文档库 最新最全的文档下载
当前位置:文档库 › 新型3D夹层结构复合材料风电用伯龙三维

新型3D夹层结构复合材料风电用伯龙三维

新型3D夹层结构复合材料风电用伯龙三维

新型3D夹层结构复合材料风电用1.5MW 导流罩强度、刚度设计计算报告

设计:贺志远工程师

周祝林教授级高级工程师

校对:丁锁柱高级工程师

批准:吴伯明

常州伯龙三维复合材料有限公司

2008年10月8日

玻璃钢复合材料船舶夹层结构中的泡沫芯材

玻璃钢复合材料船舶夹层结构中的泡沫芯材 结构泡沫芯材的历史回顾 玻璃钢/复合材料(FRP/CM)中常用的泡沫芯材有聚氯乙烯(PVC)、聚苯乙烯(PS)、聚氨酯(PUR)、丙烯腈-苯乙烯(SAN)、聚醚酰亚胺(PEI)及聚甲基丙烯酰亚胺(PMI)等泡沫,其中PS和PUR泡沫通常仅作为浮力材料,而不是结构用途。目前PVC泡沫已几乎完全代替PUR泡沫而作为结构芯材,只是在一些现场发泡的结构中除外。 严格意义上讲,第一种用在承载构件夹层结构中的结构泡沫芯材是使用异氰酸酯改性的PVC泡沫,或称交联PVC。第一个采用PVC泡沫夹芯的夹层结构是保温隔热车厢。交联PVC的生产工艺是由德国人林德曼在上世纪30年代后期发明的。二次大战以后法国将该工艺列入战争赔偿中,由克勒贝尔蕾洛雷特塑料公司(Kleber Renolit)开始生产Klegecell?交联PVC泡沫,主要是一些用在保温隔热车厢中的低密度产品。 上世纪50-60年代,克勒贝尔蕾洛雷特塑料公司给几家欧洲公司发放了PVC泡沫的生产许可证。另外两家美国公司,B.F歌德雷奇(B.F Goodrich)和佳士迈威(Johns-Manville)也买到了许可证开始生产,但是几年以后就停产。当所有的生产许可证都过期以后,交联PVC 的生产工艺过程转为公开。进入70年代以后,多数原来的欧洲许可生产厂家也已停产。目前两个主要的生产厂家是戴博(Diab)公司的Divinycell?和Klegecell?系列PVC泡沫及爱瑞 柯斯(Airex)公司的Herex?系列PVC泡沫。 20世纪40年代后期,林德曼使用高压气体作为发泡剂,制造出未经过改性的PVC泡沫, 也叫线性PVC泡沫。 英国于1943年首先制成聚苯乙烯泡沫塑料,1944年美国道化学有限公司用挤出法大批量 的生产聚苯乙烯泡沫塑料。 第二次世界大战期间,德国拜尔的试验人员对二异氰酸酯及羟基化合物的反应进行研究,制得了PUR硬质泡沫塑料、涂料和粘合剂。1952年,拜尔公司报道了软质聚氨酯泡沫 塑料的研究成果。 1993年,加拿大的ATC公司开始生产SAN泡沫。其制造工艺和线性PVC相似。 PMI泡沫是由德国罗姆(Rohm)公司于1966年首先用丙烯腈、甲基丙烯腈、丙烯酰胺和甲基丙烯酸酯热塑性树脂在180oC下发泡并交联制作聚甲基丙烯酰亚胺泡沫的技术,接着日本的积水化学公司于1967年使用辐射交联方法制作聚甲基丙烯酰亚胺泡沫。 夹层结构的工作原理及优点

(完整word版)飞机夹层结构复合材料零部件的损伤形式及修理方法

常见飞机蜂窝板损伤形式及修理方法 航空器复合材料中的蜂窝板是由薄而强的两层面板中间胶接蜂窝材料而成的一种新型复合材料,也称蜂窝层合结构(见图1)。其面板选材有金属板、玻璃纤维、石英纤维、碳纤维等;夹心材料主要有芳纶、玻璃纤维、铝合金及发泡型结构。蜂窝可制成不同的形状。飞机上的蜂窝结构是由耐腐蚀夹心、面板、衬垫、隔板(假梁)、边肋等零件胶合而成。面板与夹芯之间用胶膜胶接,蜂窝夹芯用芯子胶和耐腐蚀胶根据实际需要形状施加真空压力后加温胶接成型。 图1 蜂窝夹心板结构 一、航空复合材料蜂窝结构损伤种类 根据航空复合材料蜂窝结构部件在使用过程中可能出现损伤的情况,我们可以大致将胶接蜂窝结构部件的损伤分以下5类: 1、表面损伤 图2 典型表面凹坑 此类损伤一般通过目视检查发现,包括表面擦伤、划伤、局部轻微腐蚀、表面蒙皮裂纹、表面小凹坑和局部轻微压陷等。这类损伤一般对结构强度不产生明显的削弱。 2、脱胶及分层损伤

该损伤是指纤维层与层之间或面板与夹芯之间的树脂失效缺陷,主要通过敲击检查、超声波检测等手段发现。此类损伤一般不引起结构外观变化,大多是在生产过程中造成的初始缺陷,并在反复使用过程中缺陷不断扩展而导致的。脱胶或分层面积过大会引起整体复合材料强度的削弱,应及时予以修补。 3、单侧面板损伤 这类损伤包括单侧面板局部压陷、破裂或穿孔,一般通过目视检查即可发现。该类型损伤能使一侧面板和蜂窝夹芯都受到损伤(表面塌陷),对气动性能和结构强度影响较大。一旦发现该类损伤必须经过修理和检验确认后方能能重新使用。 4、穿透损伤 该类型损伤是指蜂窝部件出现穿透性损伤、严重压陷和较大范围的残缺损伤等。此类损伤对结构性能和强度有严重的影响,根据受损情况立即予以修理或按需更换新件。 5、内部积水 该损伤原因主要由于蜂窝结构边缘或蜂窝材料对接边缘密封不严或密封失效,在长期使用过程中由于雨水渗透、油液浸泡以及水汽冷凝而造成蜂窝夹芯出现积水。虽然一般情况蜂窝内部积水不会造成严重影响;但在冬季日夜气温变化较大的情况下,由于积液结冰膨胀将会会造成复合材料部件内部树脂基体脱胶;同时在积液的长期浸泡下也会使复合材料的树脂基体的胶接强度大幅降低而降低部件的整体性能;特别是各类复合材料制备的舵面、襟翼、翼身整流罩及发动机部件等,均应及时检查其内部蜂窝结构的积水情况并作出相应修理措施。目前该类损伤主要通过红外热成像、X-射线检测仪等手段进行检测。 二、蜂窝结构的检查方式 1、目视检查 目视检查法是使用最广泛、最直接的无损检测方法。主要借助放大镜和内窥镜观测结构表面和内部可达区域的表面,观察明显的结构变形、变色、断裂、螺钉松动等结构异常。它可以检查表面划伤、裂纹、起泡、起皱、凹痕等缺陷;尤其对透光的玻璃钢产品,可用透射光检查出内部的某些缺陷和定位,如夹杂、气泡、搭接的部位和宽度、蜂窝芯的位置和状态、镶嵌件的位置等。 2、手锤敲击法 用于单层蒙皮蜂窝结构。用手锤敲击蜂窝结构的蒙皮,根据不同的声响来判断蜂窝结构是否脱胶。敲击时,注意锤头与蒙皮垂直,力度适当,以能判断故障不损坏蒙皮表面为宜。为使判断准确,可先在试件上试验。敲击回声清脆是良好,沉闷是脱粘。 3、外场在位检测的便携式相控阵超声波C扫描检测系统

复合材料风电叶片先进制造技术研究现状

复合材料风电叶片先进制造技术研究现状 摘要:在风电行业中,材料的选择对叶片的性能有重要的影响。随着科技水平 的进步,复合材料自出现就得到了认可,并在发展中快速推广,作为风电叶片复 合材料有自身优势。复合材料风电叶片也比常规材料风电叶片有更好的性能,因 此获得了广泛的应用。本文将围绕复合材料风电叶片的制造和发展进行分析,以 供参考。 关键词:复合材料;风电叶片;制造;发展 1.前言 当前,自动化技术在逐渐向制造业慢慢渗透,推进了制造业进入了自动化的 行业。为了抓住这个千载难逢的机会,我国的各个行业都在积极探索先进的自动 化技术,促进制造行业的快速转型,促进发展。 2.自动化智能化制造技术 2.1智能温控模具技术 模具是形成叶片的关键。现有的叶片模具加热方法通常是电加热或水加热。 电加热重量轻,温度迅速升高,并且可以轻松实现灵活的控制。它具有低成本的 水加热和稳定的温度控制能力。然而,这两种常规加热方法的缺点是不能实时反 映模具工作表面的温度。在叶片成型过程中,特别是在固化阶段,模具表面温度 的准确性直接影响叶片材料的最终性能。如果叶片的固化温度过低且固化程度不足,则产品性能将无法满足设计要求。如果温度太高,树脂的反应可能会恶化, 热量可能会集中,并且模具和产品可能会报废。因此,能够智能地控制和调节温 度的模具对于确保风力涡轮机叶片制造的可靠性至关重要。 2.2自动铺放技术 如今,复合风叶片的组件生产以劳动力手工作业为主,包括蒙皮,玻纤布、 腹板和大梁,沉重、复杂并且难以准确放置。有效地保证铺层的平坦度并不容易,并且最终叶片的质量和性能不稳定。由于叶片的尺寸较大且布局复杂,因此很难 将自动布局应用于叶片生产,因此,近年来,这项技术是划时代的并且已得到广 泛应用。 (1)主梁自动铺放及成型技术 主梁是叶片的主要承重组件,通常在铺设过程中不能有褶皱,并且需要很高 的放置精度,因此需要很长时间。通常,大叶片主梁层需要大约2个小时的铺设 时间。 (2)壳体自动铺放技术 当前,铺设玻纤布的主要方法是使用手工来铺设,但是耗时长,并且在铺设 过程中需要手动调节和铺设。由于用手拉动玻璃纤维布,因此会发生玻璃纤维布 的变形及其对产品质量的影响等问题。用于风力发电叶片的自动铺设装置主要包 括机械臂,放置头,光纤交叉输出,光纤交叉切割,压缩,光学位置检测,3D激光扫描仪。在此过程中,压辊在每个输出设备顶部和底部的反向移动以及织物上 的相对压力允许织物的运输。在机械臂的驱动下,铺层沿着导轨移动,从而完成 了在模具中铺布。 2.3自动打磨技术 目前,复合风轮机叶片的打磨主要是人工打磨,劳动强度大,污染环境,粉 尘对人体有害。当前,正在开发各种自动研磨技术和设备,其基本上使用机器人臂,自动引导车辆或导轨,智能控制系统,传感器等来根据预设程序来定位和定

ANSYS结构分析指 复合材料

ANSYS结构分析指南第五章复合材料 5.1 复合材料的相关概念 复合材料作为结构应用已有相当长的历史。在现代,复合材料构件已被大量应用于飞行器结构、汽车、体育器材及许多消费产品中。 复合材料由一种以上具有不同结构性质的材料构成,它的主要优点是具有很高的比刚度(刚度与重量之比)。在工程应用中,典型复合材料有纤维和叠层型材料,如玻璃纤维、玻璃环氧树脂、石墨环氧树脂、硼环氧树脂等。 ANSYS程序中提供一种特殊单元--层单元来模拟复合材料。利用这些单元就可以作任意的结构分析了(包括非线性如大挠度和应力刚化等问题)。对于热、磁、电场分析,目前尚未提供层单元。 5.2 建立复合材料模型 与铁或钢等各向同性材料相比,建立复合材料的模型要复杂一些。由于各层材料性能为任意正交各向异性,材料性能与材料主轴取向有关,在定义各层材料的材料性能和方向时要特别注意。本节主要探讨如下问题: 选择合适的单元类型; 定义材料层; 确定失效准则; 应遵循的建模和后处理规则。 5.2.1 选择合适的单元类型 用于建立复合材料模型的单元类型有SHELL99、SHELL91、SHELL181、SOLID46和SOLID191 五种单元。但 ANSYS/Professional 只能使用 SHELL99 和 SHELL46 单元。具体应选择哪一类单元要根据具体应用和所需计算结果类型等来确定。所有的层单元允许失效准则计算。 1、SHELL99--线性层状结构壳单元 SHELL99 是一种八节点三维壳单元,每个节点有六个自由度。该单元主要适用于薄到中等厚度的板和壳结构,一般要求宽厚比应大于10。对于宽厚比小于10的结构,则应考虑选用 SOLID46 来建立模型。SHELL99 允许有多达 250 层的等厚材料层,或者 125 层厚度在单元面内呈现双线性变化的不等材料层。如果材料层大于 250,用户可通过输入自己的材料矩阵形式来建立模型。还可以通过一个选项将单元节点偏置到结构的表层或底层。 2、SHELL91--非线性层状结构壳单元 SHELL91 与 SHELL99 有些类似,只是它允许复合材料最多只有 100 层,而且用户不能输入自己的材料性能矩阵。但是,SHELL91 支持塑性、大应变行为

夹芯 复合材料夹心材料

【夹芯】夹芯材料简介 一、原理 自二十世纪四十年代低密度的夹芯材料就已用于复合材料,它可提高弯曲强度、降低重量。具有相同负荷能力的夹层结构要比实体层状结构轻好几倍。夹芯材料能够降低单位体积的成本、削弱噪音与震动、增加耐热、抗疲劳和防火性能等。夹芯材料的作用机理是将剪切力从表皮层传向内层,使两个表皮层在静态和动态载荷下都能保持稳定,并且吸收冲击能来提供抗破坏性能。 二、分类 用于复合材料夹层结构的夹芯材料主要有:硬质泡沫、蜂窝和轻木三类。 ①硬质泡沫主要有聚氯乙烯(PVC)、聚氨酯(PU)、聚醚酰亚胺(PEI)和丙烯腈-苯乙烯(SAN或AS)、聚甲基丙烯酰亚胺(PMI)、发泡聚酯(PET)等。 ②蜂窝夹芯材料有玻璃布蜂窝、NOMEX蜂窝、棉布蜂窝、铝蜂窝等。蜂窝夹层结构的强度高,刚性好,但蜂窝为开孔结构,与上下面板的粘接面积小,粘接效果一般没有泡沫好。 ③轻木夹芯材料是一种天然产品,市场常见的轻木夹芯主要产自南美洲的种植园,由于气候原因,轻木在当地生长速度特别快,所以比普通木材轻很多,且其纤维具有良好的强度和韧性,特别适合用于复合材料夹层结构。 三、应用领域 夹芯材料的应用领域广阔,涉及能源、航空航天、船舶、交通运输、建筑等领域。 航空航天 飞机的主要部件,如机身,机翼和尾翼可采用PVC泡沫夹芯材料复合结构,同时使用丁二烯。在生产中不必进行高压高温处理。飞机的重量得以减轻。直升飞机最新一代复合螺旋桨叶采用密度较低、可耐大多数溶剂且可经受高压蒸煮温度和压力的PMI泡沫夹芯材料。它采用传统预浸工艺制造。这种新型复合螺旋桨叶的寿命可达10000h/L,是先前金属桨叶

寿命的十倍。今天超轻型竞赛飞机、飞机模型和现代"超级风车"的桨叶都使用了轻质木质夹芯材料。 船舶 常规的交联PVC泡沫己在船舶中广泛应用。瑞士海军的护卫舰使用了28、13.5、0.09m片状构造的丁二烯蜂窝夹芯材料。聚氨酯(PU)发泡夹芯材料也常用于船舶的建造。80kg/m3高密度泡沫可应用于承载部件如船舷等;80~120kg/m3的泡沫专门用作甲板和上部构造的芯材。硬质PU泡沫广泛用于水槽、绝缘板、结构性填料和充空填料。大型冷藏拖网鱼船很多是整体成型的夹芯构,用玻璃布制作内外蒙皮,夹芯材料的厚度为100mm。该类船具有轻质、高强、耐海水腐蚀、抗微生物附着以及吸收撞击能。很多游艇的船底、表面使用了标准的轻质木,以保证最大的剪切和挤压强度;船前部和甲板使用了密度较低的轻质木;隔壁面板室内地板和家具也使用了轻质木夹芯材料。 在多杂物(浮木等)漂浮的巴拿马运河中营运的快速渡轮,其抗破坏能力应是首先考虑的,其次是总重量轻以保证渡轮的速度。由于这些原因,一种线型PVC泡沫芯材被选作船壳底材,另一类型的PVC泡沫芯材作船壳侧面材料和舷侧突出部。部件使用玻纤增强表皮层和真空袋膜工艺;甲板和船舱侧面使用横纹轻质木夹芯材料,其表面用交联环氧树脂/玻纤板材做舱房表皮层,以保证渡轮达到ABS标准。 交通运输 交联的PVC夹芯材料在铁路运输中得到广泛应用,并用于公共汽车和有轨电车及摩托车等。一级方程式赛车模仿自然蜂窝结构,使用空心六边形管相互作用增强原理制作芯材。赛车具有高的抗冲击强度和能量吸收能力。比赛用自行车也采用这种蜂窝结构芯材。法国制造的铁路冷藏车采用PVC泡沫夹芯材料提高隔热效果。其它夹芯材料用于运输车辆主要是利用它们的绝缘性,如聚异氰酸酯绝缘泡沫塑料等。 建筑 夹芯材料在建筑上的应用十分广泛。在内外墙上使用纤维板、胶合板等各种夹芯材料,使墙壁具有隔音、隔热、轻质、高强等优点。由于顶棚强度要求不太高,只要求重量轻、刚性好,有一定防火、保温性能,其次是美观和价格便宜,安装方便,因此通常采用各种纤维芯材和PE钙塑泡沫芯材等。其它夹芯材料用在建筑上主要是利用它们的绝缘性。

最新风电领域复合材料的市场发展

最新风电领域复合材料的市场发展 风能在可再生能源领域继续占据主导地位,并且一直是世界上最大的玻璃纤维增强复合材料市场。随着叶片越来越长,叶片制造商正在寻找在不牺牲性能的情况下减轻大型结构重量的方法,也在使用碳纤维。风电叶片仍然是复合材料的关键市场领域。根据Acumen Research and Consulting 《全球行业分析,市场规模,机遇与预测,2017 – 2023年》的预测,全球风力涡轮机复合材料市场的价值到2023年可能超过120亿美元,并且预计到2023年将以9.6%的复合年增长率增长。 根据美国风能协会的报告,在过去的10年中,美国的风力发电量增加了近四倍,攀升至96,433兆瓦。在2019年第二季度,美国安装了736兆瓦的新风力发电能力。在今年上半年投产了1,577兆瓦,比2018年上半年增长了53%。根据AWEA的“美国风电行业2019年第二季度市场”数据,截至2019年第二季度末,在建和处于开发阶段的美国风电项目已达到41,801兆瓦,同比增长10%。据AWEA称,项目开发商在2019年第二季度签署了1,962兆瓦的购电协议(PPA),全年贡献了4,799兆瓦。其中一些增长可能是由美国生产税收抵免(PTC)推动的,这是一项联邦补贴,为风电场运营的前10年提供每千瓦时税收抵免。当前的PTC在2016年通过,并提供了2.3美分/千瓦时的信用额度。PTC信用额逐年递增,直到2020年底到期。由于风能行业有能力自行维持而不需补贴,因此PTC 不太可能续签。 至于美国的海上风电,截至2018年底,海上风电总管道超过25,000兆瓦。全球风能市场增长迅速,2018年增长了9.5%。根据AWEA的数据,全球目前有591吉瓦的风电场用于发电。根据全球风能理事会(GWEC)的《 2018年全球风能报告》,新风能为51.3吉瓦,2018年安装了-陆上为46.8吉瓦,海上为4.5吉瓦。与2017年相比略有下降4.0%,但仍然是强劲的一年。GWEC表示,尽管某些市场起伏不定,但自2014年以来,每年的安装量已超过50吉瓦。 中国在2018年继续以21.2吉瓦的新风电装机容量引领海上风电市场。2018年,陆上风电的第二大市场是美国,为7.6吉瓦,目前陆上总装机96吉瓦。至于海上风电,中国在2018年首次安装了1.8吉瓦的装机,其次是英国,其次是

复合材料夹层结构基本原理

复合材料夹层结构基本原理 前言我国复合材料工业的发展起始于20世纪50年代,经过50余年的发展,由于“轻质高强”的优异性能,其应用领域已由最初的航空航天和国防业渗透到了当今国民经济的各个领域,如化工管罐,运动器材,汽车部件,建筑,船艇,轨道交通,风力发电叶片等等。随着复合材料应用领域的扩展,产品的尺寸不断变大,夹层结构的应用也越来越广泛。 1 复合材料夹层结构基本原理 复合材料夹层结构由强度很高的面层和强度较低的轻质夹芯材料组成,在弯曲荷载下,上下面层承担主要的拉应力和压应力,芯材主要承担剪切应力。芯材的力学作用机理是连接面层使之成为整体构件,让薄而强的面层在承担较高拉压应力的同时不发生屈曲,并将剪切力从面层传向内层。以面层厚度相等的单夹层结构在弯曲载荷作用下的响应为例,来说明夹层结构的基本原理。 1.1 面层和芯材的拉、压应力分布 在弯曲载荷作用下,假设面层和芯材的界面没有损坏,即在界面处的变形是连续的,且材料处于线弹性范围内,则夹层结构产生的拉压应变分布如图1所示。 由于面层和芯材的弹性模量不同,所以其应力分布会发生突变,面层的拉、压应力远大于芯材的拉、压应力,如图2所示。 图2 截面拉、压应力分布 根据材料力学梁的弯曲理论,根据夹层结构的几何数据和各部分材料的弹性模量可以算出结构的等效刚度(EI)eq,则面层和芯材部位产生的拉、压应力如下: (1)

(2) 式中,M:夹层结构承受的弯矩 y:离中性轴的距离 Ef:面层的弹性模量 Ec:夹芯材料的弹性模量 1.2 面层和芯材的剪应力分布 根据材料力学梁的弯曲理论,夹层结构中的剪应力分布如图3所示。 图3 剪应力分布图4简化后的剪应力分布 在工程实践中,为便于计算,可以对其进行线性简化,如图4所示。那么剪应力可按下式进行简化计算: (3) (4) 式中,Q:截面承受的剪力 b:夹层结构梁的宽度 c:芯材的高度 1.3 面层和芯材的匹配 从上面的分析可以看到,面层承担了大部分的拉、压力,芯材承担了大部分的剪力。而面层的强度和刚度都远大于夹芯材料,对于夹层结构设计人员来说,如何能够使这两种力学性能大相径庭的材料完美的结合在一起,充分发挥各自的优点,即满足使用要求,又不浪费材料? 在夹层结构受弯情况下,夹层结构主要是靠芯材的剪切来传递直接施加在面层上的力,在复合材料夹层结构中,FRP面层的模量和强度都很高,只有高剪切强度和大剪切断裂延伸率的芯材才适用,如常用的PVC、PET、SAN、PEI、PMI等泡沫芯材。要根据夹层结构在使用中可能的受力状况,选用适当种类和密度的芯材,合理设计面层和芯材的厚度,按照前面介绍的应力计算方法,或用相关的有限元分析软件,进行反复的计算验证,最终达到较优的设计方案。 若选用剪切强度低,或是剪切断裂延伸率小的芯材,则芯材破坏时,面层可能只发挥了1%不到的强度,则会造成材料的浪费。

复合材料泡沫夹层结构的材料和应用

复合材料夹层结构芯材 夹层结构的最初应用从上世纪初的航空航天业开始,逐步发展到今天的船舶、交通运输、运动器材、风力发电、医疗器材等领域。德固赛(中国)投资有限公司上海分公司的胡培先生全面综述了各种芯材的特性、应用、市场分布及前景。

常用芯材及其应用 玻璃钢/复合材料中常用的芯材有泡沫、巴萨木和蜂窝等多孔固体材料。 巴萨木目前主要的用途集中在风电、船舶、铁路车辆等行业。相对而言,因为其密度选择范围小,面层破坏以后,吸水腐烂的缺点,已经逐步被PVC泡沫取代。但是因为其价格优势,目前还有一定的市场。 蜂窝主要有NOMEX纸蜂窝和铝蜂窝,蜂窝材料具有各向异性的特点。另外,因为蜂窝存在开孔结构,不适用一些湿法工艺或树脂注射工艺,例如船舶和风电等领域。铝蜂窝因为和碳纤维面板之间存在电腐蚀的问题,一般不能和碳纤维一同使用。另外,蜂窝结构在使用过程中,会因为面层破坏,发生渗水问题。 玻璃钢/复合材料中常用的泡沫芯材有聚氯乙烯(PVC)、聚苯乙烯(PS)、聚氨酯(PUR)、丙烯腈-苯乙烯(SAN)、聚醚酰亚胺(PEI)及聚甲基丙烯酰亚胺(PMI)等。 硬质聚氨酯PUR泡沫与其他泡沫相比,其力学性能一般,树脂/芯材界面易产生老化,从而导致面板剥离。作为结构材料使用时,常用作层合板的纵、横桁条或加强筋之芯材。有时PUR泡沫也能用于受载较小的夹层板中,起到隔热或隔音的作用。该类泡沫的使用温度为150℃左右,吸声性能良好,成型非常简单,但是机械加工过程中易碎或掉渣。PUR泡沫价格相对便宜,发泡工艺也比较简单,采用液体发泡。目前主要在运动器材,例如网球拍、冰球棒中用做工艺芯材,并起到一定的阻尼作用。另外在冲浪板中也普遍使用PUR泡沫或EPS泡沫作为芯材。

不同夹芯复合材料夹层结构的剪切破坏行为

不同夹芯复合材料夹层结构的剪切破坏行为 邹建胜;曾建江;童明波;蔡婧 【期刊名称】《机械工程材料》 【年(卷),期】2012(036)009 【摘要】对蜂窝和泡沫夹芯的复合材料夹层结构通过夹具用拉伸试验模拟剪切破坏行为,分析了试验载荷一应变曲线及失效模式,得出应变场分布情况及失效原因,并分别对不同夹层结构的剪切行为进行了有限元模拟。结果表明:夹层结构的失效模式均为沿加载方向的屈曲破坏,并且在中间区域与边界区域之间的区属于纯剪应力区;夹芯材料的横向剪切模量直接影响了复合材料夹层结构的屈曲破坏载荷和失效模式;有限元分析的屈曲模态与试验失效模式较为吻合。%Tensile test for honeycomb sandwich plates and foam sandwich plates was carried out by the tension of fixture to simulate shear damage behaviors. The distribution of strain field and the reason for failure were revealed by the analysis of the load-strain curves and failure mode. In addition, the shear behaviors of different composite sandwich plates were simulated by finite element software. The results show that the both failure modes were all buckling failure along the loading direction, and the region between the middle part and boundary part was a pure shear region. The horizontal shear modulus of different cores had a great influence on the buckling load and failure mode. And the finited element simulated buckling mode of sandwich plates fitted well with that from the experiment.

复合材料风电辅材及工艺

复合材料风电叶片辅材及工艺 By https://www.wendangku.net/doc/5d7745400.html, 2010年,可以说是我国海上风电开始有序发展的“元年”。对于当前业界高度关注的海上风电特许权招标问题,国家能源局可再生能源司副司长史立山对记者表示,加快海上风电建设的条件已基本具备,海上风电将是今后风电发展的重点之一。由此可见,未来风电项目对风电叶片的要求将会更高,更轻质的大型复合材料叶片将会受到市场的青睐。 复合材料的市场机遇 风机叶片用主要材料体系包括各种增强材料、基体材料、夹层泡沫、胶粘剂和各种辅助材料等。 增强材料 对于同一种基体树脂来讲,采用玻璃纤维增强的复合材料制造的叶片的强度和刚度的性能要差于采用碳纤维增强的复合材料制造的叶片的性能。但是,碳纤维的价格目前是玻璃纤维的10倍左右。由于价格的因素,目前的叶片制造采用的增强材料主要以玻璃纤维为主。因此玻璃纤维仍是风机叶片制造未来主要的增强材料。 随着叶片长度不断增加,叶片对增强材料的强度和刚性等性能也提出了新的要求,玻璃纤维在大型复合材料叶片制造中逐渐出现性能方面的不足。为了保证叶片能够安全的承担风温度等外界载荷,风机叶片可以采用玻璃纤维/碳纤维混

杂复合材料结构,尤其是在翼缘等对材料强度和刚度要求较高的部位,则使用碳纤维作为增强材料。这样,不仅可以提高叶片的承载能力,由于碳纤维具有导电性,也可以有效地避免雷击对叶片造成的损伤。因此碳纤维在中国无法突破技术瓶颈的前提下,这种与玻璃纤维混搭增强也是一个重要市场。 其他增强材料方面,我国竹纤维增强风电叶片已经实现批量生产,因此天然纤维也将分得风电叶片市场的一杯羹。 基体材料 目前的风力发电机叶片基本上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与玻璃纤维、碳纤维等增强材料,通过手工铺放或树脂注入等成型工艺复合而成。为了提高复合材料叶片的承担载荷、耐腐蚀和耐冲刷等性能,必须对树脂基体系统进行精心设计和改进,采用性能优异的环氧树脂代替不饱和聚酯树脂,改善玻璃纤维/树脂界面的粘结性能,提高叶片的承载能力,扩大玻璃纤维在大型叶片中的应用范围。同时,为了提高复合材料叶片在恶劣工作环境中长期使用性能,可以更多地采用耐紫外线辐射的新型环氧树脂系统。 夹层泡沫 夹芯材料成本约占叶片材料总成本的20%。在风电叶片设计中,夹层结构芯材的选择主要考虑三个方面的因素:力学性能(强度、刚度和密度)要求、工艺条件(承受的温度、制品形状、芯材的加工等)要求和价格。 做好叶片夹层结构设计和芯材选择的前提是要充分了解各类芯材的性能特点,同时,一般要根据最终产品的性能和工艺方法进行特定的试验来减小风险。在产品设计的初期就与芯材供应商进行充分的探讨则会取得事半功倍的效果。 可挤压糊状泥制作风叶阳模及风叶复合材料模具(涂敷胶衣) 胶粘剂等其他辅助材料 胶粘剂的作用是把叶片芯材与壳体,以及上、下半叶片壳体互相粘结,并将壳体缝隙填实从而构成牢固的整体。 在中国胶粘剂剂市场,多数通用型产品供大于求的局面没有改变,而部分高性能、高品质胶黏剂及胶黏制品需求量增加,如用于电子电气、精密仪器仪表、

蜂窝夹层结构复合材料

1.1.夹层结构 一种复合构造的板、壳结构,它的两个表面由很薄的板材做成,中间夹以较轻的夹芯层。前者称为表板,要求强度高;后者称为夹层,要求重量轻。第二次世界大战时,为了充分利用木材资源,英国的“蚊式”轰炸机上就采用了全木质夹层结构。一般夹层结构用于机翼、尾翼、机身、箭体、箭头、减速板、发动机短舱、隔音装置、防火隔板等。与薄壁结构的薄蒙皮相比,夹层板的厚度大得多,抵抗失稳能力强,重量还可减小,而且表面光滑,气动外形良好。但它的制造工艺复杂,工艺质量又不易检验,所以应用受到限制。夹层结构表板的材料有铝合金、不锈钢、钛合金和各种复合材料。夹层材料有轻质木材、泡沫塑料等,也可用金属材料或复合材料制成波纹板夹层或蜂窝型夹层(见蜂窝结构)。夹层与表板一般用胶粘结在一起,也可用熔焊、焊接连接,形成整体。在总体受力分析中,认为上、下两表板只承受表板面内的拉、压力和剪切力,不能承受弯矩和扭矩,而中间夹层只承受垂直于夹层中面的切力。夹层结构与一般板壳结构受力分析的唯一差别在于挠度计算中除了考虑弯曲力矩产生的挠度外,还要考虑剪力的影响。夹层结构的两表板之间距离较大,所以夹层结构的弯曲刚度比一般板壳结构大得多,失稳临界应力显著提高。夹层结构自身不用铆钉,免除了钉孔引起的应力集中,提高了疲劳强度。夹层结构与相邻结构的连接较为复杂,夹层本身的局部接触强度较弱,又需承受连接的集中力,因此必须妥善进行接头设计。 1.1.类型、特点及应用 类型: 按面层分类:玻璃钢、金属、绝缘纸、胶合板、塑料板等 按芯层分类:泡沫夹层结构、波板夹层结构、蜂窝夹层结构等。特点:轻质夹芯 高强度面层

泡沫夹层结构的夹芯材料是泡沫塑料其质量轻、刚度大、保温隔热性能好。但是强度不高 蜂窝夹层结构的夹芯材料是蜂窝材料(玻璃布蜂窝、纸蜂窝、棉布蜂窝等) 特点:质量轻、强度大、刚度大 应用:构件尺寸较大、强度要求较高的部件。如图: 波板夹层结构 波板夹层结构的夹芯材料是波纹板(玻璃钢波纹板、纸基波纹板和棉布波纹板)。 特点:制作简单,节省材料,但不适用于曲面形状的制品,质量轻、刚度大。

复合材料铺层设计说明书

复合材料铺层设计 复合材料制件最基本的单元是铺层。铺层是复合材料制件中的一层单向带或织物形成的复合材料单向层。由两层或多层同种或不同种材料铺层层合压制而成的复合材料板材称为层合板。复合材料层压结构件的基本单元正是这种按各种不同铺层设计要素组成的层合板。 本章主要介绍由高性能连续纤维与树脂基体材料构成的层合结构和夹层结构设计的基本原理和方法,也介绍复合材料结构在导弹结构中的应用。 一、层合板及其表示方法 (1) 铺层及其方向的表示 铺层是层合板的基本结构单元,其厚度很薄,通常约为~。铺层中增强纤维的方向或织物径向纤维方向为材料的主方向(1向:即纵向);垂直于增强纤维方向或织物的纬向纤维方向为材料的另一个主方向(2向:即横向)。1—2坐标系为材料的主坐标系,又称正轴坐标系, x-y坐标系为设计参考坐标系,如图所示。 铺层是有方向性的。铺层的方向用纤维的铺向角(铺层角)θ表示。所谓铺向角(铺层角)就是铺层的纵向与层合板参考坐标X轴之间的夹角,由X轴到纤维纵向逆时针旋转为正。参考坐标系X-Y与材料主方向重合则为正轴坐标系。X-Y 方向与材料主方向不重合则称偏轴坐标系,如图(b)所示。铺层的正轴应力与偏轴应力也在图中标明。 (2)层合板的表示方法 为了满足设计、制造和力学性能分析的需要,必须简明地表示出层合板中各铺层的方向和层合顺序,故对层合板规定了明确的表示方法,如表所示。

二、单层复合材料的力学性能 单层的力学性能是复合材料的基本力学性能,即材料工程常数。由于单层很薄,一般仅考虑单层的面内力学性能,故假设为平面应力状态。单层在材料主轴坐标系中通常是正交各向异性材料,在其主方向上某一点处的正应变ε1、ε2只与该、σ2有关,而与剪应力τ12无关;同时,该点处剪应变γ12也仅点处的正应力σ 1 与剪应力τ12有关,而与正应力无关。 材料工程常数共9个:纵向和横向弹性模量Ε1和Ε2、主泊松比ν 、纵横剪切 12 弹性模量 G12,共四个弹性常数;还有纵向拉伸和压缩强度X1、X2,横向拉伸与压缩强度Y1、Y2,纵横剪切强度S共五个强度参数。这9个工程常数是通过单向层合板的单轴试验确定的。通常情况下,单层力学性能有明显的方向性,与增强纤维的方向密切相关,即Ε1>>Ε2,X>>Y;而且拉伸与压缩强度不相等,即X1≠X2,Y1≠Y2;纵横剪切性能与拉伸、压缩性能无关,即 S 与 X 、Y 无关。 由于单层复合材料是复合材料的基础,故往往用它的性能来说明复合材料的性能。但应当指出:单层的性能不能替代实际使用的层合复合材料的性能。一般说,实际使用的层合复合材料性能要低于单向复合材料的纵向性能。复合材料的性能与材料中含有的纤维数量有很大的关系,所以在规定性能数据时,一般还应给定材料所含的纤维量,通常用纤维所占的体积百分比V来表示。V称为纤维体积分数或纤维体积含量,其值通常控制在60%左右。 三、复合材料结构的制造与成形工艺 (1)制造与成形工艺的分类、特点与适用范围 树脂基复合材料结构成形工艺方法多种多样,各有所长。工艺方法的分类见图各种工艺方法的特点与适用范围见表。

复合材料在风电叶片中的应用


世界领先的复合材料设计制造软件
创新的风机叶片设计工具和制造方法
VISTAGY.Inc
?20 Confidential 009

关于VISTAGY, Inc公司
?20 Confidential 009
世界领先的面向复杂,专业的产品开 世界领先的面向复杂 专业的产品开 发、提供专业的集成于CAD的工程软 件和咨询服务的供应商
复合材料,飞机结构设计…
VISTAGY的客户均为世界领先的复合 材料公司
– 航空航天; 汽车; 船舶; 风能; 消费品, 工业产品, 医疗设备…
2009年全球销售额增加35%. 年全球销售额增加 总部位于美国,波士顿 遍布全球的销售及技术支持

VISTAGY 公司价值观
?20 Confidential 009
复合材料工程应用的领导者
– 世界领先的复合材料设计/制造专业的工具软件FiberSIM – 近20年的在各行业复合材料领域应用的经验
灵活开放的复合材料工程技术
– 完整的复合材料开发均基于 个CAD主数模 完整的复合材料开发均基于一个CAD主数模 – 为复合材料的设计/分析/制造提供整体的解决方案
通过与全球战略客户的密切合作,获得了特定行业需求的、创新的和最直 接的工程经验
– 从概念设计到制造的完整流程 – 致力于可靠地和快速地工程设计方案更改的管理 – 更有效地在整个供应链进行数据共享和传递

VISTAGY 公司的主要产品
?20 Confidential 009
The comprehensive solution for design, assembly and validation of aerostructures

ansys_复合材料分析

第五章复合材料 5.1 复合材料的相关概念 复合材料作为结构应用已有相当长的历史。在现代,复合材料构件已被大量应用于飞行器结构、汽车、体育器材及许多消费产品中。 复合材料由一种以上具有不同结构性质的材料构成,它的主要优点是具有很高的比刚度(刚度与重量之比)。在工程应用中,典型复合材料有纤维和叠层型材料,如玻璃纤维、玻璃环氧树脂、石墨环氧树脂、硼环氧树脂等。 ANSYS程序中提供一种特殊单元--层单元来模拟复合材料。利用这些单元就可以作任意的结构分析了(包括非线性如大挠度和应力刚化等问题)。对于热、磁、电场分析,目前尚未提供层单元。 5.2 建立复合材料模型 与铁或钢等各向同性材料相比,建立复合材料的模型要复杂一些。由于各层材料性能为任意正交各向异性,材料性能与材料主轴取向有关,在定义各层材料的材料性能和方向时要特别注意。本节主要探讨如下问题: 选择合适的单元类型; 定义材料层; 确定失效准则; 应遵循的建模和后处理规则。 5.2.1 选择合适的单元类型 用于建立复合材料模型的单元类型有SHELL99、SHELL91、SHELL181、SOLID46和SOLID191 五种单元。但 ANSYS/Professional 只能使用 SHELL99 和 SHELL46 单元。具体应选择哪一类单元要根据具体应用和所需计算结果类型等来确定。所有的层单元允许失效准则计算。 1、SHELL99--线性层状结构壳单元 SHELL99 是一种八节点三维壳单元,每个节点有六个自由度。该单元主要适用于薄到中等厚度的板和壳结构,一般要求宽厚比应大于10。对于宽厚比小于10的结构,则应考虑选用 SOLID46 来建立模型。SHELL99 允许有多达 250 层的等厚材料层,或者 125 层厚度在单元面内呈现双线性变化的不等材料层。如果材料层大于 250,用户可通过输入自己的材料矩阵形式来建立模型。还可以通过一个选项将单元节点偏置到结构的表层或底层。 2、SHELL91--非线性层状结构壳单元 SHELL91 与 SHELL99 有些类似,只是它允许复合材料最多只有 100 层,而且用户不能输入自己的材料性能矩阵。但是,SHELL91 支持塑性、大应变行为以

玻璃钢复合材料船舶夹层结构中的泡沫芯材

结构泡沫芯材的历史回顾(复材在线原创文章) 玻璃钢/复合材料(FRP/CM)中常用的泡沫芯材有聚氯乙烯(PVC)、聚苯乙烯(PS)、聚氨酯(PUR)、丙烯腈-苯乙烯(SAN)、聚醚酰亚胺(PEI)及聚甲基丙烯酰亚胺(PMI)等泡沫,其中PS和PUR泡沫通常仅作为浮力材料,而不是结构用途。目前PVC 泡沫已几乎完全代替PUR泡沫而作为结构芯材,只是在一些现场发泡的结构中除外。 严格意义上讲,第一种用在承载构件夹层结构中的结构泡沫芯材是使用异氰酸酯改性的PVC泡沫,或称交联PVC。第一个采用PVC泡沫夹芯的夹层结构是保温隔热车厢。交联PVC的生产工艺是由德国人林德曼在上世纪30年代后期发明的。二次大战以后法国将该工艺列入战争赔偿中,由克勒贝尔蕾洛雷特塑料公司(Kleber Renolit)开始生产Klegecell?交联PVC泡沫,主要是一些用在保温隔热车厢中的低密度产品。 上世纪50-60年代,克勒贝尔蕾洛雷特塑料公司给几家欧洲公司发放了PVC泡沫的生产许可证。另外两家美国公司,B.F歌德雷奇(B.F Goodrich)和佳士迈威(Johns-Manville)也买到了许可证开始生产,但是几年以后就停产。当所有的生产许可证都过期以后,交联PVC的生产工艺过程转为公开。进入70年代以后,多数原来的欧洲许可生产厂家也已停产。目前两个主要的生产厂家是戴博(Diab)公司的Divinycell?和Klegecell?系列PVC泡沫及爱瑞柯斯(Airex)公司的Herex?系列PVC泡沫。 20世纪40年代后期,林德曼使用高压气体作为发泡剂,制造出未经过改性的PVC泡沫,也叫线性PVC泡沫。 英国于1943年首先制成聚苯乙烯泡沫塑料,1944年美国道化学有限公司用挤出法大批量的生产聚苯乙烯泡沫塑料。 第二次世界大战期间,德国拜尔的试验人员对二异氰酸酯及羟基化合物的反应进行研究,制得了PUR硬质泡沫塑料、涂料和粘合剂。1952年,拜尔公司报道了软质聚氨酯泡沫塑料的研究成果。 1993年,加拿大的ATC公司开始生产SAN泡沫。其制造工艺和线性PVC相似。 PMI泡沫是由德国罗姆(Rohm)公司于1966年首先用丙烯腈、甲基丙烯腈、丙烯酰胺和甲基丙烯酸酯热塑性树脂在180oC 下发泡并交联制作聚甲基丙烯酰亚胺泡沫的技术,接着日本的积水化学公司于1967年使用辐射交联方法制作聚甲基丙烯酰亚胺泡沫。 夹层结构的工作原理及优点 作为孔隙材料芯材可以起到减轻结构的重量,增加结构的刚度,提高结构的强度等作用。夹层结构一般是由上面板、上面板与芯材的粘结层、芯材、下面板与芯材的粘结层以及下面板所构成,这五个要素组成了一个整体的夹层结构。夹层结构传递荷载的方式类似于工字梁(见图1),上下面板(翼板)主要承受由弯矩引起的面内拉压应力和面内剪应力,而芯材(腹板)主要承受由横向力产生的剪应力(见图2)。 图1工字梁和夹层结构的对比

复合材料夹层结构泡沫芯材的性能特点和应用

复合材料夹层结构泡沫芯材的性能特点和应用 作者:胡培的博客发表于:2010-01-06 09:06:16 点击:1817 复材在线原创文章,转载请注明出处 胡培赢创德固赛(中国)投资有限公司上海分公司 陈志东博士赢创德固赛(中国)投资有限公司上海分公司 摘要: 上世纪80年代末,航空公司首先提出飞机结构中应当避免使用蜂窝夹层结构,因为在使用过程中,其表面容易发生损伤,产生显微裂纹并浸入水分。另外,蜂窝也不适用于液体树脂注射工艺。文章对复合材料夹层结构中常用的芯材做了简单对比,列出了泡沫夹层结构在结构方面、工艺方面和长期使用过程中的优势,介绍了目前航天航空结构,特别是无人机结构中应用最广泛的PMI泡沫的特点和应用实例。结合多孔固体的结构特点和国内外最新研究和实践,简单的论述了泡沫芯材的发展趋势。 关键词:泡沫,蜂窝,夹层结构 一、前言 在航天航空、交通运输结构的设计中,要求构件尽可能轻而不损失强度是对设计人员的最大挑战。在保证强度、刚度的同时,还要求所设计的薄壁结构在承受拉、压及剪切载荷的综合作用下不失稳。过去传统的飞机结构设计方法仍在一些范围内使用,通过用长桁和肋/框组成纵、横向加强件来提高板的稳定性。实际上,某些次结构也可以使用夹层结构设计来满足强度、刚度要求,例如蒙皮、舱门、口盖和翼身整流罩等。夹层结构的夹芯通常采用蜂窝或泡沫芯材。 二、复合材料夹层结构芯材介绍 在设计时,对于面板考虑的主要因素是材料的强度和刚度,而对于芯材,考虑的主要因素是最大幅度的减轻重量。在飞机结构中芯材通常使用铝蜂窝、泡沫或NOMEX?蜂窝,如图1所示。铝蜂窝或NOMEX?蜂窝具有压缩模量高和重量轻的优点,它们是飞机结构广泛使用夹芯材料,通常与碳/玻璃纤维预浸料一起使用。常见的结构有机翼前缘、方向舵、起落架舱门、翼身和翼尖整流罩等。尽管蜂窝夹层结构在性能上比金属板金结构有突出的优点,但是航空公司还是在积极寻找其替代材料,因为蜂窝夹芯材料在使用过程中需要高昂的维护修理费用。在某些情况下如果面板出现裂纹和孔隙时,水和水汽就很容易地进入蜂窝。在低温情况下,进入蜂窝孔中的水被冰冻以后会发生膨胀,将破坏邻近的蜂窝孔格的粘结,这就降低了夹层结构的性能而必须进行修理。

相关文档
相关文档 最新文档