文档库 最新最全的文档下载
当前位置:文档库 › c2数学归纳法2

c2数学归纳法2

c2数学归纳法2
c2数学归纳法2

2.3数学归纳法(2)

一、学习目标:

1.理解数学归纳法原理,用数学归纳法证明与正整数有关的不等式问题、整除性

问题、几何问题;

2.掌握归纳猜想、探求证明数学问题的方法.

二、重点与难点:

重点:数学归纳法的实质与应用.

难点:运用数学归纳法时,在“归纳递推”

的步骤中发现具体问题的递推关系。三、知识链接:

归纳法又叫__________法,是一种由________得出_______的推理方法,不完

全归纳法得出的结论______.

四、学习过程

(一)不等式问题

例1:用数学归纳法证明对一切大于1的自然

数,

不等式

111

(1)(1)(1)

35212

n

+++>

-

成立.(二)整除性问题

例2:求证:当*

n N

∈时,121

(1)

n n

a a

+-

++能被21

a a

++整除.

撰稿:袁秀峰审核:罗井恩高二数学2010.3.30

(三)证明几何问题

例3:平面内有n个圆,其中每两个圆都相交于两点,并且无三个圆相交于同一点.求证:这n个圆把平面分成2

()2

f n n n

=-+个部分.五、基础达标.

A1.用数学归纳法证明“111

1

2321

n

n

++++<

-

*

(,1)

n N n

∈>”时,由(1)

n k k

=>不等式成立,推证1

n k

=+时,左边应增加的项数为()

A.1

2k-B.21

k-C.2k D.21

k+

A2.k棱柱过侧棱有()

f k个对角面,则1

k+棱柱过侧棱的对角面的个数(1)

f k+为()A.()1

f k k

+-B.()

f k k

+

C.()1

f k k

++D.()2

f k k

+-

A3.用数学归纳法证明“

222

111

23(1)

n

+++>

+ 11

22

n

-

+

”时,假设n k

=时不等式成立,当1

n k

=+时应推证的目标不等式为_______.A4.设凸k边形内角和为()

f k,则凸1

k+边形的内角和(1)()___________

f k f k

+=+.B5.用数学归纳法证明4121*

35()

n n n N

++

+∈能被14整除时,当1

n k

=+时对于4(1)12(

35

k k

++++

+应变形为_______________.

B6.求证:*n N ∈时,49161n n +-能被64整除. A7.已知m 是正整数,用数学归纳法证明:当

1x >-时,(1)1m x mx ++≥

A8.求证:当*n N ∈时,()(27)39n f n n =+?+能被36整除. B9.证明凸多边形对角线的条数为()f n = 1

(3)(4)2n n n -≥.

六.小结:

用数学归纳法证明不等式、整除性几何问题以及探索性问题时,较为难证明的过程是哪些?该如何解决?

浅谈数学归纳法

浅谈数学归纳法 国良 井冈山大学数理学院邮编:343009 指导老师:艳华 [摘要]用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合.数学归纳法经历无数数学的潜心研究与科学家们的利用,是数学归纳法得以发展和它为数学问题与科学问题的发现做出了极大的贡献。学好归纳法是科学问题研究的最基础的知识. [关键词]理论依据;数学归纳法;表现形式 1 数学归纳法的萌芽和发展过程 数学归纳法思想萌芽可以说长生于古希腊时代。欧几里德在证明素数有无穷多多个时,使用了反证法,通过反设“假设有有限多个”,使问题变成“有限”的命题,其中证明里隐含着:若有n个素数,就必然存在第n+1个素数,因而自然推出素数有无限多个,这是一种是图用有限处理无限的做法,是人们通过过有限和无限的最初尝试。 欧几里德之后直到16世纪,在意大利数学家莫洛克斯的《算术》一书中明确提出一个“递归推理”原则,并用它证明了1+2+3+…+(2n-1)=2n,对任何自然数n都成立。不过他并没有对这原则做出清晰的表述。 对数学归纳法首次作出明确而清晰阐述的是法国数学家和物理学家帕斯卡,他发现了一种被后来成为“帕斯卡三角形”的数表。他在研究证明有关这个“算术三角形”的一些命题时,最先准确而清晰的指出了证明过程且只需的两个步骤,称之为第一条引理和第二条引理:

第一条引理 该命题对于第一底(即(n=1)成立,这是显然的。 第二条引理 如果该命题对任意底(对任意n )成立,它必对其下一底(对n+1)也成立。 由此可得,该命题对所有n 值成立。 因此,在数学史上,认为帕斯卡是数学归纳法的创建人,因其所提出的两个引理从本质上讲就是数学归纳法的两个步骤,在他的著作《论算术三角形》中对此作了详尽的论述。 帕斯卡的思想论述十一例子来述归纳法的,而在他的时代还未建立表示一般自然数的符号。直至十七世纪,瑞士数学家J 。伯努利提出表示任意自然熟的符号之后,在他的《猜度术》一书中,才给出并使用了现代形式的数学归纳法。由此,数学归纳法开始得到世人的承认并得到数学界日益广泛的应用。十九世纪,意大利数学家皮亚若建立自然数的公理体系时,提出归纳公理,为数学归纳法奠定了理论基础。即:对于正整数N +的子集M ,如果满足:①1∈M;②若a ∈M ,则a+1∈M ;则M=N +. 2 数学归纳法的表现形式 2.1 第一数学归纳法 原理1:设()P n 是一个与正整数有关的命题,如果 (1)当00()n n n N +=∈时,()P n 成立; (2)假设0(,)n k k n k N +=≥∈时命题成立,由此推得n=k+1时,()P n 也成立; 那么,对一切正整数n 0n ≥,()P n 成立。 证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠?,于是由最小数原理,S 中有最小数a ,

(完整版)1数学归纳法习题(含答案)

1# 数学归纳法 一、选择题(每小题5分,共25分) 1.(2011·怀化模拟)用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在 第二步时,正确的证法是 ( ) A .假设n =k (k ∈N +),证明n =k +1命题成立 B .假设n =k (k 是正奇数),证明n =k +1命题成立 C .假设n =2k +1(k ∈N +),证明n =k +1命题成立 D .假设n =k (k 是正奇数),证明n =k +2命题成立 2.(2011·鹤壁模拟)用数学归纳法证明“1+12+13+…+12n -1 1)”时,由n = k (k >1)不等式成立,推证n =k +1时,左边应增加的项数是 ( ) A .2k - 1 B .2k -1 C .2k D .2k +1 3.(2011·巢湖联考)对于不等式n 2+n 12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13 +…+131>52 ,…,由此猜测第n 个不等式为________(n ∈N *). 8.(2011·东莞调研)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1), (1,4), (2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中数学数学归纳法教案新人教A版选修

第一课时 4.1 数学归纳法 教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写. 教学重点:能用数学归纳法证明一些简单的数学命题. 教学难点:数学归纳法中递推思想的理解. 教学过程: 一、复习准备: 1. 分析:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒. 回顾:数学归纳法两大步:(i )归纳奠基:证明当n 取第一个值n 0时命题成立;(ii )归纳递推:假设n =k (k ≥n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2. 练习:已知()*()13521,f n n n N =++++-∈L ,猜想()f n 的表达式,并给出证明? 过程:试值(1)1f =,(2)4f =,…,→ 猜想2()f n n = → 用数学归纳法证明. 3. 练习:是否存在常数a 、b 、c 使得等式132435......(2)n n ?+?+?+++= 21()6 n an bn c ++对一切自然数n 都成立,试证明你的结论. 二、讲授新课: 1. 教学数学归纳法的应用: ① 出示例1:求证*111111111,234212122n N n n n n n - +-+???+-=++??+∈-++ 分析:第1步如何写?n =k 的假设如何写? 待证的目标式是什么?如何从假设出发? 关键:在假设n =k 的式子上,如何同补? 小结:证n =k +1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形. ② 出示例2:求证:n 为奇数时,x n +y n 能被x +y 整除. 分析要点:(凑配)x k +2+y k +2=x 2·x k +y 2·y k =x 2(x k +y k )+y 2·y k -x 2·y k =x 2(x k +y k )+y k (y 2-x 2)=x 2(x k +y k )+y k ·(y +x )(y -x ). ③ 出示例3:平面内有n 个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点, 求证这n 个圆将平面分成f (n )=n 2-n +2个部分. 分析要点:n =k +1时,在k +1个圆中任取一个圆C ,剩下的k 个圆将平面分成f (k )个部分,而圆C 与k 个圆有2k 个交点,这2k 个交点将圆C 分成2k 段弧,每段弧将它所在的平 面部分一分为二,故共增加了2k 个平面部分.因此,f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2- (k +1)+2. 2. 练习: ① 求证: 11(11)(1)(1)321 n ++???+-g g n ∈N *). ② 用数学归纳法证明: (Ⅰ)2274297n n --能被264整除; (Ⅱ)121(1)n n a a +-++能被21a a ++整除(其中n ,a 为正整数) ③ 是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意正整数n 都能被m 整除?若存在, 求出最大的m 值,并证明你的结论;若不存在,请说明理由. 3. 小结:两个步骤与一个结论,“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n =k 到n =k +1时,变形方法有乘法公式、因式分解、添拆项、配方等. 三、巩固练习: 1. 练习:教材50 1、2、5题 2. 作业:教材50 3、4、6题.

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

数列解题技巧归纳总结---好(5份)

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

数学归纳法教学设计电子教案

数学归纳法教学设计

授课日期: 2016 年 4 月 8 日授课班级:高二年级2 班

【教学难点】 (1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性; (2)假设的利用,即如何利用假设证明当n=k+1时结论正确. 教法、学法分析 教法: 学习数学归纳法的过程紧扣多米诺骨牌是怎样倒下的,通过对科技节活动中多米诺骨牌倒下的分析类比得出数学归纳法的应用步骤,尤其是在引导学生理解数学归纳法由n=k得出n=k+1时必要性和有效性中,类比“后一块骨牌必须是被前一块骨牌砸倒的”起到重要作用。在教师的组织启发下,师生之间、学生之间共同探讨,平等交流;既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动性、平等性、开放性、合作性。这节课主要选择以合作探究式教学法组织教学. 学法: 本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习.本课学生的学习主要采用下面的模式进行: 教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用. 教学资源 导学案、PPT 教学过程 教学环 节 教师活动学生活动设计意图 课前复习准备 1、布置导学案内容; 2、批改纠正学生出现的错误; 3、及时了解学生学习情. 完成学案内容 1、归纳推理: 2、回忆等差数列,等比数 列的通项公式;思考等 差、等比数列通项公式的 得出过程,你能证明该公 式吗? 3、已知数列{}n a中, 1 1 = a, ) (* + ∈ + =N n a a a n n n2 2 1 , 试猜想这个数列的通项公 式并证明你的猜想. 复习公式及 其得出过 程,为本节 学习做好铺 垫. 使学生发现 不能解决的 问题,激发 学生学习新 知的愿望. 创设问题情景,引出新课问题情景:引导学生共同回顾学案 第3小题数列{}n a通项公式的得出过 程,提问:你的猜测正确吗?如何证 明? 学生回忆第3小题数列 {} n a通项公式的得出过 程,并思考老师的问题. 发现问题, 突出矛盾. 合作探索解决问题的方法1. 多媒体演示多米诺骨牌游戏. 引导学生共同探讨多米诺骨牌全 部依次倒下的条件: (1)第一块要倒下; 学生类比多米诺骨牌依顺 序倒下的原理,探究出证 明有关正整数命题的方 播放视频活 跃课堂氛 围,激发学 生的兴趣. 提 出 问 分 析 问 猜想与 置疑 论证 观察 情景 应用

解析数学归纳法思想

解析数学归纳法思想 嘉兴教育学院吴明华 从数学和思想的含义去理解,所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果.数学思想是人们对数学知识的本质认识,是对数学规律的理性认识(文①第1页).数学思想广泛存在于数学的概念、方法和过程之中,具有奠基性、总结性和广泛性的特征.与数学方法相比,数学思想具有更高的概括抽象水平,因而更本质、更深刻.可以这么说,数学思想是数学方法的精神实质与理论基础,而数学方法则是实施有关数学思想的技术与操作程式. 数学归纳法是一种特殊的证明方法,它的基本形式是:对于一个与自然数(此处约定最小的自然数为1,即正整数)有关的命题,如果①当时命题成立;②假设当时命题成立,则当时命题也成立,那么命题对一切自然数n都成立. 在“中学数学核心概念、思想方法体系及其教学设计”课题第8次活动中,围绕两位教师的课堂展示,课题组对数学归纳法及其教学进行了广泛和深入的讨论,涉及到一些本质性的问题但尚未达成统一的认识.本文阐述笔者对数学归纳法所蕴涵的数学思想的一些认识,试图从本质上去理解数学归纳法. 1.数学归纳法中的归纳思想 对于一个与自然数有关的命题,数学归纳法将命题理解为一系列命题: ,,,…,即N}.然后由命题,,,…都成立去下结论“命题成立”,这就是笔者重点所指的数学归纳法中的归纳思想.所谓归纳,是指从特殊到一般,从局部到整体的推理.命题是一般的、整体的,而命题,,,…中的每一个都是特殊的、局部的,即使从所有命题,,

,…都成立去概括得出命题成立,其思想也是归纳的思想(完全归纳).让我们想想,对于一个与自然数有关的命题,我们是否有过不用归纳法去处理的经历?譬如说,求证,我们曾经这样做过: 设,则, 所以,故. 我们的证明只是“就一般的自然数n而言”,也就是说,我们并没有逐个地去考察 ,,…命题是否成立,而只是把n当作“某个”(当然是任意一个)自然数直接去考察命题是否成立,这在数学上叫做“不失一般性”.其实,这样的例子在数学中比比皆是. 让我们从更一般的情形来阐述归纳思想.对于一个数学对象P,如果P可以分解为若干个种类,,,…,那么从研究,,,…入手,概括得到对象P的属性的思想,就是归纳的思想.这与分类讨论有点相似,但分类讨论常常是获得对象P在各种情况下的不同结果,而归纳则取向于获得,,,…的共性,以及由这些共性所反映的对象P的本质. 有几个问题是必须讲清楚的.首先,数学归纳法中的“归纳奠基”与“归纳递推” 工作,实际上是两个命题的证明,即证明①命题“”成立,②命题“若,则”成立,而这两个命题自身的证明常常用的是“演绎法”.其次,以“归纳递推”为大前提,以命题成立为小前提,得出命题成立,等等的推理过程也是演绎的.还有,若将自然数公理中的归纳公理(见本文后述)理解为大前提,将数学归纳法中的“归纳奠基”与“归纳递推”理解为小前提,那么得出命题成立的推理过程也是演绎的(文①第110页).但这些都不妨碍数学归纳法在处理与自然数有关的命题时所体现出来的归纳思

数学归纳法优秀教学设计

数学归纳法 【教学目标】 1.进一步理解“数学归纳法”的含意和本质;掌握数学归纳法证题的两个步骤一个结论;会用“数学归纳法”证明简单的恒等式;理解为证n=k+1成立,必须用n=k成立的假设;掌握为证n=k+1成立的常见变形技巧。 2.掌握归纳与推理的方法;培养大胆猜想,小心求证的辩证思维素质;培养学生对于数学内在美的感悟能力。 【教学重点】 使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤 【教学难点】 如何理解数学归纳法证题的有效性;递推步骤中如何利用归纳假设 【授课类型】 新授课 【课时安排】 1课时 【教学准备】 多媒体、实物投影仪 【教学过程】 一、复习引入: 1.归纳法:由一些特殊事例推出一般结论的推理方法。特点:特殊→一般 2.不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法。 3.完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法。与不完全归纳法不同,用完全归纳法得出的结论是可靠的。通常在事物包括的特殊情况数不多时,采用完全归纳法。 4.数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性: )时命题成立,证明当n=k+1先证明当n取第一个值n0时命题成立;然后假设当n=k(k N*,k≥n 时命题也成立这种证明方法就叫做数学归纳法

5. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n 0,如果当n=n 0时,命题成立,再假设当n=k(k ≥n0,k ∈N*)时,命题成立。(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立。 6.用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当n 取第一个值n 0结论正确; (2)假设当n=k(k ∈N*,且k ≥n 0)时结论正确,证明当n=k+1时结论也正确。 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确 二、讲解范例: 例1用数学归纳法证明 6 )12)(1(3212222++=++++n n n n 例2用数学归纳法证明 2)1()13(1037241+=+++?+?+?n n n n 三、课堂练习: 1.用数学归纳法证明:().125312n n =-++++ 证明:(1)当1=n ,左边=1,右边=1,等式成立。 (2)假设当k n =时,等式成立,就是(),125312k k =-++++ 那么()()[]11212531-++-++++k k ()[]1122-++=k k 122++=k k ().12+=k 这就是说,当1+=k n 时等式也成立。 根据(1)和(2),可知等式对任何的*N n ∈都成立。 2.用数学归纳法证明()()(),1121531n n n n -=--+-+- 当1=n 时,左边应为_____________。 3.判断下列推证是否正确,并指出原因。 用数学归纳法证明:126422++=++++n n n 证明:假设k n =时,等式成立 就是 126422++=++++k k k 成立 那么()122642++++++k k ()1212++++=k k k =()()1112++++k k 这就是说当1+=k n 时等式成立, 所以*N n ∈时等式成立。

高中数学 2.3数学归纳法教学设计 新人教A版选修22

数学归纳法教学设计 【教学目标】 (1)知识与技能: ①理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤; ②会用数学归纳法证明某些简单的与正整数有关的命题; ③能通过“归纳、猜想”的过程得出结论并用数学归纳法证明结论。 (2)过程与方法: 努力创设愉悦的课堂气氛,使学生处于积极思考,大胆质疑的氛围中,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会归纳递推的数学思想。 (3)情感态度与价值观: 通过本节课的教学,使学生领悟数学归纳法的思想,由生活实例,激发学生学习的热情,提高学生学习的兴趣,培养学生大胆猜想,小心求证,以及发现问题、提出问题,解决问题的数学能力。 【教学重点】 借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,能熟练运用它证明一些简单的与正整数n 有关的数学命题; 【教学难点】 数学归纳法中递推关系的应用。 【辅助教学】 多媒体技术辅助课堂教学。 【教学过程】 一、创设问题情境,启动学生思维(说明引入数学归纳法的必要性) (情景一)问题1:大球中有5个小球,如何证明它们都是绿色的? 问题2: 如果{}n a 是一个等差数列,怎样得到()11n a a n d =+-? (情境二)数学家费马运用不完全归纳法得出费马猜想的事例。 【设计意图:】以上两个情境分别是完全归纳法和不完全归纳法的体现,发现其结论正确性不同,而这里实际上体现了数学中的归纳思想。归纳法分为“不完全归纳法(只验证几个个体成立,得到一般性结论,但结论不一定正确)”和“完全归纳法(验证每个个体都成立,得到一般性结论,其结论一定正确)”。 (情景三)问题:如何解决不完全归纳法存在的问题呢? 如何保证骨牌一一倒下?需要几个步骤才能做到? 二、搜索生活实例,激发学生兴趣

浅谈数学归纳法及其在中学数学中的应用2

目录 1、数学归纳法---------------------------------------------------------- 3 1.1 归纳法定义-------------------------------------------------------- 3 1.2 数学归纳法体现的数学思想----------------------------------------- 4 1.2.1 从特殊到一般------------------------------------------------ 4 1.2.2 递推思想---------------------------------------------------- 4 2、数学归纳法在中学数学中的应用技巧------------------------------------- 5 2.1 强调------------------------------------------------------------- 5 2.1.1 两条缺一不可------------------------------------------------ 5 2.2 技巧------------------------------------------------------------- 5 2.2.1 认真用好归纳假设-------------------------------------------- 5 2.2.2 学会从头看起------------------------------------------------ 6 2.2.3 在起点上下功夫---------------------------------------------- 7 2.2.4 正确选取起点和过渡------------------------------------------ 8 2.2.5 选取适当的归纳假设形式-------------------------------------- 9 3、数学归纳法在中学数学中的应用 ---------------------------------------- 9 3.1 证明有关自然数的等式--------------------------------------------- 9 3.2 证明有关自然数的不等式------------------------------------------ 11 3.3 证明不等式------------------------------------------------------ 11 3.4 在函数迭代中的应用---------------------------------------------- 12 3.5 在几何中的应用-------------------------------------------------- 14 3.6 在排列、组合中的应用-------------------------------------------- 16 3.7 在数列中的应用-------------------------------------------------- 16 3.8 有关整除的问题-------------------------------------------------- 17

各种数学归纳法

1.5 归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n =1正确;若假设此命题对n -1正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对n =1正确,因而命题对n =2也正确,然后命题对n =3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明. 定理1.19 如果某个命题T,它的叙述含有自然数,如果命题T对n =1是正确的,而且假定如果命题T对n 的正确性就能推出命题T对n +1也正确,则命题T对一切自然数都成立.(第一数学归纳法) 证明 设M是使所讨论的例题T正确的自然数集合,则 (1) M ∈1. 设M n ∈,则命题T对n 正确,这时命题对n n '=+1也正确,即 (2) M n ∈' 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立. 下面我们给出一个应用数学归纳法的命题. 例1 求证 6 ) 12)(1(212 2 2 ++= +++n n n n 证明 (1)当n =1时,有 16 ) 112()11(112 =+?++?= 所以n =1,公式正确. (2)假设当k =n 时,公式正确,即 6 ) 12)(1(212 2 2 ++= +++n n n n 那么当k =n +1时,有 =+++++=+++++2 2222222)1()21()1(21n n n n =++++2 ) 1(6 ) 12)(1(n n n n =++++6 ) 1(6)12)(1(2 n n n n =++++6 )] 1(6)12()[1(n n n n =+++6 ) 672)(1(2 n n n =+++6) 32)(2)(1(n n n =+++++6 ) 1)1(2)(1)1)((1(n n n 所以公式对n +1也正确.

数学解题技巧与解题思路

解题技巧 一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后, 如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 四、概率问题 1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数; 2、搞清是什么概率模型,套用哪个公式; 3、记准均值、方差、标准差公式; 4、求概率时,正难则反(根据p1+p2+...+pn=1); 5、注意计数时利用列举、树图等基本方法; 6、注意放回抽样,不放回抽样; 7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透; 8、注意条件概率公式; 9、注意平均分组、不完全平均分组问题。 五、圆锥曲线问题 1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

高中数学数学归纳法(1)苏教版选修2-2

数学归纳法(1) 一、教学目标: 1.了解数学归纳法的原理,理解数学归纳法的一般步骤。 2.掌握数学归纳法证明问题的方法。 3.能用数学归纳法证明一些简单的数学命题。 二、教学重点:掌握数学归纳法的原理及证明问题的方法。 难点:能用数学归纳法证明一些简单的数学命题。 三、教学过程: 【创设情境】 1.华罗庚的“摸球实验”。 2.“多米诺骨牌实验”。 问题:如何保证所摸的球都是红球?多米诺骨牌全部倒下?处了利用完全归纳法全部枚举之外,是否还有其它方法? 数学归纳法:数学归纳法实际上是一种以数学归纳法原理为依据的演绎推理,它将一个无穷的归纳过程转化为一个有限步骤的演绎过程,是处理自然数问题的有力工具。 【探索研究】 1.数学归纳法的本质: 无穷的归纳→有限的演绎(递推关系) 2.数学归纳法公理: (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 【例题评析】 例1:以知数列{a n }的公差为d,求证: 1 (1) n a a n d =+- 说明:①归纳证明时,利用归纳假设创造递推条件,寻求f(k+1)与f(k)的递推关系,是解题的关键。 ②数学归纳法证明的基本形式; (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 EX: 1.判断下列推证是否正确。 P88 2,3 2. 用数学归纳法证明 2 )1 ( )1 3( 10 3 7 2 4 1+ = + + + ? + ? + ?n n n n K 例2:用数学归纳法证明 111 1 1231 n n n ++???≥ +++ (n∈N,n≥2) 说明:注意从n=k到n=k+1时,添加项的变化。

数学归纳法教学内容

数学归纳法

收集于网络,如有侵权请联系管理员删除 数学归纳法及其应用举例单元练习(二) 一、选择题(本大题共6小题,每小题3分,共18分) 1.在应用数学归纳法证明凸n 边形的对角线为 21n (n -3)条时,第一步验证n 等于 A. 1 B.2 C.3 D.0 2.等式12+22+32+…+n 2=2 4752+-n n A.n 为任何自然数时都成立;B.仅当n =1,2,3时成立 C.n =4时成立,n =5时不成立; D.仅当n =4时不成立 3.用数学归纳法证明不等式312111+++++n n n +…+24 1321>n (n ≥2,n ∈N *)的过程中,由n =k 逆推到n =k +1时的不等式左边 A. 增加了1项 )1(21+k ; B.增加了“)1(21121+++k k ”,又减少了“1 1+k ” C.增加了2项 )1(21121+++k k D.增加了)1(21+k ,减少了11+k 4.用数学归纳法证明(n +1)(n +2)…(n +n )=2n ·1·3·5·…(2n -1)(n ∈N *)时,假设n =k 时成立,若证n =k +1时也成立,两边同乘 A.2k +1 B.112++k k C.1)22)(12(+++k k k D.1 32+-k k

收集于网络,如有侵权请联系管理员删除 5.证明1+413121+++…+2 121n n >- (n ∈N *),假设n =k 时成立,当n =k +1时,左端增加的项数是 A. 1项 B.k -1项 C.k 项 D.2k 项 6.上一个n 级台阶,若每步可上一级或两级,设上法总数为f (n ),则下列猜想中正确的是 A.f (n )=n B.f (n )=f (n -1)+f (n -2) C.f (n )=f (n -1)·f (n -2) D.f (n )=???≥-+-=3 )2()1(2,1,n n f n f n n 二、填空题(本大题共5小题,每小题3分,共15分) 7.凸n 边形内角和为f (k ),则凸k +1边形的内角和 f (k +1)=f (k )+___________. 8.观察下列式子:1+23212<,1+223121+<35,1+474 13121222<++,…则可归纳出:___________. 9.设f (n )=(1+)11()111)(1n n n n ++???++,用数学归纳法证明f (n )≥3.在“假设n =k 时成立”后,f (k +1)与f (k )的关系是 f (k +1)=f (k )·___________. 10.有以下四个命题:(1)2n >2n +1(n ≥3) (2)2+4+6+… +2n =n 2+n +2(n ≥1) (3)凸n 边形内角和为f (n )=(n -1)π(n ≥3) (4)凸n 边形对角线条数f (n )=2 )2(-n n (n ≥4).其中满足“假设n =k (k

相关文档
相关文档 最新文档