文档库 最新最全的文档下载
当前位置:文档库 › 试论过圆、椭圆、双曲线上一点的切线方程的统一性

试论过圆、椭圆、双曲线上一点的切线方程的统一性

试论过圆、椭圆、双曲线上一点的切线方程的统一性
试论过圆、椭圆、双曲线上一点的切线方程的统一性

专题:椭圆地切线方程

“椭圆的切线方程”教学设计 马二中 向兵 一、教学目标 知识与技能:1、能根据已知条件求出已知椭圆的切线方程; 2、让学生可以运用研究圆的切线方程的方法类比到椭圆切线方程的研究。 过程与方法:尝试用椭圆的切线方程解决椭圆的切线性质问题。 情感态度与价值观: 通过对椭圆的切线方程问题的探究,培养学生勤于思考,勇于探索的学习精神。 二、教学重点与难点 教学重点:应用特殊化(由特殊到一般)方法解决问题。 教学难点:椭圆的切线方程的探究。 三、教学流程设计 (一)创设情境 复习:怎样定义直线与圆相切? 设计意图:温故而知新。由前面学习过的直线与圆相切引出直线与椭圆相切。定义做类比,都是“直线与其有且只有一个交点”来定义相切,从而通过解析法中联立方程组,消元,一元二次方程中的判别式等于零来解决。 (二)探究新知 基础铺垫: 问题1、已知椭圆22 :182 x y C +=与直线l 只有一个公共点 (1)请你写出一条直线l 的方程; (2)若已知直线l 的斜率为1k =-,求直线l 的方程; (3)若已知切点(2,1)P ,求直线l 的方程; (4 )若已知切点P ,求直线l 的方程。 设计意图:(1 )根据椭圆的特征,可以得到特殊的切线方程如x y =±=特殊情况过渡到一般情况。切线确定,切点确定。 (2)已知斜率求切线,有两条,并且关于原点对称。利用斜截式设直线,联立方程组,消

元,得到一元二次方程,判别式0?=。切线斜率确定,切线不确定。 (3)已知切点求切线,只有唯一一条。利用点斜式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。由于切点是整数点,运算简洁。切点确定,切线确定。可总结由(2)(3)两道小题得到求切线方程的一般步骤:设直线,联立方程组,消元,得到一元二次方程,判别式0?=。 (4)同(3)的方法,但是切点不是整数点,运算麻烦,学生运算有障碍,所以要引出由切点得到椭圆切线的一般方法。 问题一般化: 猜想:椭圆22 22:1x y C a b +=与直线l 相切于点00(,)P x y ,则切线l 的方程? (椭圆的切线方程的具体求法,详情请见微课) 设计意图:类比经过圆上一点P(x 0,y 0)的切线的方程为2 00x x y y r +=进行猜想,培 养学生合情推理的能力。由于具体的求解过于繁琐,思想方法同问题1,所以上课时没必要花费时间进行求解,做成微课方便学生课后时间自己解决。 探究:在椭圆中,有关切线问题,还可以求哪些量?

椭圆经典结论

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是 00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2, 则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连 结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-,即0202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积 为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆 准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于 点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦 点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF.

专题椭圆的切线方程

“椭圆的切线方程”教学设计 马鞍山二中刘向兵 一、教学目标 知识与技能:1、能根据已知条件求出已知椭圆的切线方程; 2、让学生可以运用研究圆的切线方程的方法类比到椭圆切线方程的研究。 过程与方法:尝试用椭圆的切线方程解决椭圆的切线性质问题。 情感态度与价值观:通过对椭圆的切线方程问题的探究,培养学生勤于思考,勇于探索的学习精神。 二、教学重点与难点 教学重点:应用特殊化(由特殊到一般)方法解决问题。 教学难点:椭圆的切线方程的探究。 三、教学流程设计 (一)创设情境 复习:怎样定义直线与圆相切

设计意图:温故而知新。由前面学习过的直线与圆相切引出直线与椭圆相切。定义做类比,都是“直线与其有且只有一个交点”来定义相切,从而通过解析法中联立方程组,消元,一元二次方程中的判别式等于零来解决。 (二)探究新知 基础铺垫: 问题1、已知椭圆22 :182 x y C +=与直线l (1)请你写出一条直线l 的方程; (2)若已知直线l 的斜率为1k =-,求直线l (3)若已知切点(2,1)P ,求直线l 的方程; (4 )若已知切点P ,求直线l 的方程。 设计意图:(1)根据椭圆的特征,可以得到特殊的切线方程 如 x y =±= (2)已知斜率求切线,有两条,并且关于原点对称。利用斜截式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。切线斜率确定,切线不确定。 (3)已知切点求切线,只有唯一一条。利用点斜式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。由于切点是整数点,运算简洁。切点确定,切线确定。可总结由(2)(3)两道小题得到求切线方程的一般步骤:设直线,联立方程组,消元,得到一元二次方程,判别式0?=。 (4)同(3)的方法,但是切点不是整数点,运算麻烦,学生运算有障碍,所以要引出由切点得到椭圆切线的一般方法。

椭圆、双曲线切线方程的一个简便求法

椭圆、双曲线切线方程的一个简便求法 中学数学研究2009年第6期 的直线方程. 分析:要求A的内外角平分线所在的直 线方程,只要分别求出它们的斜率即可,由角平 分线到两边的角相等,很容易求出斜率. 解:设A的角平分线为AM,由AB到 AM的角等于AM到Ac的角可知: kAc--kAM ,解得k-=711k Ac AM或+.忌 AB+.‰ 忌=一专,所以直线AM的方程为:ll:7x— Y一17=0或Z2:+7y一31=0,它们分别是 A的内外角平分线所在的直线方程.因为内 角平分线内分对边,所以点B,C应在AM的 异侧.经验证,点B,C在直线l1的异侧,而点 B,C在直线z2的同侧.因而z1:7x—y一17=0 为A内角平分线所在直线方程,z2:z+7y一 31=0为A的外角平分线所在的直线方程. 例7已知集合A={(,Y)IY一√3z≤ 0},集合B={(z,Y)I+(Y一口)≤1},若A nB=B,求a的取值范围. 解:Y一√3z≤0表示直线Y一√3z=0右下 方的平面区域,+(Y—a)≤1表示圆+ (Y一口)=1的内部和圆周上的点的集合,要使

AnB=B,只要z+(Y一口)≤1的区域全部 在Y一√3z≤0区域的右下方即可,所以圆心到 直线的距离大于这个圆的半径就可以了. I一一I 即d=L>1,由于a<0,所以口<一2. 总之,线性规划不光能解决目标函数在线 性约束条件下的最值问题,还可以解决与平面 区域有关的问题,而且运算量较小.因此可以促 进思维能力创新,请在复习中认真体会,仔细推 敲. 参考文献 [1]高考复习专题二,2009年高考复习预测.中学数学 教学增刊. [2]陈贵伦.直线与椭圆位置关系问题的换元解法,中 学数学教学(.,).2009,1. 簟■j-}_}业,'}j-}-}-}j-}-}jkr,'簟j.},Ij●}1■}j-}_}■}—j●}-}——j_}j-}1-'}j-}—_}1■}j-}j- 椭圆,双曲线切线方程的一个简便求法 江西省吉安县二中(343100)罗章军 大家都知道,求椭圆,双曲线切线方程通常 用导数法,△法等,但运算量都较大.笔者运用 线性规划知识找到一种求椭圆,双曲线切线方 程新法,较为简便实用.现简述如下. 定理1若直线z:Y=如+m为椭圆 f.znncosa ,. (口>0,b>o,∈[0,27f))的切线, (Yo—Osm0' 设z=k.zo+m—Yo,贝0仃mx=0或tIli=0.其

专题:椭圆的切线方程

“椭圆的切线方程”教学设计 马鞍山二中 刘向兵 一、教学目标 知识与技能:1、能根据已知条件求出已知椭圆的切线方程; 2、让学生可以运用研究圆的切线方程的方法类比到椭圆切线方程的研究。 过程与方法:尝试用椭圆的切线方程解决椭圆的切线性质问题。 情感态度与价值观: 通过对椭圆的切线方程问题的探究,培养学生勤于思考,勇于探索的学习精神。 二、教学重点与难点 教学重点:应用特殊化(由特殊到一般)方法解决问题。 教学难点:椭圆的切线方程的探究。 三、教学流程设计 (一)创设情境 复习:怎样定义直线与圆相切? 设计意图:温故而知新。由前面学习过的直线与圆相切引出直线与椭圆相切。定义做类比,都是“直线与其有且只有一个交点”来定义相切,从而通过解析法中联立方程组,消元,一元二次方程中的判别式等于零来解决。 (二)探究新知 基础铺垫: 问题1、已知椭圆22 :182 x y C +=与直线l 只有一个公共点 (1)请你写出一条直线l 的方程; (2)若已知直线l 的斜率为1k =-,求直线l 的方程; (3)若已知切点(2,1)P ,求直线l 的方程; (4 )若已知切点P ,求直线l 的方程。 设计意图:(1 )根据椭圆的特征,可以得到特殊的切线方程如x y =±=。先由特殊情况过渡到一般情况。切线确定,切点确定。 (2)已知斜率求切线,有两条,并且关于原点对称。利用斜截式设直线,联立方程组,消

元,得到一元二次方程,判别式0?=。切线斜率确定,切线不确定。 (3)已知切点求切线,只有唯一一条。利用点斜式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。由于切点是整数点,运算简洁。切点确定,切线确定。可总结由(2)(3)两道小题得到求切线方程的一般步骤:设直线,联立方程组,消元,得到一元二次方程,判别式0?=。 (4)同(3)的方法,但是切点不是整数点,运算麻烦,学生运算有障碍,所以要引出由切点得到椭圆切线的一般方法。 问题一般化: 猜想:椭圆22 22:1x y C a b +=与直线l 相切于点00(,)P x y ,则切线l 的方程? (椭圆的切线方程的具体求法,详情请见微课) 设计意图:类比经过圆上一点P(x 0,y 0)的切线的方程为2 00x x y y r +=进行猜想,培养 学生合情推理的能力。由于具体的求解过于繁琐,思想方法同问题1,所以上课时没必要花费时间进行求解,做成微课方便学生课后时间自己解决。 探究:在椭圆中,有关切线问题,还可以求哪些量?

专题:椭圆的切线方程doc资料

专题:椭圆的切线方 程

“椭圆的切线方程”教学设计 马鞍山二中刘向兵 一、教学目标 知识与技能:1、能根据已知条件求出已知椭圆的切线方程; 2、让学生可以运用研究圆的切线方程的方法类比到椭圆切线方程的研究。 过程与方法:尝试用椭圆的切线方程解决椭圆的切线性质问题。 情感态度与价值观:通过对椭圆的切线方程问题的探究,培养学生勤于思考,勇于探索的学习精神。 二、教学重点与难点 教学重点:应用特殊化(由特殊到一般)方法解决问题。 教学难点:椭圆的切线方程的探究。 三、教学流程设计 (一)创设情境 复习:怎样定义直线与圆相切?

设计意图:温故而知新。由前面学习过的直线与圆相切引出直线与椭圆相切。定义做类比,都是“直线与其有且只有一个交点”来定义相切,从而通过解析法中联立方程组,消元,一元二次方程中的判别式等于零来解决。 (二)探究新知 基础铺垫: 问题1、已知椭圆22 :182 x y C +=与直线l (1)请你写出一条直线l 的方程; (2)若已知直线l 的斜率为1k =-,求直线l 的方程; (3)若已知切点(2,1)P ,求直线l 的方程; (4 )若已知切点P ,求直线l 的方程。 设计意图:(1 )根据椭圆的特征,可以得到特殊的切线方程如 x y =±= (2)已知斜率求切线,有两条,并且关于原点对称。利用斜截式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。切线斜率确定,切线不确定。 (3)已知切点求切线,只有唯一一条。利用点斜式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。由于切点是整数点,运算简洁。切点确定,切线确定。可总结由(2)(3)两道小题得到求切线方程的一般步骤:设直线,联立方程组,消元,得到一元二次方程,判别式0?=。 (4)同(3)的方法,但是切点不是整数点,运算麻烦,学生运算有障碍,所以要引出由切点得到椭圆切线的一般方法。

专题:椭圆的切线方程

“椭圆的切线方程”教学设计 马鞍山二中 文恫兵 一、 教学目标 知识与技能:1、能根据已知条件求出已知椭圆的切线方程; 2、让学生可以运用研究圆的切线方程的方法类比到椭圆切线方程的研究。 过程与方 法:尝试用椭圆的切线方程解决椭圆的切线性质问题。 情感态度与价值观: 通过对椭圆的切线方程问题的探究,培养学生勤于思考,勇于探索的 学习精神。 二、 教学重点与难点 教学重点:应用特殊化(由特殊到一般)方法解决问题。 教学难点:椭圆的切线方程的探究。 三、 教学流程设计 (一)创设情境 复习:怎样定义直线与圆相切? 设计意图:温故而知新。由前面学习过的直线与圆相切引出直线与椭圆相切。定义做类比, 都是“直线与其有且只有一个交点”来定义相切,从而通过解析法中联立方程组,消元,一 元二次方程中的判别式等于零来解决。 (二)探究新知 基础铺垫: X 1 2 3 问题1、已知椭圆C :— 8 1与直线1只有一个公共点 设计意图:(1)根据椭圆的特征,可以得到特殊的切线方程如 x 2 2, y 2。先由 特殊情况过渡到一般情况。切线确定,切点确定。 (2 )已知斜率求切线,有两条,并且关于原点对称。利用斜截式设直线,联立方程组,消 元,得到一元二次方程,判别式 0。切线斜率确定,切线不确定。 (3 )已知切点求切线,只有唯一一条。利用点斜式设直线,联立方程组,消元,得到一元 二次方程,判别式 0。由于切点是整数点,运算简洁。切点确定,切线确定。可总结由 (2) ( 3)两道小题得到求切线方程的一般步骤:设直线,联立方程组,消元,得到一元二 次方程,判别式 0。 (4)同(3)的方法,但是切点不是整数点,运算麻烦,学生运算有障碍,所以要引出由切 点得到椭圆切线的一般方法。 问题一般化: 2 2 X y 猜想:椭圆C : r 牙1与直线I 相切于点P (X o , y 。),则切线I 的方程? 1 请你写出一条直线1的方程; 2 若已知直线I 的斜率为k 1,求直线I 的方程; 3 若已知切点P (2,1),求直线I 的方程; (4)若已知切点 ,求直线I 的方程。

高考之【圆锥曲线篇】-秒杀技巧切线方程

大招九圆锥曲线的切线方程及其应用 现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆上一点的切线方程为;当在圆外时,过点引切 线有且只有两条,过两切点的弦所在直线方程为。那么,在圆锥曲线中,又将如何?我们不妨进行几个联想。 联想一:(1)过椭圆上一点切线方程为;(2)当在椭圆的外部时,过引切线有两条,过两切点的弦所在直线方程为: 证明:(1)的两边对求导,得,得,由点斜式得切线方程为,即。 (2)设过椭圆外一点引两条切线,切点分别为、。由(1)可知过、两点的切线方程分别为:、。又因是两条切线的交点,所以有、 。观察以上两个等式,发现、满足直线,所以过两切点、两点的直线方程为。 评注:因在椭圆上的位置(在椭圆上或椭圆外)的不同,同一方程表示直线的几何意义亦不同。 联想二:(1)过双曲线上一点切线方程为;(2)当在双曲线的外部时,过引切线有两条,

过两切点的弦所在直线方程为:。(证明同上) 联想三:(1)过圆锥曲线(A,C不全为零)上的点的切线方程为k;(2)当 在圆锥曲线(A,C不全为零)的外部时,过 引切线有两条,过两切点的弦所在直线方程为: 证明:(1)两边对求导,得 得,由点斜式得切线方程为 化简得………………….① 因为…………………………………………………② 由①-②×2可求得切线方程为: (2)同联想一(2)可证。结论亦成立。 根据前面的特点和圆上点的切线方程,得到规律:过曲线上的点的切线方程为:把原方程中的用代换,用代换。若原方程中含有或的一次项,把用代换,用代换,得到的方程即为过该点的切线方程。当点在曲线外部时,过引切线有两条,过两切点的弦所在直线方程为: 通过以上联想可得出以下几个推论: 推论1:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为: 推论2:(1)过抛物线上一点切线方程为

过圆锥曲线上一点的切线方程的另一种初等求法

过圆锥曲线上一点的切线方程的另一种初等求法 先看一个具体问题: 求过椭圆13422=+y x 上一点)23,1(P 的切线方程. 在中学阶段解决此类问题,一般采用?方法,即设切线方程为)1(23-=-x k y ,代入13 42 2=+y x ,整理得关于x 的一元二次方程: 03124)128()43(2222=--++-++k k x k k x k , 通过判别式?=0)3124)(43(4)128(2222=--+-+-k k k k k ,解得2 1-=k ,故所求切线方程为042=-+y x . 这种方法思路直,用到知识少,学生容易掌握,不足之处是运算量偏大,出错率高.那么能否给出一种求解思路简单,而运算量又较小的方法呢? 命题:),(00y x P 为圆锥曲线0),(:=y x f C 上一点,则曲线C 上过P 点的切线方程为0)2,2(),(00=---y y x x f y x f (*) 证明:因0),(=y x f 为二次曲线方程,知方程(*)代表的是一条直线,记为l .假设直线l 与曲线C 除了点),(00y x P 外还有一个公共点),(111y x P ,则有0),(11=y x f 和0)2,2(),(101011=---y y x x f y x f 同时成立,从而0)2,2(1010=--y y x x f ,这表明),(111y x P 关于点),(00y x P 的对称点)2,2(10102y y x x P --也在曲线C 上,因1,P P 点在直线l 上,故2P 点也在直线l 上,可见直线l 与曲线C 有三个公共点,这与直线与二次曲线最多只有两个公共点矛盾,从而证明了直线l 与曲线C 有且只有一个公共点. (1)当0),(=y x f 表示椭圆时,由于椭圆是封闭曲线,直线l 就是切线,方程(*)即为切线方程. (2)当0),(=y x f 表示双曲线时,只要断定直线l 与双曲线的渐近线不平行,就能证明直线l 就是切线,方程(*)为其切线方程. 设双曲线C 方程:)0,0(122 22>>=-b a b y a x ,则方程(*): 020********=-+-x b y a y y a x x b . 当00≠y 时,其斜率0202y a x b k =,因渐近线斜率为a b ±,若a b y a x b =0202 或 a b y a x b -=0 202,则,000=-ay bx 或,000=+ay bx 从而0202202=-y a x b ,与

圆锥曲线的切线方程和切点弦方程

课题:圆锥曲线的切线方程和切点弦方程 教学目标: (1).掌握圆锥曲线在某点处的切线方程及切点弦方程。 (2).会用切线方程及切点弦方程解决一些问题。 (3)通过复习渗透数形结合、类比的思想,逐步培养学生分析问题和解决问题的能力。 (4) 掌握曲线与方程的关系。 教学重点: 切线方程及切点弦方程的应用 教学难点: 如何恰当使用切线方程及切点弦方程 教学过程: 1. 引入: 通过09年安徽省高考题及近几年各省考察圆锥曲线的实例引出本节课。 2. 知识点回顾: 1. 2. 3. 4. 圆锥曲线切线的几个性质: 性质1 过椭圆的准线与其长轴所在直线的交点作椭圆的两条切线,则切点弦长等于 该椭圆的通径.同理:双曲线,抛物线也有类似的性质 性质2 过椭圆的焦点F 1的直线交椭圆于A ,B 两点,过A ,B 两点作椭圆的切线交 于点P ,则P 点的轨迹是焦点 的对应的准线,并且 同理:双曲线,抛物线也有类似的性质 3. 例题精讲: 练习1: 抛物线 与直线 围成的封闭的图形的面积为 ,若直线l 与抛物线相切,且平行于直线 ,则直线l 的方程为 例1: 设抛物线 的焦点为F ,动点P 在直线 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.求△APB 22200 (,)x y r M x y +=过圆 上一点 的切线方程:200xx yy r +=00221xx yy a b +=220022(,)1x y P x y a b +=设为椭圆上的点,则过该点的切线方程为:22 0022(,)1x y P x y a b -=设为双曲线上的点,则过该点的切线方程为: 00221xx yy a b -=00(,)2P x y px =2设为抛物线y 上的点,则过该点的切线方程为: 00() yy p x x =+1PF AB ⊥1F :20 l x y --=2:C y x =2(0)y ax a =>1x =43 260x y -+=

专题_椭圆的切线方程

“椭圆的切线方程”教学设计 马二中向兵 一、教学目标 知识与技能:1、能根据已知条件求出已知椭圆的切线方程; 2、让学生可以运用研究圆的切线方程的方法类比到椭圆切线方程的研究。 过程与方法:尝试用椭圆的切线方程解决椭圆的切线性质问题。 情感态度与价值观:通过对椭圆的切线方程问题的探究,培养学生勤于思考,勇于探索的学习精神。 二、教学重点与难点 教学重点:应用特殊化(由特殊到一般)方法解决问题。 教学难点:椭圆的切线方程的探究。 三、教学流程设计 (一)创设情境 复习:怎样定义直线与圆相切? 设计意图:温故而知新。由前面学习过的直线与圆相切引出直线与椭圆相切。定义做类比,都是“直线与其有且只有一个交点”来定义相切,从而通过解析法中联立方程组,消元,一元二次方程中的判别式等于零来解决。 (二)探究新知 基础铺垫: 问题1、已知椭圆 22 :1 82 x y C+=与直线l只有一个公共点 (1)请你写出一条直线l的方程; (2)若已知直线l的斜率为1 k=-,求直线l的方程;(3)若已知切点(2,1) P,求直线l的方程; (4 )若已知切点) 2 P,求直线l的方程。 设计意图:(1 )根据椭圆的特征,可以得到特殊的切线方程如x y =±=特殊情况过渡到一般情况。切线确定,切点确定。

(2)已知斜率求切线,有两条,并且关于原点对称。利用斜截式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。切线斜率确定,切线不确定。 (3)已知切点求切线,只有唯一一条。利用点斜式设直线,联立方程组,消元,得到一元二次方程,判别式0?=。由于切点是整数点,运算简洁。切点确定,切线确定。可总结由(2)(3)两道小题得到求切线方程的一般步骤:设直线,联立方程组,消元,得到一元二次方程,判别式0?=。 (4)同(3)的方法,但是切点不是整数点,运算麻烦,学生运算有障碍,所以要引出由切点得到椭圆切线的一般方法。 问题一般化: 猜想:椭圆22 22:1x y C a b +=与直线l 相切于点00(,)P x y ,则切线l 的方程? (椭圆的切线方程的具体求法,详情请见微课) 设计意图:类比经过圆上一点P(x 0,y 0)的切线的方程为200x x y y r +=进行猜想,培养学生合情推理的能力。由于具体的求解过于繁琐,思想方法同问题1,所以上课时没必要花 费时间进行求解,做成微课方便学生课后时间自己解决。 探究:在椭圆中,有关切线问题,还可以求哪些量?

高考数学椭圆与双曲线的经典性质50条

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b>0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点 角形的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a>b>0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和A Q分别交相应于 焦点F 的椭圆准线于M 、N两点,则M F⊥NF . 10. 过椭圆一个焦点F的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N,则MF ⊥NF . 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△P F1F 2在点P处的内角. 2. P T平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a>0,b>0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a>0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a>0,b>o)的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则 双曲线的焦点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a>0,b >o)的焦半径公式:(1(,0)F c -,2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ分别交 相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A1、A 2为双曲线实轴上的顶点,A 1P和A 2Q 交 于点M,A 2P 和A 1Q交于点N,则MF ⊥N F. 11. AB是双曲线22 221x y a b -=(a >0,b>0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 0202y a x b K K AB OM =?,即020 2y a x b K AB =。 12. 若000(,)P x y 在双曲线22 221x y a b -=(a>0,b>0)内,则被P o所平分的中点弦的方程是 22 00002222x x y y x y a b a b -=-. 13. 若000(,)P x y 在双曲线22 221x y a b -=(a>0,b>0)内,则过Po 的弦中点的轨迹方程是 22002222x x y y x y a b a b -=-.

求曲线(圆、椭圆、抛物线和一般曲线)的切线方程专题讲义-云南民族大学附属中学高三数学复习

求曲线(圆、椭圆、抛物线和一般曲线)的切线方程专题 一 考纲解析:曲线的切线方程是近几年高考的重点和难点,一般出现在选择、填空和大题等位置。常出现的题型包括圆的切线方程,椭圆、双曲线、抛物线以及一般曲线的切线方程。处理方法有用直线与曲线联立?判别式为零确定相切情况和利用导数几何意义求曲线的切线方程。 二、题型解析 题型一 圆的切线方程 方法指导:圆切线问题处理步骤首先看点),(000y x P 是在圆上还是圆外:若过圆上一点且与圆相切的切线方程只要一条;若过圆外一点且与圆相切需结合图形分析,过圆外一点且与圆相切要考虑切线斜率是否存在?如果斜率存在一般设切线方程:)(00x x k y y -=-切 通过点到切线距离等于圆半径求出切线斜率,最后可通过图形检验切线斜率的正负性。 典例一 过点M (0,5)、N (3,-4)的圆圆心C 在直线:-2x+3y+3=0.求过点H (-2,4)且与圆C 相切的切线方程 【解】:根据圆知识点圆内两条相交弦的交点即为圆心,33 54-=--=MN k ,M,N 的中点为 (21,23),直线MN 的中垂线为:)2 3(3121-=-x y ,设圆心坐标为(a,b) 联立方程?????-=-=++-)23(3 1210332a b b a 解得圆心坐标(3,1),故圆C 方程:25)1()3(22=-+-y x 如上图所示,H 点在圆外部,其中一条切线方程显然为:x=-2 另外一条存在斜率,设为:)2(4+=-x k y ,圆心C(3,1)到直线的距离51 |35|2=++= k k d ,解出,158则方程为:8x-15y+16=0,综述切线方程为:x=-2或8x-15y+16=0. 变式训练:(1)(2010年课标全国)圆心在原点且与直线x+y+2=0相切的圆的方程为

云南省民族中学高三数学求曲线(圆、椭圆、抛物线和一般曲线)的切线方程精选试题

云南省民族中学高三数学求曲线(圆、椭圆、抛物线和一般曲线) 的切线方程精选试题 数学试题 一 考纲解析:曲线的切线方程是近几年高考的重点和难点,一般出现在选择、填空和大题等位置。常出现的题型包括圆的切线方程,椭圆、双曲线、抛物线以及一般曲线的切线方程。处理方法有用直线与曲线联立?判别式为零确定相切情况和利用导数几何意义求曲线的切线方程。 二、题型解析 题型一 圆的切线方程 方法指导:圆切线问题处理步骤首先看点),(000y x P 是在圆上还是圆外:若过圆上一点且与圆相切的切线方程只要一条;若过圆外一点且与圆相切需结合图形分析,过圆外一点且与圆相切要考虑切线斜率是否存在?如果斜率存在一般设切线方程:)(00x x k y y -=-切 通过点到切线距离等于圆半径求出切线斜率,最后可通过图形检验切线斜率的正负性。 典例一 过点M (0,5)、N (3,-4)的圆圆心C 在直线:-2x+3y+3=0.求过点H (-2,4)且与圆C 相切的切线方程 【解】:根据圆知识点圆内两条相交弦的交点即为圆心, 33 5 4-=--=MN k ,M,N 的中点为 (2 1 ,23),直线MN 的中垂线为:)2 3(3 12 1-=-x y ,设圆心坐标为(a,b) 联立方程??? ??-=-=++-)23(3 1210332a b b a 解得圆心坐标(3,1),故圆C 方程: 25)1()3(22=-+-y x

如上图所示,H 点在圆外部,其中一条切线方程显然为:x=-2 另外一条存在斜率,设为:)2(4+=-x k y ,圆心C(3,1)到直线的距离 51 | 35|2=++= k k d ,解出,158则方程为:8x-15y+16=0,综述切线方程为:x=-2或 8x-15y+16=0. 变式训练:(1)(2010年课标全国)圆心在原点且与直线x+y+2=0相切的圆的方程为 【解】设圆的方程为:222r y x =+,根据题意,得22 | 2|=-= r ,所以圆的方程为: 222=+y x (2)(2020.浙江)已知直线1)4(1)0(2222=+-=+>+=y x y x k b kx y 和圆与圆均相切,则 k= ,b= . 【解】: 如下图所示:满足k>0的直线方程即与122=+y x 圆相切 且又与1)4(22=+-y x 圆相切的直线为直线AB ,则设直线AB 方程为:)2(-=x k y ,圆心O (0,0)到直线AB 的距离11 |2|2=+-= k k d ,解得3 32,3 3-==b k 进而得到。 题型二 椭圆的切线方程 方法指导:直线与椭圆相切问题,一般处理方法是直线方程与椭圆

高中数学选修椭圆公式大全

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是 22002222x x y y x y a b a b +=+.

圆锥曲线的切线方程总结(附证明)

运用联想探究圆锥曲线的切线方程 现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆222r y x =+上一点),(00y x M 的切线方程为200r y y x x =+;当),(00y x M 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为200r y y x x =+。那么,在圆锥曲线中,又将如何?我们不妨进行几个联想。 联想一:(1)过椭圆)0(12 22 2>>=+ b a b y a x 上一点),(00y x M 切线方程为 12 02 0=+ b y y a x x ; (2)当),(00y x M 在椭圆12 22 2=+ b y a x 的外部时, 过M 引切线有两条,过两切点的弦所在直线方程为: 12 02 0=+ b y y a x x 证明:(1)222 2 1x y a b + =的两边对x 求导,得2 2 220x yy a b '+ =,得0 2 02 x x b x y a y =' =- ,由 点斜式得切线方程为2 0002 ()b x y y x x a y -=- -,即 2 2 00002 2 2 2 1x x y y x y a b a b + = + = 。 (2)设过椭圆)0(12 22 2>>=+ b a b y a x 外一点),(00y x M 引两条切线,切点分别 为),(11y x A 、),(22y x B 。由(1)可知过A 、B 两点的切线方程分别为:12121=+b y y a x x 、 12222=+b y y a x x 。又因),(00y x M 是两条切线的交点,所以有12 01201=+b y y a x x 、12 2202=+b y y a x x 。观察以上两个等式,发现),(11y x A 、),(22y x B 满足直线12020=+b y y a x x ,所以过两切点A 、B 两点的直线方程为12 020=+b y y a x x 。 评注:因),(00y x M 在椭圆)0(12222>>=+b a b y a x 上的位置(在椭圆上或椭圆 外)的不同,同一方程12020=+b y y a x x 表示直线的几何意义亦不同。 联想二:(1)过双曲线)0,0(12222>>=-b a b y a x 上一点),(00y x M 切线方程为 1202 0=-b y y a x x ;(2)当),(00y x M 在双曲线122 22=-b y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=-b y y a x x 。(证明同上) 联想三:(1)过圆锥曲线22 0Ax Cy Dx Ey F ++++=(A ,C 不全为零)上的点 ),(00y x M 的切线方程为0 0002 2 x x y y A x x C y y D E F ++++++=;(2)当

相关文档
相关文档 最新文档