文档库 最新最全的文档下载
当前位置:文档库 › 门吊基础设计计算

门吊基础设计计算

门吊基础设计计算
门吊基础设计计算

门吊走行轨基础的设计计算

门吊即门式起重机,是龙门起重机的简称,是桥架通过两侧支腿支承在轨道上的桥架型起重机。门式起重机是铁路货场、码头、工厂、仓库、机械或结构的装配场,水电站等露天物资转运作业的理想设备,起重量从一至上百吨不等。其基础可采用类似铁路线路的轨枕基础,也可以采用钢筋混凝土条形基础。轨枕基础因为要求经常进行补道碴、抬轨等养护工作,一般较少采用;本文结合实例介绍钢筋混凝土条形门吊基础设计的过程。

1 设计计算原理

钢筋混凝土门吊走行轨基础可视为多段弹性地基梁,其上作用一组移动荷载。当上部荷载通过弹性基础传给地基时,地基发生相应变形,产生相应地基反力。地基反力确定了,则基础梁的内力就不难求得,所以从某种意义上讲,弹性地基梁的计算问题,就是确定地基反力的分布问题。当前,求解地基反力的模拟假定主要有三种:即反力直线分布假定、基床系数假定、半无限弹性体假定[ 1 ] 。反力直线法假定适用于刚性基础;基床系数法和弹性理论法适用于弹性基础,目前在国内外这两种方法都在同时使用。本文介绍的计算方法是基于基床系数法。

2 门吊基础设计步骤

(1)收集拟采用门吊设备的技术资料,根据设备资料确定移动荷载组的大小及分布。

(2)选定地基梁的尺寸,计算梁的弹性特征长度和折算长度。

(3)根据折算长度判定梁是长梁还是短梁,根据《弹性地基计算图表及公式》[ 2 ]一书中相应折算长度梁的影响线结合荷载组计算主要断面的弯矩、剪力、地基反力,根据计算结果绘制弯矩、剪力、地基反力包络图。对每一计算截面,均计算其最不利的移动轮压位置组合。

(4)根据内力计算结果取最不利情况即M max、Q max和M min、Q mix对地基梁按钢筋混凝土倒T形梁进行设计计算,确定梁配筋。如有必要,重复( 2 ) ~(4)步进行基础梁尺寸和配筋调整。

(5)根据地基反力包络图对照地基资料确定地基承载力是否足够,如地基承载力不足,则根据具体情况进行地基处理或是采用桩基础。

4 设计实例

某物流基地需设置一台30 m跨36 t龙门吊,根据设备提供资料,大车走行轨轴距9. 2 m,台车轮距1. 2 m,最大轮压为39 t。场地土为粉质黏土,地基承载力特征值100 kPa,进行门吊走行轨钢筋混凝土条形基础设计。

4. 1 计算基础数据选定和计算基础梁截面见图1,梁长25 m,地基基床系数k= 1 000 t/m3 ,混凝土级配采用C30,混凝土弹性模量E c = 3 ×106 t/m2 ;梁的尺寸b0 = 0. 5 m, b = 2. 5 m, h = 1. 3 m, d = 0.475 m,b0b=0. 52. 5=0. 2,dh=0. 4751. 3=0. 365,查《弹性地基计算图表及公式》[2 ]中的“T形截面惯性矩表”μ=0. 382 6,惯性矩J =μbh312= 0. 382 6 ×2. 5 ×1. 3312=

0. 1751 m4。梁的弹性特征长度S =4

4Eha Jbk=4

4 ×3 ×106 ×0. 17

5 12. 5 ×103=4840. 5 = 5. 38 m 梁的折算长度λl =L

S=25. 05. 38= 4. 65 > 4. 5,属于长梁。

4. 2 梁的计算

根据设备提供的资料,荷载图见图2,梁的计算见表1。

沉井设计

沉井设计基本方法 一、预估井壁厚度 井壁厚度除考虑其结构强度、抗渗、刚度和抗浮需要外,尚应根据沉井有足够的自重能顺利下沉的条件确定。 一般根据沉井深度预估井壁厚度,以下值仅供参考: 4~6m,井壁厚度可用300~400mm;6~8m,可用350~450mm;8~10m,可用400~550mm;10m以上宜用500mm以上。 当遇到较好的地质情况(土侧摩阻力较大)时,可适当加大井壁厚度,或采用以下办法: 1、采用外壁设台阶的刃脚,以减小下沉阻力;台阶宽度为100~200mm; 2、若采用第一项未能达到要求,可根据实际情况在外壁设多级台阶; 3、对于薄壁沉井,应采用触变泥浆套及壁外喷射高压空气等措施,以降低沉井下沉时的摩阻力。 当遇到较差的地质情况(土侧摩阻力较小)时,在满足结构强度、抗渗、刚度和抗浮需要时,选择较小厚度的井壁。但大型沉井受力大,井壁厚度一般较厚,此时也可采用内设台阶的方式,使壁厚由下到上逐渐变薄。 二、抗浮验算 沉井抗浮稳定应按沉井封底和使用两阶段,分别根据实际可能出现的最高水位验算(根据规程7.2.3条规定:应将水位控制在沉井起沉标高以下不小于500mm,因此,若非排水下沉,则施工阶段的最高水位可估算为相对标高-0.500)。 进行抗浮验算时,应注意以下几点: 1、使用阶段的抗浮验算应考虑沉井上部建筑的重量,因此对于无上部建筑的沉井,只需对使用阶段进行验算。 2、当封底混凝土与底板有可靠连接时,封底混凝土可作为沉井抗浮重量的一部分,通常的连接方式是使用插筋。 当沉井依靠自重不能获得抗浮稳定时,可采取如下措施: 1、施工阶段不能满足时,可采取井点降水或加载下沉。 2、使用阶段不能满足时,可采用设抗浮板或拉锚等措施。 三、计算下沉 下沉验算时,需注意以下几点: 1、注意沉井井壁摩阻力沿井壁深度方向的分布图形,0~5m为三角形,5m以下为矩形; 2、摩阻力为各层土的单位摩阻力标准值的加权平均值;(采用触变泥浆套时,应用处理后的侧摩阻力计算下沉)

32门吊计算书

MH32t×20m电动葫芦门吊设计计算 一、主要参数 起重量m q =32t,跨度L=20m,起升高度H=9m,有效悬臂L1=L2=5m,起升速度v q=3.5m/min,工作级别A3 二、主梁计算:9 ㈠载荷及内力 1、垂直平面 主梁承受垂直与水平载荷,应分别计算 当葫芦门吊带载运行工作时,主梁受载最大,对主梁取简支伸臂梁的计算模型,如下图所示: = 其中 L= 2000 0mm l=5000mm l c=7500mm ⑴载荷: ①主梁自重载荷: 主梁的单位重量:F q=m q/(L+l+ l c)=15780/35=450.9Kg ②葫芦小车集中载荷: ΣP=(m q+mx)=32000+3240=35240Kg m q起重量;mx葫芦本身重量 ③冲击系数: Ψ4=1.1+0.058Vd h =1.1+0.058×0.35 2 =1.133 ⑵内力:小车位于跨度中央对主梁产生的垂直弯矩

Mcv=Ψ4[ΣPL/4+F q L2/8-F q l2/2] =1.133[35240×22500/4+0.4509×225002/8-0.4509×60002/2] =9102.64×104 Kg.mm 小车位于悬臂极限位置,对主梁跨端或悬臂根部产生的垂直弯矩 Mdv=Mbv=Ψ4[ΣPlc+F q l2/2] =1.133×[35240×6000+0.4509×60002/2] =7844.14×104 Kg.mm 2、水平平面 主梁在水平平面内简化为一侧与支腿铰接,另一侧与支腿刚接的间支悬臂梁的计算模型,如下图所示: ⑴载荷: ①大车运行起、制动产生的惯性载荷: 主梁均布惯性载荷:Fh=Fq/14=28.41Kg/m 小车集中惯性载荷:Ph=∑P/14=12225.6Kg ②偏斜侧向力 当小车位于跨中时:Psc=1/2Prcλ=1403.4Kg 当小车位于悬臂端时:Psl=1/2Prcλ=2221.1Kg (其中λ=0.137,Prc=20413Kg Prc=32176Kg) ③侧向风力 主梁侧向风力: Fw=cqA1=1.4×150×1.85=388.5N/m=33.85Kg/m 吊重侧向风力:

沉井结构计算书

粗格栅及污水提升泵房结构计算书

结构计算书 一.设计总信息: 1.本工程地下结构采用钢筋混凝土沉井。 2.结构设计使用年限50年;建筑结构安全等级II级,结构重要性系数1.0。 3.基本风压0.8KN/m2。 4.抗震设防烈度7度;设计基本地震加速度值为0.10g;设计地震分组为第Ⅰ组;场地类别Ⅲ类;建筑抗震设防分类为丙类。 5.地基基础设计等级丙级。 二.主要材料及要求: 1.混凝土: (1)井底混凝土封底采用C20; (2)垫层和填充混凝土为C15; (3)沉井壁板和底板为C30; (4)地下结构混凝土抗渗标号均为P6。 2.钢筋:HPB300级钢,fy=270N/mm2;HRB400级钢,fy=360N/mm2板材:Q235 焊条:HPB300级钢及Q235用E43型;HRB400级钢用E50型。 3.砌体材料:Mu10非承重粘土多孔砖砌体墙,块体自重≤11KN/m3,混合砂浆强度等级为M7.5(地下部分为水泥砂浆)。 三.设计采用主要规范:

1.《泵站设计规范》(GB50265-2010); 2.《建筑结构荷载规范》(GB50009-2012); 3.《建筑抗震设计规范》(GB50011-2010); 4.《建筑地基基础设计规范》(GB50007-2011); 5.《混凝土结构设计规范》(GB50010-2010); 6.《钢结构设计规范》(GB50017-2003); 7.《给水排水工程构筑物结构设计规范》(GB50069-2002); 8.《给水排水工程钢筋混凝土沉井结构设计规程》(CECS 137:2002); 9.《地下工程防水技术规范》(GB50108-2008) 四.结构计算方法及应用软件: 1.沉井特种结构主要采用手算及理正结构工具箱6.5。 五.主要结构计算: (一)沉井: 具体设计及说明见设计图. 1.沉井下沉计算:沉井起沉标高暂按-1.75,沉井地上制作部分按-9.10~0.20,标高均采用相对标高,详参设计图;地质断面参地勘报告 ZK21孔。 沉井自重:G1k= 148.066*25=3701.65 kN (注:CAD建3D模型查体积) 地下水浮托力: F fw,k=0 kN (注:采用排水下沉法施工) 井壁摩擦力:

门吊轨道基础计算书

80t 门吊走行基础计算 根据“MG80/50-28起重机总图”可得门式起重机轮压为23.125t ,地基处理后容许应力250kpa 。 设计钢轨基础截面如图,采用C20砼 1、基础应力验算: 基础按45°扩散角计算,地基的受轮压面积为1.2m ×4m , 地基应力kPa kpa p 250][8.20755.01075.24 2.110 4125.23=<=??+???= σ 地基处理后要求能达到kPa 250][=σ 2、基础配筋计算: a 、基础纵向配筋计算 基础为单筋设计 HPB 235钢筋MPa f y 210= C20混凝土 MPa f t 1.1= MPa f c 6.9=mm a s 35= 计算简图如下 均布荷载即m kN p q /4.2492.1=?= 计算结果:m kN M ?=8.32max kN V 1.143max = 由混凝土规范计算: 受压区高度max 0)2/(M x h xbf c =- mm x 5.13= 计算得23.307mm A s = 配筋率%059.0=ρ 规范要求最小配筋率为%24.0/45=y t f f , 按最小配筋率 21248mm A s = 取7根φ16的钢筋21406mm A s =

b 、基础横向配筋计算 考虑对称性,计算简图如下: 横向弯矩计算,取1米段计算 m kN q /4.249= m kN ql M ?==5.372/2max 受压区高度max 0)2/(M x h xbf c =- mm x 7.12= 按计算结果得26.580mm A s = 按120@10φ配箍筋抗横向弯曲 2628mm A s = b 、基础箍筋计算 混凝土自身抗剪容许力量 kN kN bh f V t 5.135198515.05.010001.17.07.00>=????== 参考规范,结构按最小配筋率通长配筋即可 箍筋最小配筋率%13.0/24.0==yv t sv f f ρ 120@10φ的箍筋的配筋率%13.0%22.0/>==bs nA sv sv ρ 满足规范要求 配筋图如下

柱下条形基础计算书

1. 工程概况及设计资料 某柱下条形基础,所受外荷载大小及位置如图1.1所示。柱采用C40混凝土,截面尺寸800800mm mm ?。地基为均质粘性土,地基承载力特征值160ak a f KP =,土的重度3 19/KN m γ=。地基基础等级:乙级。地下防水等级:二级。 图1.1 2. 基础宽度计算 基础埋深定为2m 。总竖向荷载值 1000180014004000ki N KN KN KN KN =++=∑ 180********.5 5.334000N KN m KN m e m KN ?+?= = 假设两端向外延伸总长度为3m ,则 4.56313.5L m m m m =++= 地基底面以上土的加权重度3 19/m KN m γ= 查得《地基规范》中对于粘性土: 1.6d η=,0.3b η=

持力层经深度修正后的地基承载力特征值 3(0.5)160 1.619/(20.5)205.6a ak d m a a f f d m KP KN m m m KP ηγ=+-=+??-=()()3 4000 1.789205.620/ 2.013.5ki a G a N KN b m f d l KP KN m m m γ≥ = =--??∑取 2.0b m = 3. 两端外伸长度验算即地基承载力验算 320/ 2.013.5 2.01044k G KN m m m m KN =???= 400010445044ki k N G KN KN KN +=+=∑ 80ki M KN m =?∑ 800.0155244N G KN m e m KN +?= = 113.5 5.445 1.3052l m m ??=-= ??? 213.5 5.055 1.6952l m m ??=-= ??? 5244194.22205.62.013.5ki k k a a a N G KN p KP f KP bl m m +== =<=?∑ ,max ,min 6195.58 1.2246.7524460.015(1)(1)2.013.513.5192.860 ki k k N G a a a k a N G p e KP f KP KN p bl l m m KP ++>=?= ± =±=?>∑

某沉井结构设计计算

圆形单孔沉井基础(北方工业大学北岸沉井) 执行规范: 《混凝土结构设计规范》(GB 50010-2010(2015年版)), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土沉井结构设计规程》(CECS 137-2015), 本文简称《沉井结构规程》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 1 基本资料 (1) 几何信息

(2) 土层信息 ak (3) 荷载信息 荷载信息 沉井几何简图

组合系数 (4) 钢筋砼信息 纵筋保护层厚度(mm):井壁(内35,外35)、底板(上35,下35)、刃脚(内35,外35) 纵筋a s(mm):井壁顶部45、刃脚底部45 2 计算内容 (1) 下沉验算 (2) 抗浮验算 (3) 地基承载力验算

(4) 刃脚、井壁、底板内力配筋计算 (5) 井壁、底板裂缝抗裂度计算 (6) 水下封底混凝土厚度计算 3 荷载标准值计算 (1) 沉井自重 井壁自重: 底板自重: (2) 内水压力 施工期间(不排水施工): 水位低于刃脚踏面,内水压力为0。 使用期间: 井内水深为0,内水压力为0。 (3) 外土压力 施工期间外土压力: 井壁顶端25.400m ,p ep =0.00kPa =G 11?()--t H 1t 1t 2ab /2()-D t c =???()--?1.000 6.000?1.7000.200?0.8000.500/2()-17.200 1.00025.00=6947.004kN =G 12?t H 2()-D t c =????1.000 6.000()-17.200 1.00025.00=7634.070kN =G 13?t H 3()-D t c =????1.000 6.000()-17.200 1.00025.00=7634.070kN =G 14?t H 4()-D t c =????1.000 6.000()-17.200 1.00025.00=7634.070kN =G 15?t H 5()-D t c =????1.000 4.000()-17.200 1.00025.00=5089.380kN =++++=G 1G 11G 12G 13G 14G 1534938.594kN = G 2( ) +-D/2t t 2 2 t 1c = ???()+-17.200/2 1.0000.2002 1.70025.00=8123.216kN

25、门吊支腿计算简述

门吊支腿计算简述 1、门架平面内的支腿首先要判断是否刚柔支腿 2、螺栓连接的都是刚性节点。如惯性矩不同,则为一刚一柔。此时支腿下方存在着水平力。 3、销轴连接的是真正的刚柔支腿。纯正的静定结构。支腿底部没有水平力。则支腿没有弯矩作用。 4、计算变截面系数。规范中明确了计算方法。一般变截面系数为:1.45。开始设计时就取此值。 5、计算计算长度系数。门架平面内一般初步设计时取:2.2。 6、支腿的实际长度乘上这两个系数。做为计算长度 7、计算门架平面内的最大头的支腿惯性矩。注意:是Y轴的。 8、用此惯性矩除以对应的截面积。再开平方。此结果为Y轴的惯性半径。 9、再用刚才算出的计算长度除以Y轴的惯性半径。此结果为:长细比 10、对比许用的长细比150。长细比小于150。 11、满足后。对应实际的长细比。查表确定折减系数 12、再用算出来的最大的支腿轴向力除以折减系数和截面积。注意是最大的截面积。要小于许用应力。 13、再用支腿最下方的水平力乘以支腿的实际高度。注意:不是计算高度。结果叫:门架平面内的支腿弯矩。 14、在用此弯矩除以支腿Y轴的截面抵抗矩。叫:弯曲应力。

15、用压杆稳定应力加上弯曲应力要小于许用应力。 纯柔性支腿为2力杆。没有弯矩。按压杆稳定性进行计算。 门架平面内的的计算完成了。下面支腿平面内的支腿计算。16、计算支腿最上面的截面X轴的惯性矩和最下面X轴的惯性矩。求解与查表得出变截面系数。规范上查找和选用。 17、确定计算长度系数。由于上面为刚性联接。下面为铰接,计算长度系数:0.7。为了安全,可取1.0。 18、计算长度:实际长度乘以变截面系数和计算长度系数。 19、求解长细比,需要满足要求。查表:确定折减系数。 20、用该支腿的最大轴向力计算压杆稳定应力。需要满足要求。 由于弯矩较小则假设为零,目的简化计算。

柱下条形基础计算方法与步骤

柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理。 一、适用范围: 柱下条形基础通常在下列情况下采用: 1、多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时。 2、当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时。 3、地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时。 4、各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时。 5、需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时。 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较 件下梁的计算。 二、计算图式 1、上部结构荷载和基础剖面图 2、静力平衡法计算图式 3. 倒梁法计算图式 三、设计前的准备工作 1. 确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础. 基础的纵向地基净反力为: j j i p F bL M bL min max =±∑∑62

式中 P jmax ,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其他局部均布q i ). ∑M—作用于基础上各竖向荷载(F i ,q i ),纵向弯矩(M i )对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. 当P jmax 与P jmin 相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a 1=a 2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L ;如果P jmax 与P jmin 相差较大时,常通过调整一端悬臂长度a 1或a 2,使合力∑F i 的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M 为零,反力从梯形分布变为均布,求a 1和a 2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中, ∑M i —作用于基础上各纵向弯矩设计值之和. x i —各竖向荷载F i 距F 1的距离. 当x≥a/2时,基础长度L=2(x+a 1), a 2=L-a-a 1. 当x

40T门吊承载力计算

附件:4 40T 龙门吊地基处理及计算 一、40t 门吊基础计算 1)、基本数据 根据地勘所提供的资料,40t 门吊采用钢筋混凝土整体基础。 40T 门吊跨度40m ,其自重30T 吊重40T ,由四组轮轨支撑,每组支撑力17.5T ,考虑钢轨的刚度效应,分布荷载按2m 范围均布作用计算,门吊基础采用C30砼,基础宽度取1.6m ,厚度取0.6m ,每8~9m 一节,基础下采用片石换填,换填厚度0.5m ,换填宽度2.2m 。 2)、受力计算 按两种工况计算,工况1:门吊行走至每段基础粱的中间部位;工况2:门吊行走至基础粱的端部。 -1.3 -5.8 -26.0 -66. 3 -131.2 -198.8 -246.8 -278.5 -296.5 -302.3 -302.3 -296.5 -278.5 -246.8 -198.8 -131.2 -66. 3 -26.0 -5.8 -1.3 0.2 0.8 4.9 15.1 34. 1 64.3 108.2 168.0 218.9 237.0 237.0 218.9 168.0 108.2 64.3 34. 1 15.1 4.9 0.8 0.2 两种工况M

34. 3 47 .0 98.8 138.7 188.1 140.5 101.2 68. 7 41. 2 16.9 -16. 9 -41. 2 -68. 7 -101.2 -140.5 -188.1 -138.7 -98. 8 -47.0 -34.3 -3.1 -5.4 -13.4 -25. 7 -43. 2 -65. 7 -93. -124.7 -160.1 -91.9 91.9 160.1 124.7 93. 65. 7 43. 2 25. 7 13. 4 5.4 3.1 两种工况Q 24.0 45.5 64.7 76.6 67.1 58.0 49.8 43.0 38.0 34.8 33.8 34.8 38.0 43.0 49.8 58.0 67.1 76.6 64.7 45.5 24.0 3.1 7.5 13.2 22. 8 28. 0 33.0 37. 8 42. 2 45. 9 48. 3 49. 2 48. 3 45. 9 42. 2 37. 8 33. 28. 22. 8 13. 2 7.5 3.1 两种工况支反力 4.6 4.3 4.1 3.6 3.2 2.8 2.4 2.0 1.8 1.7 1.6 1.7 1.8 2.0 2.4 2.8 3.2 3.6 4.1 4.3 4.6 0.6 0.7 0.8 1.1 1.3 1.6 1.8 2.0 2.2 2.3 2.3 2.3 2.2 2.0 1.8 1.6 1.3 1.1 0.8 0.7 0.6 两种工况变形

柱下条形基础简化计算及其设计步骤

柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理. 一 适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二 计算图式 1.上部结构荷载和基础剖面图

2.静力平衡法计算图式 3.倒梁法计算图式 三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中 P jmax,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布q i). ∑M —作用于基础上各竖向荷载(F i ,q i ),纵向弯矩(M i)对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. j j i p F bL M bL min max =±∑∑6 2

沉井结构设计计算复习课程

沉井结构设计计算 第一章概述 第一节沉井的涵义及应用范围 沉井是一种在地面上制作、通过取除井内土体的方法使之沉到地下某一深度的井体结构。利用沉井作为挡土的支护结构,可以建造各种类型或各种用途的地下工程构筑物。沉并施工方法是修筑地下构筑物或深基础工程特殊而重要的施工方法,而沉井结构则是与这种施工方法相适应的工程结构。与沉井相类似,沉箱也是通过取除箱内土体使之沉到地下的一种工程结构,所不同的是沉箱在取除箱内土体的过程中,箱内必须保持一定的气压,使箱外的土和水不致渗入箱内,人员可在箱内进行取土作业。沉井则因可在水下取土而无需在井内加压,这是两者主要的区别之处。 沉井的应用范围一般有以下几方面: 一、当构筑物埋置较深,采用沉井方式较经济时; 二、当构筑物埋置很深(如矿山的竖井)时,采用其他施工方式有困难,采用沉井最合适; 三、新建构筑物附近存在已有建筑物,开挖施工可能对已有建筑物产生不利影响,就应考虑使用沉井; 四、江心和岸边的井式构筑物,排水施工有困难时,采用沉井是最佳选择; 五、建筑物的地下室、拱管桥的支墩及大型桥梁的桥墩采用沉井结构都有成功实例。 第二节沉井的特点 沉井作为建造地下工程构筑物或深基础的一种方法,与其他方法相比,具有十分明显的特点。 一、沉井与广泛应用的大开挖方法相比,特点如下: (一)如果大开挖不设支护,则不但土方工程量大,而且往往由于需留出开挖边坡,使场地面积大大增加;沉井的土方工程量则可以限制在沉井的体积范围内,而且因为无需留出边坡,场地面积也可大大减少。 (二)沉井不但可以作为地下结构的外壳部分,而月在挖土下沉的过程中可作开挖支护。与设支护的大开挖方法相比,省去了开挖支护的费用。 (三)在地下水丰富的地区,大开挖方法的降水措施是必不可少的。这一措施需花费大量的人力与物力,而沉井施工方法则因町以采用水下挖十及水下封底等技术而节省了降水或排水的费用。 (四)对于一些深度较大的地下构筑物或深基础,大开挖法往往是不可能的或是费用巨大,此时,沉井的优点则是无法比拟的。深度越大,则沉井的优点就越为突出。 二、沉井与沉箱相比,特点如下: (一)一般情况下,沉箱法所需的专用设备多,而沉井法则因所需的专用设备比较简单而易于满足,所需费用也比沉箱法为小。 (二)沉箱法在作业过程中,箱内人员需在高于大气压力的条件下操作,其操作条件不如沉井法;而如下沉的深度较深,则需进——步增加箱内的气压而使箱内的操作条件大大劣化。所以,沉箱的下沉深度是受到一定程度的限制的,一般不超过35-40in,而沉井的下沉深度则无此限制。 三、沉井法虽然具有一定优点,但在一些情况下,其应用也是受到一定程度的限制的,这表现在: (一)沉井在下沉的过程中,对周围一定范围内的土体将产生扰动,在一些土层中,这种扰动还相当严重,如果周边环境对这种扰动的反应敏感,则还必需采取环境保护措施。 (二)在下沉深度范围内,沉井刃脚下必须无大块孤石、坚硬的土层或其他障碍物,否则沉井的下沉将受到严重的妨碍。一旦遇到上述障碍,无论是排水下沉与不排水下沉,在下沉过程中要处理这些障碍物是非常田难的。对于深度较深的沉井,要完全摸清刃脚下的情况也十分费力。 第三节沉井技术的发展状况 沉井,这一由古老的掘井作业发展而来的技术,由于其在建造地下构筑物或深基础工程中显示的优越性,随着施工技术及施工机具的不断发展而获得越来越广泛的应用。从20世纪50年代借鉴国外的设计理论和经验开始至今,我国建造的沉井不下1000座。其体积从直径2m的集水井到巨大的江阴长江大桥的主索平衡墩(体积达60mx 58mx50m);沉井形状包括方形、矩形、多边形、圆形和

柱下条形基础内力计算(zhang)

一、柱下条形基础的计算 1. 倒梁法 倒梁法假定上部结构是刚性的,柱子之间不存在差异沉降,柱脚可以作为基础的不动铰支座,因而可以用倒连续梁的方法分析基础内力。这种假定在地基和荷载都比较均匀、上部结构刚度较大时才能成立。此外,要求梁截面高度大于1/6柱距,以符合地基反力呈直线分布的刚度要求。 倒梁法的内力计算步骤如下: (1).按柱的平面布置和构造要求确定条形基础长度L ,根据地基承载力特征值确定基础 底面积A ,以及基础宽度B=A/L 和截面抵抗矩6/2 BL W =。 (2).按直线分布假设计算基底净反力n p : min max n n p p W M A F i i ∑±∑= (4-12) 式中 ∑i F 、∑i M ?相应于荷载效应标准组合时,上部结构作用在条形基础上的竖向力(不 包括基础和回填土的重力)总和,以及对条形基础形心的力矩值总和。当为轴心荷载时, n n n p p p ==min max 。 (3).确定柱下条形基础的计算简图如图4-13,系为将柱脚作为不动铰支座的倒连续梁。 基底净线反力 B p n 和除掉柱轴力以外的其它外荷载(柱传下的力矩、柱间分布荷载等)是 作用在梁上的荷载。 (4).进行连续梁分析,可用弯矩分配法、连续梁系数表等方法。 (5).按求得的内力进行梁截面设计。 (6).翼板的内力和截面设计与扩展式基础相同。 倒连续梁分析得到的支座反力与柱轴力一般并不相等,这可以理解为上部结构的刚度对基础整体挠曲的抑制和调整作用使柱荷载的分布均匀化,也反映了倒梁法计算得到的支座反力与基底压力不平衡的缺点。为此提出了“基底反力局部调整法”,即将不平衡力(柱轴力与支座反力的差值)均匀分布在支座附近的局部范围(一般取1/3的柱跨)上再进行连续梁分析,将结果叠加到原先的分析结果上,如此逐次调整直到不平衡力基本消除,从而得到梁的最终内力分布。由图4-14,连续梁共有n 个支座,第i 支座的柱轴力为i F ,支座反力为i R ,左右柱跨分别为1-i l 和i l ,则调整分析的连续梁局部分布荷载强度i q 为: 边支座)1(n i i ==或 3 /)(1)1(0) (1)(1)(1n n n n n l l R F q +-= + (4-13a ) 中间支座)1(n i << i i i i i l l R F q +-= -1)(3 (4-13b ) 当i q 为负值时,表明该局部分布荷载应是拉荷载,例如图4-14中的2q 和3q 。 倒梁法只进行了基础的局部弯曲计算,而未考虑基础的整体弯曲。实际上在荷载分布和地基都比较均匀的情况下,地基往往发生正向挠曲,在上部结构和基础刚度的作用下,边柱和角柱的荷载会增加,内柱则相应卸荷,于是条形基础端部的基底反力要大于按直线分布假设计算得到的基底反力值。为此,较简单的做法是将边跨的跨中和第一内支座的弯矩值按计算值再增加20%。

污水处理厂沉井结构设计

污水处理厂沉井结构设计 在对污水处理厂进行建设期间,如果应用到深基坑支护技术,那么会花费较多的费用,但结合相关数据调查可以看到,当污水处理厂使用沉井结构时,不会花费很多的资金,继而获得可观的经济效益。所以,文章针对污水处理厂沉井结构设计进行探讨具有一定的现实意义。 一、污水处理厂构筑物应用沉井结构设计的条件 结合相关资料可以发现,以往都是采取以下地基处理方法来建设污水处理厂的:一是陈井施工法;二是敞口开挖法等。但是倘若当该厂的建筑物碰到如下现象时,以往的地基处理方法根本无法适用,那么这个时候就要以沉井施工法为主。第一种情况是当土壤的含水量相对较高的时候,这个时候埋设深度就会受到很大的影响,要想更好地解决这个问题就需要以沉井施工法为主来进行施工处理。第二种情况是当污水处理厂建设的位置是土质强度相对较弱而且地下水位也非常高的情况下,这个时候也是要以沉井施工法为主。第三种情况就是当土壤渗透系数较高且排水量较大时,那么此时就可以将沉井施工法当作主要地基处理方式。第四种情况就是在水流比较密集的地方,也要尽可能以沉井施工法为主。第五种情况就是在建设场地附近存在大量的建筑物,这时也要选择沉井施工法。 针对沉井施工法而言,其实际上是一种在地面就能够制作,再通过将土体提取出来的手段,令其井体结构通过沉井作为相应的支护结构,就能够建设出各种各样的构筑物。不仅如此,该施工法无论是应用在构筑物中还是应用在深基础工程当中均发挥出了不容小觑的作用,而沉井结构就是与该施工技术最匹配的工程结构。从客观的立场出发,使用次数比较频繁的沉井方式有很多,如吸水井、双层沉淀池等。在使用该施工方式开展施工的前期阶段,应当对沉井的施工特征以及地质条件做好相应的勘察工作,只有经过深度剖析才能确保沉井施工的正常开展,确保建设完毕之后的污水处理厂的构筑物安全可靠。总而言之,只有熟练掌握污水处理厂构筑物应用沉井结构设计的条件,才能从根本上促进设计水平的全面提升。 二、给排水构筑物沉井结构设计的一般步骤和内容 首先,应当在全面了解当地水文条地质情况、施工条件等相关内容的基础上,对沉井的平面形状、埋置深度等参数加以明确,同时还要将目光放在沉井结构体系的设计上面,并在此基础上设计各种适合此种情况的施工方案,以便可以从中选择出最佳的施工方案。其次,对截面尺寸加以明确。相关人员应当对外荷载做好相应的计算工作,并及时绘制出与之相匹配的图形。结合结构布置状况,对封底混凝土厚度进行详细计算。与此同时,还要对以下两点加以明确:一是沉井井壁厚度;二是其他一些部位构件的截面尺寸。再次,对施工阶段做好强度计算工作。通常情况下,相关人员应当从以下方面入手:一是井壁平面框架内力计算及配筋;二是井壁的竖向计算配筋;三是刃脚计算及配筋;四是框架底梁防突沉的强度验算;五是钢筋混凝土底板的计算及配筋等。最后,对实际应用阶段做好相应的计算工作。一般而言,可以从以下方面入手:一是沉井结构各部分的强度计算和抗裂验算;二是沉井抗浮、抗滑移、抗倾覆稳定验算;三是地基承载力和变形计算等。 三、污水处理厂沉井结构设计要点 基于复杂环境之下,沉井结构设计在市政工程当中得到了普遍的认可与推崇,如果想要提高污水处理厂沉井结构设计水平,那么就要熟练掌握其设计要点,具体内容如图1所示。

柱下条形基础计算方法与步骤 (1)

柱下条形基础简化计算及其设计步骤 一 适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二 计算图式 1.上部结构荷载和基础剖面图 2.静力平衡法计算图式

3.倒梁法计算图式 三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中 P jmax,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布q i). ∑M —作用于基础上各竖向荷载(F i ,q i),纵向弯矩(M i)对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. 当P jmax 与P jmin 相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a 1=a 2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L ;如果P jmax 与P jmin 相差较大时,常通过调整一端悬臂长度a 1或a 2,使合力∑F i 的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M 为零,反力从梯形分布变为均布,求a 1和a 2的过程如下: j j i p F bL M bL min max =±∑∑6 2

柱下条形基础计算简化及步骤

柱下条形基础简化计算及其设计步骤 摘要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理. 关键字:柱下条形基础简化计算设计步骤 一.适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足 设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二.计算图式 1.上部结构荷载和基础剖面图 2.静力平衡法计算图式 3.倒梁法计算图式

三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中Pjmax,Pjmin—基础纵向边缘处最大和最小净反力设计值. ∑Fi—作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布qi). ∑M—作用于基础上各竖向荷载(Fi,qi),纵向弯矩(Mi)对基础底板纵向中点产生的总弯矩设计值. L—基础长度,如上述. B—基础底板宽度.先假定,后按第2条文验算. 当Pjmax与Pjmin相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a1=a2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L;如果Pjmax与Pjmin相差较大时,常通过调整一端悬臂长度a1或a2,使合力∑Fi的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M为零,反力从梯形分布变为均布,求a1和a2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中,∑Mi—作用于基础上各纵向弯矩设计值之和. xi—各竖向荷载Fi距F1的距离. 当x≥a/2时,基础长度L=2(X+a1),a2=L-a-a1.

柱下条形基础设计计算书

柱下条形基础课程设计计算书 由平面图和荷载可知A 、D 轴的基础受力情况相同,B 、C 轴的基础受力情况相同。所以在计算时,只需对A 、B 轴的条形基础进行计算。 一、A 、D 轴基础尺寸设计 1、确定基础底面尺寸并验算地基承载力 由已知的地基条件,地下水位埋深12m ,假设基础埋深1.55m (基础底面到室外地面的距离),持力层为粘土层。 (1)求修正后的地基承载力特征值 查得0=b η,0.1=d η, 3180.518 1.05 18/1.55 m kN m γ?+?= = (0.5)160 1.018(1.550.5)178.9a ak d m f f d kPa ηγ=+-=+??-= (2)初步确定基础宽度 条形基础轴线方向不产生整体偏心距,设条形基础两端均向外伸出0.25 5.4 1.35m ?= 基础总长57 5.40.25259.7l m =+??= 则基础底面在单位1m 长度内受平均压力 1864.73 282.536.6k F kN = = 则基础底面在单位1m 长度内受平均弯矩 83.50 12.656.6 k M kN m = =? 282.53 1.87178.918 1.55 k a G F b m f d γ≥ ==--? 考虑偏心荷载的作用,取b=2.5m 。 (3)计算基底压力并验算 基底处的总竖向荷载为: 282.5318 1.0 1.55 2.5352.28k k F G kN +=+???= 基底总弯矩为:83.50k M kN m =? 偏心距为:83.50 2.5 0.2370.417352.2866 k k k M l e m m F G = ==<==+ 基底平均压力为:352.28 140.9178.92.5 1.0 k k k a F G p kPa f kPa A +===<=? 基底最大压力为: max 660.2371140.91201.04 1.2214.682.5k k a e p p kPa f kPa l ????? =+=?+=<= ? ???? ?满 足条件。

沉井课程设计计算书

基础工程课程设计 计算书 沉井基础计算书 一、方案比选 此次所做的是桥梁的桥墩,上部荷载较大,基础埋深比较大,采用沉井基础 不仅使桥墩的整体性好,而且相对于其他的深基础也更经济,故经过比选后决定 采用沉井基础。 二、持力层选择 1、根据工程地质资料选择持力层; 由设计资料可知,沉井高度m H 5.10=,又沉井高出地面m 5.0,所以沉井埋深 m h 0.10=。根据工程地质资料持力层为灰色粘土层,沉井刃脚根部深入灰色粘 土层m 5.55.15.25.010=---。 2、确定沉井基础的尺寸和埋深;

R350 沉井平面布置图 R300 沉井高度m H 5.10=,又沉井高出地面m 5.0,所以沉井埋深m h 0.10=。沉井内径 m d 0.6=。底节沉井高度m H 756.11=,外径m D 6.6=,壁厚mm t 5002=,刃脚踏面宽度mm a 150=; 三、荷载计算 1. 上部结构荷载

活载及墩身自重产生的竖向力kN N 15000=,对沉井底面形心轴的力臂为0.5m ; 水平力为kN H 585=,对沉井底面形心轴的力臂为18.5m 。 2. 沉井自重(伸入井壁的部分在计算井壁的自重时计算): 顶盖重1G kN G 86.7062514 614.32514d 2 21=???=???=π 封底混凝土重2G : KN d G 89.204925)4.05.2(4 2 2=?+??=π 井孔填粘土3G : KN d G 99.335818)4.05.215.10(4 2 3=?---??=π 刃脚与井壁重:KN d D d D G 19.174625)756.15.10()(425756.1)(422 22214=?-?-+??-=π π 枯水位时沉井受的浮力: KN g D D G 74.2127)756.15.45.10(4756.142215=???? ????--??+??=ρππ 则沉井自重 93.786119.174699.335889.204986.7064321=+++=+++=G G G G G 四、沉井基础承载力计算 根据上部结构荷载及地基条件,进行基底应力验算、横向抗力验算。 1,基底应力验算 沉井自最高水位至井底的埋置深度为: m h 5.95.010=-= 基础宽度: m d 0.7= 底面积: 22048.385.31416.3m A =?= 井底截面抵抗拒:

相关文档
相关文档 最新文档