文档库 最新最全的文档下载
当前位置:文档库 › 2006-2017年体育单招数学分类汇编--排列组合与概率

2006-2017年体育单招数学分类汇编--排列组合与概率

2006-2017年体育单招数学分类汇编--排列组合与概率
2006-2017年体育单招数学分类汇编--排列组合与概率

2006-2017年体育单招数学分类汇编--排列组合与概率

1、(2006年第9题)一支运动队由教练一人,队长一人以及运动员四人组成,这六个人站成一拍照相,教练和队长分别站在横排的两端,不同的站法一共有()

(A)48种(B)64种(C)24种(D)32种

2、(2006年第23题)假设运动员甲、乙、丙三人每次射击命中靶心的概率分别为0.9,0.8,0.7,且各运动员是否命中靶心相互之间没有影响。

(Ⅰ)三名运动员各射击一次,求其中至少有一人命中靶心的概率;

(Ⅱ)三名运动员各射击一次,求其中恰有一人命中靶心的概率;

(Ⅲ)求运动员甲单独射击三次,恰有两次命中靶心的概率。

3、(2007年第10题)某班分成8个小组,每小组5人,现在要从班中选出4人参加4项不同的比赛,

且要求每组最多选1人参加,则不同的选拔方法有

(A)45C4

8A4

4

(种) (B) C4

8

A4

4

C1

5

(种) (C) 54C4

8

A4

4

(种) (D) 5C4

40

A4

4

(种)

4、(2007年第23题)甲、乙两人参加田径知识考核,共有有关田赛项目的4道题目和有关径赛项目的6道题目。由甲先抽1题(抽后不放回),乙再抽1题作答。

( 1)求甲抽到田赛题目,且乙抽到径赛题目的概率。

(2 )求甲、乙两人至少有1人抽到田赛题目的概率。

( 3)求甲、乙两人同时抽到田赛题目或同时抽到径赛题目的概率。

5、(2008年第9题)在8名运动员中选2名参赛选手与2名替补,不同的选法共有()

A、420种

B、86种

C、70种

D、43种

6、(2008年第23题)某射击运动员进行训练,每组射击3次,全部命中10环为成功,否则为失败. 在每单元4组训练中至少3组成功为完成任务. 设该运动员射击1 次命中10环的概率为0.9.

(1)求该运动员1组成功的概率;

(2)求该运动员完成1单元任务的概率.(精确到小数点后3位)

7、(2009年第14题)将10名获奖运动员(其中男运动员6名,女运动员4名)随机分成甲、乙两组赴各地作交流报告,每组各5人,则甲组至少有1名女运动员的概率是 .

8、(2010年第10题)篮球运动员甲和乙的罚球命中率分别是0.5和0.6,假设两人罚球是否命中相互无影响,每人各次罚球是否命中也相互无影响,若甲、乙两人各连续2次罚球都至少有1次未命中的概率为P,则()

(A)0.4

10、(2011年第10题)将3名教练员与6名运动员分为3组,每组一名教练员与2名运动员,不同的分法有()(A)90中(B)180种(C)270种(D)360种

11、(2011年第17题)甲、乙两名篮球运动员进行罚球比赛,设甲罚球命中率为0.6,乙罚球命中率为0.5。(I )甲、乙各罚球3次,命中1次得1分,求甲、乙等分相等的概率;

(II)命中1次得1分,若不中则停止罚球,且至多罚球3次,求甲得分比乙多的概率。

12、(2012年第8题)从10名教练员中选出主教练1人,分管教练2人,组成教练组,不同的选法有( )A.120种 B. 240种 C.360 种 D. 720种

13、(2012年第14题)某选拔测试包含三个不同项目,至少两个科目为优秀才能通过测试.设某学员三个科目优秀的概率分别为则该学员通过测试的概率是 .

14、(2013年第7题)把4个人平均分成2组,不同的分组方法共有

A. 5种

B. 4种

C. 3种

D. 2种

15、(2013年第14题)有3男2女,随机挑选2人参加活动,其中恰好为1男1女的概率为 。

16、(2014年第5题)从5位男运动员和4位女运动员中任选3人接受记者采访,这3人中男、女运动员都有的概率是( ) A 125 B 85 C 43 D 6

5 17、(2014年第12题)一个小型运动会有5同的项目要依次比赛,其中项目A 不排在第三,则不同的排法共有 种(用数字作答)

18、(2015年第8题)从5名新队员中选出2人,6名老队员中选出1人,组成训练小组,则不同的组成方案共有( )

165种 B. 120种 C. 75种 D . 60种

19、(2015年第17题)某校组织跳远达标测验,已知甲同学每次达标的概率是4

3.他测验时跳了4次,设各次是否达标相互独立.

(Ⅰ)求甲恰有3次达标的概率;(Ⅱ)求甲至少有1次不达标的概率。(用分数作答)

20、(2016年第8题)从1,2,3,4,5,6中取出两个不同数字组成两位数,其中大于50的两位数的个数为( )

A 、6

B 、8

C 、9

D 、10

21、(2017年第4题)从7名男运动员和3名女运动员中选出2人组队参加乒乓球混合双打比赛,则不同的选法共有( )

A. 12种

B. 18种

C. 20种

D. 21种

22、(2017年第18题)在15件产品中,有10件是一级品,5件二级品,从中一次任意抽取3件产品,求:(1)抽取的3件产品全部是一级品的概率;

(2)抽取的3件产品中至多有一件是二级品的概率。

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

体育单招数学考试大纲完整版

体育单招数学考试大纲 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

体育单招:数学考试大纲 体育单招数学考试主要内容为代数、几何、解析几何三个分科,起考试内容的知识要求、能力要求和个性品质要求有一下内容: (一).考试知识要求 对知识的要求由低到高分为三各层次:了解、理解和掌握、灵活和综合应用。 1、了解:要求对所学只是内容有初步的了解、感性认识,知道内容是什么,并在相关的问题中识别它。 2、理解和掌握:要求对所学只是有较深刻的掌握、能够推理、变形和推断,并能利用只是解决有关问题。 3、灵活和综合运用:要求系统地掌握只是的内在联系,能运用只是解决和分析教复杂的问题。 (二).考试内容 1、平面向量考试内容:向量、向量的加减法、实数与向量的积、平面向量的坐标表示,线段的定比分点、平面向量的数量积、平面两点的距离、平移 2、集合,简易逻辑考试内容:集合、子集、交集、补集、交集、并集 3、函数,映射、函数的单调性、奇偶性,反函数及图像关系,对数的运算、对数函数 4、不等式的基本性质、证明、解法,含绝对值的不等式 5、三角函数,单位圆中的三角函数、正余弦函数、正切函数及其图像,正弦定理、余弦定理。 6、数列:等差、等比数列及其通向公式,前N项和公式 7、直线和圆的方程,直线的倾斜角和斜率,点斜式和两点式、一般式平行线与垂直的关系,点到线的距离。 8、圆锥曲线方程:椭圆的几何性质和参数方程,双曲线、抛物线的标准方程和基本性质。 9、直线、平面、简单几何体,直线和平面的判定,距离,三垂线定理。 10、排列组合:排列、数列数公式,组合、组合数公式,二项式定理展开式。 11、概率,随机事件的概率、可能性事件的概率。

(完整版)体育单招历年数学试卷分类汇编-二项式定理、排列组合、概率

二项式定理、排列组合 1.(2013年第6题) 已知3230123(1)x a a x a x a x +=+++,则0123a a a a +++=( ) A .7 B .8 C .9 D .10 2. (2013年第8题) 把4个人平均分成2组,不同的分组方法共有( ) A .5种 B .4种 C .3种 D .2种 3. (2013年第14题) 有3男2女,随机挑选2人参加活动,其中恰好为1男1女的概率为 . 4. (2012年第5题) 已知9()x a +的展开中常数项是-8,则展开式中3x 的系数是( ) A .168 B .-168 C .336 D .-336 5. (2012年第8题) 在10名教练员中选出主教练1人,分管教练2人,组成教练组,不同的选法共有( ) A .120种 B .240种 C .360种 D .720种 6. (2012年第14题) 某选拔测试包含三个不同科目,至少两个科目为优秀才能通过测试,设某学员三个科目获优秀的概率分别为56,46,46 ,则该学员通过测试的概率是 . 7. (2011年第10题) 将3名教练员与6名运动员分为3组,每组1名教练员与2名运动员,不同的分法有( ) A .90种 B .180种 C .270种 D .360种 8. (2011年第11题) 261(2)x x +的展开式中常数项是 . 9. (2011年第17题) 甲、乙两名篮球运动员进行罚球比赛,设甲罚球命中率为0.6,乙罚球命中率为0.5, (Ⅰ) 甲、乙各罚球3次,命中1次得1分,求甲、乙得分相等的概率; (Ⅱ) 命中1次得1分,若不中则停止罚球,且至多罚球3次,求甲得分比乙多的概率; 10. (2010年第10题) 篮球运动员甲和乙的罚球命中率分别是0.5和0.6,假设两人罚球是否命中相互无影响,每人各次罚球是否命中也相互无影响,若甲、乙两人各连续2次罚球都至少有1次未命中的概率为p ,则( ) A .0.40.55p <≤ B .0.450.50p <≤

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

(完整版)体育单招历年数学试卷分类汇编-数列,推荐文档

1.(2013年第7题) 若等比数列的前项和为,则 .n 5n a +a =2.(2013年第13题) 等差数列共有20项,其奇数项之和为130,偶数项之和为150,则该数列的公差为 . 3.(2012年第9题) 等差数列的前项和为,若,则 . {}n a n n S 11,19,100k k a a S ===k =4.(2012年第15题) 已知是等比数列,,则 . {}n a 1236781,32a a a a a a ++=++=129a a a +++= 5.(2011年第9题) 是等差数列的前项和,已知,则公差 . n S {}n a n 3612,6S S =-=-d =6.(2011年第14题) 已知是等比数列,,则 . {}n a 12123,231a a a a a ≠+==1a =7.(2010年第5题) 等差数列中,,公差,若数列前项的和为,则 .{}n a 12a =12 d =-N 0N S =N =8.(2010年第13题) 是各项均为正数的等比数列,已知,则 . {}n a 334512,84a a a a =++=123a a a ++=9.(2009年第17题) 是等比数列,是公差不为零的等差数列,已知,{}n a {}n a 1122351,,a b a b a b ====(Ⅰ) 求和的通项公式; {}n a {}n b (Ⅱ)设的前项和为,是否存在正整数,使;若存在,求出。若{}n b n S n 7n a S =n 不存在,说明理由。 10.(2008年第9题) 是等比数列的前项和,已知,公比,则 . n S n 21S =2q =4S =11.(2008年第17题) 已知是等差数列,,则的通项公式为 . {}n a 1236a a a +=={}n a n a =12. (2005年第4题) 设等差数列的前项和为,已知,则 . {}n a n n S 3316,105a S ==10S =13. (2005年第22题) 已知数列的前项和为满足。求{}n a n n S 235(1,2,3,)n n S a n n =-+= (Ⅰ) 求; 123,,a a a

高中排列组合知识点汇总和典型例题[全]

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计 数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

最新-2017体育单招数学分类汇编---数列

2004-2017体育单招数学分类汇编---数列 1、(2017年第14题)已知等差数列}{n a 的公差为3,2412=a ,则}{n a 的前12项和为 。 2、(2016年第6题)数列{a n }的通项公式为n n a n ++=11,如果{a n }的前K 项和等于3,那么K=( ) A 、8 B 、9 C 、15 D 、16 3、(2016年第17题)已知{b n }是等比数列,16 1,441==b b ,数列{a n }满足n b n a 2log = (1)证明{a n }是等差数列(2)求{a n }的前n 项和S n 的最大值 4、(2014年第11题)已知-5,-1,3……是等差数列,则其第16项的值是 5、(2013年第7题)若等比数列的前n 项和为5n a +,则a = . 6、(2013年第13题) 等差数列共有20项,其奇数项之和为130,偶数项之和为150,则该数列的公差为 . 7、(2012年第9题)等差数列{}n a 的前n 项和为n S ,若11,19,100k k a a S ===,则k = . 8、(2012年第15题) 已知{}n a 是等比数列,1236781,32a a a a a a ++=++=,则129a a a +++= . 9、(2011年第9题)n S 是等差数列{}n a 的前n 项和,已知3612,6S S =-=-,则公差d = . 10、(2011年第14题) 已知{}n a 是等比数列,12123,231a a a a a ≠+==,则1a = . 11、(2010年第5题) 等差数列{}n a 中,12a =,公差12 d =-,若数列前N 项的和为0N S =,则N = . 12、(2010年第13题) {}n a 是各项均为正数的等比数列,已知334512,84a a a a =++=,则123a a a ++= . 13、(2009年第17题) {}n a 是等比数列,{}n a 是公差不为零的等差数列,已知1122351,,a b a b a b ====, (Ⅰ) 求{}n a 和{}n b 的通项公式;(Ⅱ)设{}n b 的前项和为n S ,是否存在正整数n ,使7n a S =;若存

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1.学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 m种不完成一件事,有几类办法,在第一类办法中有1.分类计数原理(加法原理):1mm种不同的方法,类型办法中有种不同的方法……在第n同的方法,在第2类办法中有n2N?m?m?...?m 种不同的方法.那么完成这件事共有n12m种不步有个步骤,做第12.分步计数原理(乘法原理):完成一件事,需要分成n1mm种不同的方法;那么完成这步有种不同的方法……,做第同的方法,做第2步有n n2N?m?m?...?m种不同的方法.件事共有n12特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n m?nm?n 时叫做全排列. 时叫做选排列,排列个不同元素中取出m个元素的一个,4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同m P. 个元素的排列数,用符号表示元素中取出m n n!?m)?Nmn(m?)...()(1n?2n?m1)??,n、?(?Pnn5.排列数公式: n(n?m)!1mmm?mPPP??排列数具有的性质:nn1?n特别提醒: 规定0!=1 1 6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合. 7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个m C. 个不同元素的组合数,用符号表示不同元素中取出m nm Pn(n?1)(n?2)...(n?m?1)n!mn???C.组合数公式:8 nm)!m!(n?m!mP mmn?mmmm?1C?CC?C?C;②组合数的两个性质:①nnnnn?1特别提醒:排列与组合的联系与区别. 联系:都是从n个不同元素中取出m个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.

2004-2017体育单招数学分类汇编---数列

2004-2017体育单招数学分类汇编---数列 1、(2017年第14题)已知等差数列}{n a 的公差为3,2412=a ,则}{n a 的前12项和为 。 2、(2016年第6题)数列{a n }的通项公式为n n a n ++=11,如果{a n }的前K 项和等于3,那么K=( ) A 、8 B 、9 C 、15 D 、16 3、(2016年第17题)已知{b n }是等比数列,16 1,441==b b ,数列{a n }满足n b n a 2log = (1)证明{a n }是等差数列(2)求{a n }的前n 项和S n 的最大值 4、(2014年第11题)已知-5,-1,3……是等差数列,则其第16项的值是 5、(2013年第7题)若等比数列的前n 项和为5n a +,则a = . 6、(2013年第13题) 等差数列共有20项,其奇数项之和为130,偶数项之和为150,则该数列的公差为 . 7、(2012年第9题)等差数列{}n a 的前n 项和为n S ,若11,19,100k k a a S ===,则k = . 8、(2012年第15题) 已知{}n a 是等比数列,1236781,32a a a a a a ++=++=,则129a a a +++= . 9、(2011年第9题)n S 是等差数列{}n a 的前n 项和,已知3612,6S S =-=-,则公差d = . 10、(2011年第14题) 已知{}n a 是等比数列,12123,231a a a a a ≠+==,则1a = . 11、(2010年第5题) 等差数列{}n a 中,12a =,公差12 d =-,若数列前N 项的和为0N S =,则N = . 12、(2010年第13题) {}n a 是各项均为正数的等比数列,已知334512,84a a a a =++=,则123a a a ++= . 13、(2009年第17题) {}n a 是等比数列,{}n a 是公差不为零的等差数列,已知1122351,,a b a b a b ====, (Ⅰ) 求{}n a 和{}n b 的通项公式;(Ⅱ)设{}n b 的前项和为n S ,是否存在正整数n ,使7n a S =;若存

2004至2017年体育单招数学试卷分类汇编-集合123(可编辑修改word版)

2004--2017 年体育单招数学考试分类汇编 ----- 集合 1、(2017 年第 1 题)设集合 M = {1,2,3,4,5} , N = {1,3,6} ,则 M N = ( ) A. {1,3} B. {3,6} C. {1,6} D. {1,2,3,4,5,6} 2、(2016 年第 1 题)已知集合 M={2,4,6,8},N={1≤x≤5},则 M ∩N=( ) A {2,6} B {4,8} C {2,4} D {2,4,6,8} 3、(2015 年第 1 题)若集合 A = {x | 0 < x < 7 , x ∈ N },则 A 的元素共有 ( ) 2 A. 2 个 B. 3 个 C. 4 个 D. 无穷多个 3 、 ( 2014 年 第 16 题 ) 已 知 集 合 A = {x | x = 3n , n ∈ N }, B = {x | x = 3n + 1, n ∈ N }, C = {x | x = 3n + 2, n ∈ N } 有下列 4 个命题:(1) A B = ,(2) A ? (B C ) ,(3) ( A C ) ? B ,(4) C N ( A B ) = C 其中是真命题的有 (填写所有真命题的序号) 4 、 ( 2013 年 第 1 题 ) 已 知 集 合 M = {x -2 < x < 2}, N = {x -3 < x < -1}则 M N = 5、(2012 年第 1 题)已知集合M = {x x > 1}, N = {x x 2 ≤ 2}则M N = 6、(2011 年第 1 题) 已知集合M = {x 0 < x < 1}, N = {x -1 < x < 1}则M N = , M N = 7、(2010 年第 1 题) 已知集合M = ?x - 3 < x < 3 ? , N = {x x = 2n , n ∈ Z } 则M N = ? 2 2 ? 8、( 2009 年第 1 题) 已知集合 I = {0,1, 2, 3, 4, 5} , M = {0, 2, 4} , N = {1, 3, 5} , 则 M C I N = ? ?

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

五年体育单招文化课数学真题分类复习

五年体育单招文化课数学真题分类复习 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

五年体育单招文化课数学真题分类复习 一:集合与不等式 1.(2011真题)设集合M={x|0{}22,N x x =≤则M N =() { 1,x x <≤{}1,x x ≤{,x x ≤{.x x ≥(2013真题)已知},13|{},22|{-<<-=<<-=x x N x x M 则=N M A .}23|{<<-x x B .}13|{-<<-x x C .}12|{-<<-x x D .}21|{<<-x x 4.(2011真题)不等式10x x -<的解集是() (A ){x|0有最小值8,则a =。 2.(2012真题)函数y x =的反函数是() 21,(0)2x y x x -=<21,(0)2x y x x -=>21,(0)2x y x x +=<21,(0)2x y x x +=>(2012真题)已知函数()ln 1 x a f x x -=+在区间()0,1上单调增加,则a 的取值范围是. 4(2013真题)若函数y=x 2-ax+3(x>3)是增函数,则a 的取值范围是() A (-∞,6]B[-6,+∞)C[3,+∞)D(-∞,-3] 5.(2013真题)不等式log 2(4+3x-x 2)≤log 2(4x-2) 6(2014真题)、函数32)(-=x x f 是A.增函数B.减函数C.奇函数D.偶函数 7(2014真题)函数))0,4((162-∈-=x x y 的反函数为A ))0,4((162-∈--=x x y

相关文档
相关文档 最新文档