早用药治疗。 常规病原学诊断“微生物培养”可为临床提供直接的诊断依据,但其培养方法耗时长(4-7天),不适宜用作早期诊断。并且,随着光谱抗生素、抗菌药物的大量应用,使得培养的阳性率极低。常用的免疫学方法,也由于抗原抗体反应的特异性差,往往对某一疑似真菌感染患者要作多种真菌抗原或抗体检测,既费时又不经济,而且当所用药盒的抗原谱或抗体谱不全时也极易造成漏诊。对一些以往接触过相应真菌抗原的个体,作抗体检测时还会出现阳性反应,因而对抗体的检测往往要求作动态观察才能作出诊断,期末属性较差。 有研究报道血清葡聚糖在念珠菌血症时明显升高,将其用于念珠菌血症的早期诊断明显优于传统的培养法和血清学诊断试验。虽然检测(1-3)-β-D葡聚糖只能提示有无真菌侵袭性感染,不能确定为何种真菌,但也可能转化为一种优势。因近年来,一些罕见的条件致病真菌也可引起深部感染,这就要求一种能迅速确定有无深部真菌感染的方法。因系统抗真菌药物种类较少,抗菌谱较广,且不因真菌种类而异,当检测到标本中的(1-3)-β-D葡聚糖含量较高时,可给予以系统治疗,不必耗时等待鉴定出种属,否则会贻误最佳治疗时机。 因此,血清(1-3)-β-D葡聚糖含量检测不失为一种实用的真菌感染早期诊断方法。并且,相关研究表明,(1-3)-β-D葡聚糖水平在确诊IFI患者的血清中出现持续升高,而随着药物的使用,对药物敏感者可很快出现(1-3)-β-D葡聚糖水平下降及转阴,而药物治疗无效人群(1-3)-β-D葡聚糖值无明显改变。因此,(1-3)-β-D葡聚糖可以用来判断药物的疗效,以协助临床医师及时进行药物种类及剂量的调整。 通过对人体体液进行(1-3)-β-D葡聚糖含量检测,可帮助判断人体是否已被真菌感染。对高危患者的样本进行连续分析,可为临床检测提供入侵真菌的量值或阴性预示值,为临床诊断和

饲料酶活性测定方法

饲用酶活性测定方法

附录A 木聚糖酶活力的测定方法 A1应用范围 本标准规定了用分光光度法测定饲料添加剂中木聚糖酶的活力。 本标准适用于饲料添加剂木聚糖酶产品,最低检出限为10.0U/g。 A2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注册日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注册日期的引用文件,其最新版本适用于本标准。A3木聚糖酶活力单位定义 在37℃,pH为5.5的条件下,每分钟从浓度为5mg/ml的木聚糖溶液中降解释放1umol还原糖所需要的酶量为一个酶活力单位U。 A4测定原理 木聚糖酶能将木聚糖降解成寡糖和单糖。具有还原性末端的寡糖和有还原基团的单糖在沸水浴条件下可以与3,5-二硝基水杨酸(DNS)试剂发生显色反应。反应液颜色的深度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中木聚糖酶的活力成正比。因此,通过分光比色测定反应液颜色的强度,可以计算反应液中木聚糖酶的活力。 A5.试剂与溶液 除特殊说明外,所用的试剂均为分析纯,水均为符合GB/T6682中规定的三级水。 A5.1乙酸溶液,c(CH3COOH)为0.1mol/L: 吸取冰乙酸0.60ml。加水溶解,定容至100ml。 A5.2乙酸钠溶液,c(CH3COONa)为0.1mol/L: 称取三水乙酸钠1.36g。加水溶解,定容至100ml。 A5.3氢氧化钠溶液,c(NaOH)为200g/L: 称取氢氧化钠20.0g。加水溶解,定容至100ml。 A5.4乙酸—乙酸钠缓冲溶液,c(CH3COOH—CH3COONa)为0.1mol/L,pH为5.50 称取三水乙酸钠23.14g,加入冰乙酸1.70ml。再加水溶解,定容至2000mL。测定溶液的pH。如果pH偏离5.50,再用乙酸溶液(5.1)或乙酸钠溶液(5.2)调节至5.50。 A5.5木糖储备溶液,c(C5H10O5)为10.0mg/ml: 称取无水木糖1.000g,加缓冲液(5.4)溶解,定容至100ml。 A5.6木聚糖溶液,浓度为5mg/mL 称取木聚糖(Sigma X0672)1.00g,加入氢氧化钠0.32g(或0.5mol/LNaOH溶液16mL),再加入90mL水(75mL),加热,磁力搅拌至木聚糖完全溶解。再加入冰乙酸0.5mL,再用乙酸乙酸钠缓冲溶液(5.4)定容至100mL。如果pH偏离5.50,再用乙酸溶液(5.1)或乙酸钠溶液(5.2)调节pH 至5.50,然后再用乙酸乙酸钠缓冲溶液(5.4)定容至100mL。使用前,适当摇匀。4℃避光保存,有效期为12h。 A5.7DNS试剂 称取3,5-二硝基水杨酸3.15g(化学纯),加水500mL,搅拌5s,水浴至45℃。然后逐步加入100mL 氢氧化钠溶液(5.3),同时不断搅拌,直到溶液清澈透明(注意:在加入氢氧化钠过程中,溶液温度不要超过48℃)。再逐步加入四水酒石酸钾钠91.0g、苯酚2.50g和无水亚硫酸钠2.50g。继续45℃水浴加热,同时补加水300mL,不断搅拌,直到加入的物质完全溶解。停止加热,冷却至室温后,用水定容至1000mL。用烧结玻璃过滤器过滤。取滤液,储存在棕色瓶中,避光保存。室温下存放7

纤维素酶活力测定方法_张瑞萍

测试与标准 纤维素酶活力测定方法 张瑞萍 南通工学院(226007) 摘 要 用DN S 为显色剂,分别以滤纸和CM C 为底物,以滤纸糖酶活性(FP A )和羧甲基纤维素酶活性(CM C a se )表征纤维素酶活力。确定酶活测定用波长为530nm,参比溶液应为失活酶、底物和DN S 等共热的反应物;比较了两种底物的酶活力测定方法。结果表明,CM C a se 比FP A 高,说明酶对水溶性底物有较高的活力,也表明吸附对酶的活性部位与纤维素分子链段的结合及催化均有很大影响;对于不同牌号的纤维素酶,织物的酶减量率与CM C 酶活力关系密切。 叙 词: 测试 纤维素酶 活度中图分类号: TS197 纤维素酶是多组分复合物,各组分的底物专一性不同。纤维素酶作用的底物比较复杂,反应产物不同,致使纤维素酶活力测定方法很多,各国的方法亦不统一。我们选择滤纸、CM C 为底物,原理系利用纤维素酶催化水解纤维素,产生纤维多糖、二糖及葡萄糖等还原糖,与显色剂反应,求出还原糖的浓度,间接求出酶的活力。由不同底物测得的酶活力分别称作FPA (滤纸糖酶活力)和CM C ase (羧甲基纤维素酶酶活力)。本文分析确定酶活力测定的主要条件,比较两种底物的酶活力测定方法的结果,探讨纤维素酶活力与织物减量率的关系,为酶在生产中的利用提供依据。 1 实验方法 1.1 化学药品、材料 纤维素酶(工业品),DNS 试剂(自配),冰醋酸,醋酸钠,葡萄糖(均为分析纯),滤纸(定性),羧甲基纤维素酶CM C (试剂级),纯棉针织物半制品(南通针织厂)。 1.2 FPA 滤纸酶活力和CMC 酶活力的测定 取适当稀释的酶液,分别以滤纸或1%的CM C 溶液为底物,于50℃恒温水解反应1h ;然后加入显色剂DNS,沸水浴中煮沸5min;再加入蒸馏水,于530nm 测定吸光度OD 值。 酶活可定义为:每毫升酶液1min 产生1mg 葡萄糖为一个单位( )。 1.3 针织物酶减量率的测定 将酶处理前后的试样在烘箱中105℃烘至恒重。减量率= 处理前织物干重-处理后织物干重 处理前织物干重 ×100% 2 结果与讨论 2.1 显色剂的选择 选用DNS ,在碱性条件下与还原糖反应,生成有色化合物,用分光光度计比色,确定低分子糖含量。 碱性条件下DNS 与还原糖共热反应如下: O 2N OH O 2N CO OH +还原糖  H 2N OH CO OH O 2N DN S(黄色) 3-氨基-5-硝基水杨酸(棕红色) 生成的棕红色氨基化合物系比色法测定基础。2.2 最大吸收波长的确定 选取490~580nm 波长对显色液进行比色。由图1可知,不同浓度的葡萄糖溶液在490~500nm 处有最大吸收,DNS 在此波长下也有较明显的吸收。为了排除DNS 的干扰,选择在波长 530nm 处进行测定,此波长下的葡萄糖吸收虽有所降低,然而符合“吸收最大、干扰最小”的原则。 图1 D NS 与葡萄糖的吸收曲线 2.3 底物及酶本身含糖量的影响 在实验过程中发现,底物特别是滤纸,也含有一定的还原糖,在碱性的DNS 试剂中也会发色。而且,试验所用的纤维素酶是一种工业级的复合酶,品种不同,其本身含糖量也不同。为了排除这类还原糖的干扰,参比溶液取失活后的酶、底物、DNS 等共热的反应物。2.4 葡萄糖标准曲线 用不同浓度的葡萄糖溶液作为标准溶液,与DNS 共热反应显色后,测出其吸光度OD 值(见图2)。标准曲线的线性相关系数R 2为0.9991(见图2),线性相当好,可以用于酶活力的测定。 38 印 染(2002No .8) www .cdfn .com .cn

β-葡聚糖测定方法

β-葡聚糖酶活力测定方法(NY/T911-2004) ? 1.原理 β-葡聚糖酶能将木聚糖降解成还原性糖。还原性糖在沸水浴条件下可以与3,5-二硝基水杨酸(DNS)试剂反应显色反应。反应液颜色的深度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中β-葡聚糖酶的活力成正比。因此,通过分光比色测定反应液颜色的强度,可以计算反应液中β-葡聚糖酶的活力。 ? 2. 操作 ? 2.1.标准葡萄糖曲线的制作 2.1.1 吸取PH5.5的0.1M乙酸-乙酸钠+缓冲溶液4.0mL,加入DNS试剂5.0mL, 沸水浴加热5min。用自来水冷却至室温,用水定容至25.0mL,制成标准空白样。 2.1.2 分别吸取葡萄糖溶液1.00mL、2.00mL、 3.00mL、 4.00mL、 5.00mL、 6.00mL 和7.00mL,分别用PH5.5的0.1M醋酸缓冲溶液定容至100mL,配制成浓度为 0.10mg/mL、0.20mg/mL、0.30mg/mL、0.40mg/mL、0.50mg、0.60mg/mL和0.70mg/mL 葡萄糖标准溶液。 2.1.3 分别取上述浓度系列的葡萄糖标准溶液各2.00mL(做两个平行),分别 加入到刻度试管中,再分别加入2.0mL缓冲液94.4)和5.0mLDNS试剂。电磁振荡3s-5s,沸水浴加热5min。然后用自来水冷却到室温,在用水定溶液至25mL。 以标准空白为对照调零,在540min处测定吸光度A值。 以葡萄糖糖浓度为Y轴、吸光度A值为X轴,绘制标准曲线。每次新配制DNS试剂均需要重新绘制标准曲线 ? 3. 酶样测定 吸取10.0mLβ-葡聚糖溶液,37℃平衡20min。 吸取10.0经过适当稀释的酶液,37℃平衡10min。 ?吸取2.00mL经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入5mLDNS试剂,电磁振荡3s-5s。然后加入8.0g/lβ-葡聚糖溶液2.0ml,37℃保温30min,沸水浴加热5min。用自来水冷却至室温,加水定容至25mL,电磁振荡3s-5s。以标准空白样(2.1.1)为空白对照,在540min处测定吸光度A 。 B

真菌(1-3)-D葡聚糖检测反应机理

真菌(1-3)- -D葡聚糖检测反应机理 目前临床上随着广谱抗生素、各类免疫抑制剂、移植插管等新技术的不断发展应用,其真菌感染尤其是深部真菌感染出现明显上升趋势,而作为临床诊断的细菌培养其阳性率很低,且检测周期长,不能适应临床治疗诊断的要求,因此迫切需要快速、准确的检测方法.因此对血液中的早期(1-3)- -D葡聚糖快速定量检测,将对临床对症治疗具有很深的现实意义。人体血浆中(1-3)- -D葡聚糖快速检测对早期诊断深部真菌感染具有重要的参考价值。该试验的基本原理是试剂中含凝固酶原及凝固蛋白原的冷冻干燥品.在适宜条件下,微量(1-3)- -D葡聚糖能激活试剂中的凝固酶原产生凝集反应,通过测定凝集反应过程中的浊度变化从而定量检测血浆中(1-3)- '-D葡聚糖 含量? 内毒素定量检测的反应机理 细菌内毒素作为革兰阴性菌细胞壁外层中的脂多糖成份(LPS),具有多种的生物活性,微量的内毒素进入机体将会出现发热、血压降低、寒战、引起DIC、内毒素败血症等一系列临床反应,因此对血液中的早期内毒素快速定量检测,将对临床对症治疗具有很深的现实意义。人体血浆中内毒素检测对分别诊断革兰阴性杆菌感染具有重要的参考价值。反应试剂中含凝固酶原及凝固蛋白原的冷冻干燥品.在适宜条件下,微量革蓝氏阴性菌内毒素能激活试剂中的凝固酶原产生凝集反应形成凝胶,通过测定在形成凝胶过程中的浊度变化从而定量检测血浆中革蓝氏阴性菌内毒素.

一、检测体液内毒素的临床意义 由革兰氏阴性菌所引起的内毒素血症及脓毒血症是目前临床上的主要死亡原因之一。在各类抗生素杀灭革兰氏阴性菌的同时,也会使后者释放出一定数量的内毒素,从而加重内毒素血症。早期诊断的细菌学培养需时长,而且由于抗生素的应用,其培养阳性率低。早期的数小时内作为临床上抢救感染性休克的关键,临床医师仅能根据临床特征与体征推断病源学而带有一定的盲目性,因此,早期体液中内毒素的正确、快速定量检测及相应的对症治疗就显得格外重要。过去的内毒素检测能定性而不能定量,而且个体差异和实验室间的误差较大,无法成为有价值的临床检验项目,北京金山川公司研制的MB-80 微生物快速动态检测系统能定量检测体液内毒素的含量,经国内多家单位使用现已在其他省市开始作为临床检验项目进行收费。该仪器检测内毒素具有结果稳定、检测快( 1 小时)、重复性好、准确率高、不同的检测人员操作引起的误差小等优点。 内毒素定量检测在重症病人、感染病人(如脑膜炎)以及其他有严重创伤等疾病的病人均有重要的临床意义,这使得内毒素研究一直是热点,但过去由于方法的限制,内毒素检测也是临床的难点。 二、深部真菌检测的临床意义 动态定量检测体液中真菌含量是应用MB-80 微生物快速动态检 测系统进行的。该方法可以快速诊断用常规方法难以确诊的深部真菌

生化实验--淀粉酶活性测定标准实验报告

实验二:酶活力测定方法的研究 一.研究背景及目的 酶是高效催化有机体新陈代谢各步反应的活性蛋白,几乎所有的生化反应都离不开酶的催化,所以酶在生物体内扮演着极其重要的角色,因此对酶的研究有着非常重要的意义。酶的活力是酶的重要参数,反映的是酶的催化能力,因此测定酶活力是研究酶的基础。酶活力由酶活力单位表征,通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到。本实验选取萌发的禾谷类种子为材料,通过对其所含两种淀粉酶活力的测定来研究酶活力测定的方法。 二.实验原理 萌发的种子中存在两种淀粉酶,分别是α淀粉酶和β淀粉酶,β淀粉酶不耐热,在高温下易钝化,而α淀粉酶不耐酸,在pH3.6下则发生钝化[1]。本实验的设计利用β淀粉酶不耐热的特性,在高温下(70℃)下处理使得β淀粉酶钝化而测定α淀粉酶的酶活性[1]。酶活性的测定是通过测定一定量的酶在一定时间内催化得到的麦芽糖的量来实现的,麦芽糖的浓度利用比色法可以很容易测得。然后利用同样的原理测得两种淀粉酶的总活性,拟将总活性与α淀粉酶的活性的差值看作β淀粉酶的活性,再做进一步分析。实验中为了消除非酶促反应引起的麦芽糖的生成带来的误差,每组实验都做了相应的对照实验,在最终计算酶的活性时以测量组的值减去对照组的值加以校正。 三.材料、试剂与仪器 材料: 萌发的小麦种子 试剂: ①1%淀粉溶液(称取1克可溶性淀粉,加入80ml蒸馏水,加热熔解,冷却后定容至100ml); ②pH5.6的柠檬缓冲液:A液(称取柠檬酸20.01克,溶解后定容至1L)

B液(称取柠檬酸钠29.41克,溶解后定容至1L)取A液5.5ml、B液14.5ml 混匀即可; ③3,5-二硝基水杨酸溶液(称取3,5-二硝基水杨酸1.00克,溶于20ml 1M 氢氧化钠中,加入50ml蒸馏水,再加入30克酒石酸钠,待溶解后,用蒸馏水稀释至100ml,盖紧瓶盖保存); ④麦芽糖标准液(称取0.100克麦芽糖,溶于少量蒸馏水中,小心移入100ml 容量瓶中定容); ⑤0.4M NaOH 仪器: 722光栅分光光度计(编号990695) DK-S24型电热恒温水浴锅(编号L-304056) 离心机(TDL-40B) 配平天平药物天平电热锅 100ml容量瓶50ml容量瓶移液管试管研钵烧杯洗瓶 四.实验方法 本实验按照下列表格的中的操作步骤进行:

β-葡聚糖测定方法

6.2 交联β-葡聚糖含量测定 AACC 32-23 6.2.1实验目的 在大麦、麦芽、麦芽汁和啤酒产品质量控制中经常需要测定其中的β-葡聚糖含量,Megazyme方法很好的解决了测定中的系列问题,本方法能够在一天内测定50-100个样品。本方法现在也适用于燕麦产品及燕麦纤维产品β-葡聚糖含量测定。 6.2.2实验原理 样品水化后加入真菌多糖酶在pH6.5缓冲液中培养,提取液离心(或过滤)后加入β-葡萄糖苷酶,在葡糖糖氧化-过氧化酶缓冲液保护下产生葡萄糖。 图6.1 葡聚糖测定原理示意图 Megazyme测试包:(可以测定100个样品) ⑴全套测定方法;⑵真菌多糖酶;⑶β-葡萄糖苷酶;⑷葡糖糖标准液;⑸大麦和燕麦纤维标准样品。 6.2.3实验试剂: ⑴真菌淀粉酶(bottle 1)〔(1-3)(1-4)β-D-葡萄糖4-葡聚糖水解酶〕:(活力>1000U/mL) 制备:1.0mL真菌淀粉酶用20mM NaH2PO4缓冲液(pH6.5)稀释至20.0mL。将溶液分装成5.0mL在冰箱中冷冻保存。最终真菌淀粉酶浓度50U/mL。 ⑵β-葡萄糖苷酶(bottle 2):(活力>40U/mL) 制备:将 1.0mLβ-葡萄糖苷酶用50.0mM醋酸钠缓冲液(pH4.0)稀释至20.0mL。将溶液分装成5.0mL在冰箱中冷冻保存。最终β-葡萄糖苷酶浓度2U/mL。

⑶葡糖糖标准液:100μg?0.1mL,用0.2%叠氮化钠溶液溶解。 ⑷大麦标准样品:含量见标签。 ⑸燕麦纤维标准样品:含量见标签。 ⑹NaH2PO4缓冲液制备(20mM,pH6.5):3.12g NaH2PO4-2H2O溶解于900ml蒸馏水中,用100mM氢氧化钠溶液(4g/L)将pH值调至6.5(大约需50mL),加0.2g叠氮化钠,将溶液定容至1L。4℃保存。 ⑺醋酸钠缓冲液(50mM,pH4.0):饱和醋酸(2.9mL)加入900mL蒸馏水,用1M氢氧化钠调节pH值至4.0,加0.2g叠氮化钠,将溶液定容至1L,4℃保存。 ⑻葡萄糖氧化-过氧化酶缓冲液:建议使用Megazyme测试包里的高纯度葡萄糖氧化溶液和葡糖糖过氧化酶。将测试包的葡萄糖工作液(bottle 3)(50mL)稀释至1L。把测试包中的葡萄糖测定液(bottle 4)用1L葡萄糖工作液溶解(简称GOPOD)。为了保证GOPOD溶液的稳定性,应该在低温条件下在棕色瓶中避光保持。测定过程中从冰箱中取出的凉的GOPOD溶液可以直接加入测定管。 葡萄糖工作液包括:CaHPO4-2H2O(136.0g),NaOH (42.0g),酸(30.0g),叠氮化钠(4.0g)。 6.2.4仪器需求: ⑴聚丙烯具塞试管(35mL); ⑵移液器:量程分别为100μL,200μL,5.0mL(用于Na2HPO4缓冲液和葡萄糖氧化-过氧化酶缓冲液),25mL(用蒸馏水)。 ⑶顶载天平:1/1000g。 ⑷漩涡混合器; ⑸分光光度计:510nm。 ⑹水浴锅:40℃和100℃水浴锅各一个。 ⑺秒表:一只。 ⑻离心机:离心力100g。 ⑼试验粉碎机:细度0.5mm。 6.2.5测定步骤: ⑴将燕麦用试验粉碎机粉碎成细度0.5mm的颗粒。 ⑵仔细称量燕麦粉样品(0.5g左右),放入35mL聚丙烯具塞试管。样品需要已知水分含量,以便最后转为干基。 ⑶向试管中加入1.0mL 50%(v/v)的乙醇溶液,使样品充分润湿。 ⑷加入5.0mL NaH2PO4缓冲液(20mM,pH6.5),在漩涡混合器上充分混合。

β-葡聚糖、甘露寡糖的测定方法

A.1原理 根据β-葡聚糖和甘露寡糖在流动相和液相色谱柱的固定相之间具有不同的分配系数,将样品注入液相色谱柱,用H2O做流动相,糖类分子流出后,经示差检测器检测,用外标法定量。 A.2试剂和材料 除非另有说明,在分析中仅使用确认为分析纯的试剂;蒸馏水或去离子水或符合GB/T6682中规定的一级水或相当纯度的水。试验中所用制品按GB/T 603的规定制备。 A.2.1盐酸:37%。 A.2.2乙腈:色谱纯。 A.2.3氢氧化钠:40%。 A.2.4葡萄糖和甘露糖混合标液(1000mg/L):分别称取葡萄糖和甘露糖各0.100g,用纯水定容100mL后用0.45μm微孔滤膜过滤,备用。 A.3仪器 A.3.1水浴锅。 A.3.2漩涡混合器。 A.3.3电炉。 A.3.4手提式压力蒸汽灭菌锅。 A.3.5高压液相色谱仪;带示差检测器。 A.4分析步骤 A.4.1样品处理 精确称取1.000g(准确至0.0002g)样品放入一个20mL的耐热玻璃制的带螺帽的小试管中,加入7.5mL盐酸(37%),小心的将小瓶盖近后用漩涡混合器混合,得到均一的悬浮液。将小瓶放入30℃水浴中处理45min,每15min用漩涡混合器震荡混合一次。然后将悬浮物定量的转移到200mL杜氏瓶中(同时用约70-80mL的水洗涤后倒入瓶中),将瓶子放入高压灭菌锅121℃处理60min。完成后马上冷却,将溶液调pH到6-7,然后定容至200mL。使用0.45微米孔径的醋酸纤维素膜过滤备用。 A.4.2测定 A.4.2.1 液相色谱参考条件 A.4.2.1.1 色谱柱:Hyper REZ XP Carbohydrate Ca++,长300mm,内径7.7mm,粒径8μm。 A.4.2.1.2 柱温:70℃。 A.4.2.1.3 流动相:H2O,用前过0.22μm滤膜。 A.4.2.1.4 流速:0.6 ml/min。 A.4.2.1.5 进样体积:40μl。 A.4.3标准曲线的绘制

葡聚糖标准编制说明

《混合型饲料添加剂β-1,3-D-葡聚糖》编制说明 一、产品简介 β-1,3-D-葡聚糖为原料,啤酒酵母粉为载体经混合制成的饲用混合型饲料添加剂β-1,3-D-葡聚糖。 二、任务来源、编制原则、标准起草过程 本公司生产的混合型饲料添加剂β-1,3-D-葡聚糖,目前尚无国家标准和行业标准,为了便于公司组织生产和交货验收,特制订本标准。本标准规定了混合型饲料添加剂β-1,3-D-葡聚糖的要求、试验方法、检验规则、标志、标签、包装、运输、贮存、保质期。 三、与现行法律、法规、强制性标准、推荐性标准的关系和贯彻情况。 GB/T 191-2008 包装储存图示标志 GB/T 5917.1-2008 饲料粉碎粒度测定两层筛筛分法 GB/T 6435-2014 饲料中水分的测定 GB/T 6438-2007 饲料中粗灰分的测定 GB 10648 饲料标签 GB/T 10649-2008 微量元素预混合饲料混合均匀度的测定 GB 13078 饲料卫生标准 GB/T 13079-1999 饲料中总砷的测定 GB/T 13080-1991 饲料中铅的测定方法 GB/T 13091-1991 饲料中沙门氏菌的检验方法 GB/T 18823-2010 饲料检测结果判定允许误差 JJF 1070-2005 定量包装商品净含量计量检验规则 国家质量监督检验检疫总局令第75号《定量包装商品计量监督管理办法》 农业部公告第2045号《饲料添加剂品种目录(2013)》 农业部公告第1773号《饲料原料目录》 四、确定主要技术指标 技术指标 项目指标 β-1,3-D-葡聚糖/% ≥20.0 水分/% ≤10 灰分/% ≤15 砷(以总砷计)/(mg/kg) ≤2.0 铅(以Pb计)/(mg/kg) ≤5.0 沙门氏菌不得检出 四、试验方法和和检验规则说明 高效液相色谱检测方法,需要带示差折光检测器。 六、主要参考资料 除引用标准外,无在国家正式刊物上发表的文献资料。

β-1,3葡聚糖酶检测试剂盒使用说明

β-1,3葡聚糖酶检测试剂盒使用说明 分光光度法货号:BC0360 规格:50管/24样 产品内容: 提取液:液体50mL×1瓶,4℃保存; 试剂一:粉剂×1瓶,4℃保存;临用前加入3mL蒸馏水,充分溶解待用;用不完的试剂4℃保存; 试剂二:液体42mL×1瓶,4℃保存; 标准品:粉剂×1支,4℃保存,含10mg无水葡萄糖(干燥失重<0.2%),临用前加入1ml蒸馏水溶解,配制成10mg/ml葡萄糖溶液备用,4℃可保存1周,或者用饱和苯甲酸溶液溶解,可保存更长时间。 标准品准备:将标准品用蒸馏水稀释至1、0.8、0.6、0.4、0.2mg/ml。 产品说明: β-1,3-GA(EC3.2.1.73)主要存在植物中,催化β-1,3-葡萄糖苷键水解。在植物染病或处于其他逆境条件下,可诱导细胞大量合成β-1,3-GA,因此β-1,3-GA活性测定广泛应用于植物病理和逆境生理研究。 β-1,3-GA水解昆布多糖,内切β-1,3-葡萄糖苷键,产生还原末端,通过测定还原糖生成速率,来计算其酶活性。 自备仪器和用品: 可见分光光度计、台式离心机、水浴锅、可调式移液器、1mL玻璃比色皿、研钵、冰和蒸馏水。

操作步骤: 粗酶液提取: 按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL 提取液),进行冰浴匀浆。12000g4℃离心10min,取上清,置冰上待测。 测定步骤: 1、分光光度计预热30min以上,调节波长至540nm,蒸馏水调零。 2、样本测定(在1.5mL EP管中依次加入下列试剂): 试剂名称(μL)测定管对照管标准管(葡萄糖溶液)样本或标准液100100100蒸馏水100100 试剂一100 充分混匀,放入37℃水浴60min。 试剂二600600600 充分混匀,沸水浴5min(盖紧,防止水分散失),流水冷却,540nm处记录各管吸光值A,如果吸光值大于2,可以用蒸馏水稀释后测定(计算公式乘以相应稀释倍数),ΔA=A测定-A对照。每个测定管需设一个对照管。 β-1,3-GA活性计算: 根据标准管吸光度(x)和浓度(y,mg/ml)建立标准曲线,将ΔA带入公式中计算出样品中产生的还原糖的含量y值(mg/ml) (1)按蛋白浓度计算 单位的定义:每mg组织蛋白每小时产生1mg还原糖定义为一个酶活性单位。 β-1,3-GA(U/mg prot)=(y×V1)÷(V1×Cpr)=y÷Cpr (2)按样本鲜重计算

相关文档