文档库 最新最全的文档下载
当前位置:文档库 › 对某电厂取水流道漩涡问题的分析研究_安伟

对某电厂取水流道漩涡问题的分析研究_安伟

对某电厂取水流道漩涡问题的分析研究_安伟
对某电厂取水流道漩涡问题的分析研究_安伟

泄洪洞进水口诱发漩涡产生的主要因素分析

泄洪洞进水口诱发漩涡产生的主要因素分析 泄洪洞有压进口漩涡问题一直是困扰水力工作者的一个难题,进口漩涡的存在给泄水建筑物正常运行带来隐患(增加了空化空蚀破坏的可能性、降低泄流能力、携带杂物影响泄水建筑物的使用寿命)。漩涡的形成因素复杂,且不同工程往往具有独特特征,文章就漩涡形成原因着手研究,对诱发漩涡产生的主要因素进行分析,以期为漩涡防治提供相应参考。 标签:泄洪洞;进水口;漩涡;影响因素 引言 水利工程中,泄洪洞是常见的泄水建筑物。在泄洪洞运行中随水位不同,进水口流态会有不同变化。一般而言低水位下泄洪洞会有漩涡出现,但由于漩涡复杂性,高水位工况下也可能发生漩涡现象。根据漩涡形态可将其分为横轴漩涡、立轴漩涡两类,泄洪洞进口漩涡属于立轴漩涡。从数学上分析,立轴漩涡即是径向的函数,又是轴向的函数,属于强非线性水汽二相流问题[1]。某些工况下泄洪洞进口漩涡强度剧烈,若处理不当会发生较大的工程事故。我国龙羊峡、黄坛口、水口、紫平铺、漫湾、宝珠寺等工程均出现漩涡问题,在日本、美国、前苏联等许多国家,也有不少类似的工程问题[1]。Heckeer[2]研究中有20例存在立轴漩涡实例,其中有14个工程发生了较为严重的问题,占70%。 泄洪洞进口漩涡异常复杂,漩涡具有必然性和偶然性两种特性。必然性是指在某库水位之间必然会发生漩涡,偶然性是指漩涡发生位置、强弱程度在同等工况、同一水位下不会完全一致,即没有完全可重复性。鉴于漩涡防治的重要性,对诱发漩涡产生的主要因素进行研究,以便于工程采用合理措施减轻漩涡危害,就显得非常有工程实践应用研究意义。 1 漩涡的分类 美国Alden[3]实验研究室根据实验观察到的现象,将自由表面漩涡依其强弱分为以下六种类型:漩涡运动形态复杂:A型(表明涡纹)、B型(表面漩涡)、C型(纯水漩涡)、D型(携物漩涡)、E型(间断吸气漩涡)、F型(串通吸气漩涡)。该分类方法详细,将漩涡形成从弱到强进行了仔细观察,其中A型和B型近于无漩涡,不会引起危害,允许存在;C型和D型为弱漩涡,对机组与建筑物会产生一定作用,但危害一般不严重,实际中应努力防止其出现;E型和F型属于强漩涡,可能引起较严重的后果,工程中通常不允许出现。 杜敏[3]从对工程危害程度大小进行研究,对漩涡进行了归纳,将漩涡分为表面凹陷漩涡、间歇吸气漩涡和贯通吸气漩涡三类。表面凹陷漩涡为不吸气漩涡,仅在水面有轻微凹陷,对水工建筑物正常运行没有危害;间歇吸气漩涡顾名思义为间接性吸气漩涡,水面凹陷较深,该漩涡不稳定,但明显地降低泄流能力,携带杂物进入泄洪洞洞,影响工程正常运行;贯通式漩涡存在贯通连续的空气通道,

电涡流传感器的研究与探讨汇总

档案编号: 毕业设说明书题目:电涡流传感器的研究与探讨 系别:电气工程系 专业:生产过程自动化 班级: 姓名: 指导教师: (共18 页) 年月日

摘要:电涡流传感器是基于涡流效应的新型传感器。由于它具有结构简单、抗干扰能力强、测量精度高、非接触、响应速度快、不受油污等介质影响等优点,因而得到了广泛的应用。但目前的电涡流位移传感器存在着测量范围小,传感器存在非线性问题,这给传感器的应用造成了一定的影响。 本文首先通过对实验室所用的电涡流传感器实验模板的电路进行研究和优化,进而提高电路的抗干扰能力使测量结果的更加准确。其次针对电涡流位移传感器存在的测量范围小,传感器存在非线性问题的改善提出设想即:先对电涡流位移传感器用于位移检测的工作原理及应用进行分析,研究了线圈截面形状及参数变化对涡流传感器线性测量范围和灵敏度的影响;再从电路设计方面提高传感器的稳定性及抗干扰能力,从而为位移测量扩展量程打下基础;最后通过对电涡流传感器测位移实验进行分析处理得出电涡流传感器位移测量范围的扩展方法和改善电涡流传感器非线性问题的方法。 关键词:电涡流传感器; 位移测量; 非线性; 测量范围 Abstract: the eddy current sensor is a new type of sensor based on eddy current effect. Because it is simple in structure, strong anti-jamming capability, high accuracy, non-contact, fast response, not polluted advantages such media influence, and been widely used. But the current electricity eddy displacement sensor measurement range small, there exist nonlinear problem, the sensor to a sensor applications has caused some influence. This paper firstly eddy current sensor used in the laboratory experiment template circuit research and optimization, and improve the anti-interference ability of the circuit more accurate measurement results. Secondly according to the eddy current displacement sensor measurement range small, there exist nonlinear problem of sensor to improve it puts forward the idea of the eddy current is: first displacement detection sensors for displacement of the working principles and applications, research analyzed the coil cross-section

ANSYSMaxwell涡流场分析案例

1.训练后处理应用实例 本例中的涡流模型由一个电导率σ=106S/m,长度为100mm,横截面积为10×10m2的导体组成,导体通有幅值为100A、频率为60Hz、初始相位ф=120°的电流。 (一)启动M a x w e l l并建立电磁分析 1.在windows系统下执行“开始”→“所有程序”→ANSYS Electromagnetic→ANSYS Electromagnetic Suite 15.0→Windows 64-bit→Maxwell 3D命令,进入Maxwell软件界面。 2.选择菜单栏中File→Save命令,将文件保存名为“training_post” 3.选择菜单栏中Maxwell 3D→Solution Type命令,弹出Solution Type对话框 (1)Magnetic:eddy current (2)单击OK按钮 4.依次单击Modeler→Units选项,弹出Set Model Units对话框,将单位设置成m,并单 击OK按钮。 (二)建立模型和设置材料 1.依次单击Draw→Box命令,创建长方体 在绝对坐标栏中输入:X=-5,Y=-5,Z=0,并按Enter键 在相对坐标栏中输入:dX=5,dY=5,dZ=100,并按Enter键 单击几何实体,左侧弹出属性对话框,重命名为:Cond 材料设置为conductor,电导率为σ=106S/m 2.依次单击Draw→Box命令,创建长方体 在绝对坐标栏中输入:X=55,Y=-10,Z=40,并按Enter键 在相对坐标栏中输入:dX=75,dY=10,dZ=60,并按Enter键 单击几何实体,左侧弹出属性对话框,重命名为:aux 3.依次单击Draw→Line 在绝对坐标栏中输入:X=0,Y=0,Z=0,并按Enter键 在相对坐标栏中输入:dX=0,dY=0,dZ=100,并按Enter键 名为line1 4.依次单击Draw→line,生成长方形 对角点为(20,-20,50)、(-20,20,50),名为line2 5.依次单击Draw→Region命令,弹出Region对话框,设置如下 :Pad individual directions (-100,-100,0)、(200,100,100) (三)指定边界条件和源 1.按f键,选择Cond与Region的交界面,依次单击菜单中的Maxwell 3D→Excitations→ Assign→Current命令,在对话框中填入以下内容: (1)Name:SourceIn (2)Value:100 A (3)Palse:120deg (4)单击OK按钮 2.按f键,选择Cond与Region的另一个交界面,依次单击菜单中的Maxwell 3D→ Excitations→Assign→Current命令,在对话框中填入以下内容: (5)Name:SourceIn (6)Value:100 A

进水口选型与布置

-----------+项目概述+----------- 要求: 了解进水建筑物的作用和布置要求;掌握有压进水口的类型、特点、适用条件及其主要设备的作用、类型和布置要求;掌握无压进水口的主要类型、建筑物组成、布置要求; 重点: 水电站有压进水口的类型、特点、适用条件、位置选择原则、高程及轮廓尺寸的拟定,及进水口设备的布置。 本章主要容: 1.为了从天然河道或水库中取水而修建的专门水工建筑物,称为进水建筑物。为发电目的专门修建的进水建筑物,称为水电站进水口。进水口的基本要求:要有足够的进水能力;合理安排其位置和高程,水流平顺并有足够的断面尺寸;水质要符合要求,要设置拦污、防冰、拦沙、沉沙及冲沙设备;水头损失小,位置合理,轮廓平顺、流速较小,尽可能减小水头损失;可控制流量,进水口须设置闸门;满足水工建筑物的一般要求。 2.水电站进水口分有压进水口和无压进水口。有压进水口分隧洞式进水口、压力墙式进水口、塔式进水口和坝式进水口。有压进水口的主要设备有拦污栅、工作闸门、检修闸门、启闭设备、通气孔和旁通阀。 3.无压进水口又称为开敞式进水口,分为有坝取水和无坝取水两种。布置时,可能将进水口位置选在河流凹岸。有坝开敞式进水口组成建筑物包括:拦河低坝、进水闸、冲沙闸和沉沙池等。 一、进水建筑物功用和要求 1、进水建筑物功用 在水利水电工程中,为了从天然河道或水库中取水而修建的专门水工建筑物,称为进水建筑物。为发电目的专门修建的进水建筑物,称为水电站进水口。 水电站进水口位于引水系统的首部。其功用是按照发电要求将水引入水电站的引水道。 2、水电站进水口的基本要求: (1) 要有足够的进水能力,水头损失要小 在任何工作水位下,进水口都能引进必须的流量。因此在枢纽布置中必须合理安排进水口的位置和高程;进水口要求水流平顺并有足够的断面尺寸,一般按水电站的最大引用流量Qmax设计。且进水口位置要合理,进口轮廓平顺,流速较小,尽可能减小水头损失。 (2) 水质要符合要求 不允许有害泥沙和各种有害污物进入引水道和水轮机。因此进水口要设置拦污、防冰、拦沙、沉沙及冲沙等设备。 (3) 可控制流量 进水口须设置闸门,以便在事故时紧急关闭,截断水流,避免事故扩大,也为引水系统的检修创造条件。对于无压引水式电站,引用流量的大小也由进口闸门控

小型水电站设计2×15MW的水力发电机组

; 小型水电站设计2×15MW的水力发电机组

目录 一选题背景 (3) 原始资料 (3) 设计任务 (3) 二电气主接线设计 (3) 对原始资料的分析计算 (3) 电气主接线设计依据 (4) 主接线设计的一般步骤 (4) 技术经济比较 (4) 发电机电侧电压(主)接线方案 (4) 主接线方案拟定 (4) 三变压器的选择 (7) 3. 1主变压器的选择 (7) 相数的选择 (7) 绕组数量和连接方式的选择 (7) 厂用变压器的选择 (8) 四.短路电流的计算 (9) 电路简化图8: (9) 计算各元件的标么值 (10) 短路电流计算 (11) d1点短路电流计算 (11) d2点短路 (13) 五电气设备选择及校验 (15) 电气设备选择的一般规定 (15) 按正常工作条件选择 (15) 按短路条件校验 (16) 导体、电缆的选择和校验 (16) 断路器和隔离开关的选择和校验 (17) 限流电抗器的选择和校验 (17)

电流、电压互感器的选择和校验 (18) 避雷器的选择和校验 (18) 避雷器的选择 (18) 本水电站接地网的布置 (19) 六.设计体会 (19) 附录 (20) 参考文献 (22)

一选题背景 原始资料 (1)、待设计发电厂为水力发电厂;发电厂一次设计并建成,计划安装2×15MW的水力发电机组,利用小时数4000小时/年; (2)、待设计发电厂接入系统电压等级为110kV,距系统110kV发电厂45km;出线回路数为4回; (3)、电力系统的总装机容量为600MVA、归算后的电抗标幺值为,基准容量Sj=100MVA; (4)、低压负荷:厂用负荷(厂用电率)%; (5)、高压负荷:110kV电压级,出线4回, Ⅲ级负荷,最大输送容量60MW,cosφ=; (6)、环境条件:海拔<1000m;本地区污秽等级2级;地震裂度<7级;最高气温36℃;最低温度-℃;年平均温度18℃;最热月平均地下温度20℃;年平均雷电日T=56日/年;其他条件不限。 设计任务 (1)、根据对原始资料的分析和本变电所的性质及其在电力系统中的地位,拟定本水电站的电气主接线方案。经过技术经济比较,确定推荐方案。 (2)、选择变压器台数、容量及型式。 (3)、进行短路电流计算。 (4)、导体和电气主设备(各电压等级断路器、隔离开关、母线、电流互感器、电压互感器、电抗器(如有必要则选)、避雷器)的选择和校验。 (5)、厂用电接线设计。 (6)、绘制电气主接线图。 二电气主接线设计 对原始资料的分析计算 为使发电厂的变压器主接线的选择准确,我们原始资料对分析计算如下; 根据原始资料中的最大有功及功率因数,算出最大无功,可得出以下数据

基于涡流电场传感器在断路器中的应用研究

基于涡流电场传感器在断路器中的应用研究 发表时间:2018-01-10T10:28:28.390Z 来源:《电力设备》2017年第27期作者:郝向军[导读] 摘要:本文是研究基于非接触式涡流电场传感器在断路器中的应用,非接触式涡流电场传感不需要在断路器机械部分安装支架,它采用非接触方式测量断路器机械特性;根据这些特性可以检测断路器机械部分的故障状况,从而为断路器的机械部分的健康状态提供现实基础。 (国网山西省电力公司山西省太原市 030001)摘要:本文是研究基于非接触式涡流电场传感器在断路器中的应用,非接触式涡流电场传感不需要在断路器机械部分安装支架,它采用非接触方式测量断路器机械特性;根据这些特性可以检测断路器机械部分的故障状况,从而为断路器的机械部分的健康状态提供现实基础。 关键词:涡流电场传感器;断路器随着我国国民经济的繁荣发展,电力系统的装机容量与电力需求不断增加,对电力系统的可靠性和经济性提出越来越高的要求。断路器作为发电和配电之间的联系环节,是集故障、检修、参数测量频次最多的一种重要电力设备,运行过程中有很高的故障率,易引起电网事故,造成较大的经济损失,本文采用非接触式涡流电场传感器,为断路器机械部分实际运行工况提供依据;同时还可以提高工作效率,减少停电时间,增加效益、降低断路器运行安全的风险。 正文 一非接触式涡流电场传感器 涡流电场传感器是基于电磁感应原理而工作的,但又完全不同于电磁感应。电涡流的形成:线圈中的铁心是由整块铁磁材料制成的,此铁心可以看成是由许多与磁通相垂直的闭合细丝所组成,因而形成了许多闭合的回路。当给线圈通入交变的电流时,由于通过铁心的磁通是随着电流做周期性变化的,所以在这些闭合回路中必有感应电动势产生。在此电动势的作用下,形成了许多旋涡形的电流,这种电流就称为电涡流。非接触式涡流电场传感器的工作原理如图1所示。 二断路器 高压断路器操动机构由电气部分、储能部分、控制部分和力量传递部分组成。高压断路器操动机构分为很多种类型,如电磁机构、弹簧机构、液压机构和液压弹簧机构。 断路器的触头在各种工况下可靠地分、合,主要是由储能部分和力量传递部分协同完成。其动作的特点是:执行任务与完成任务时,机构系统处于运动过程中,因机构的动作有卡涩、冲击、振动以及其他一些非稳定性质;在闭合状态时由于长期不动作,一旦发生事故,又要求它动作准确可靠。由于断路器以上的特点,对断路器操动机构与传动机构的可靠性的要求就特别的高。 断路器与其它电气设备相比,机械部分零部件特别多,因此造成故障的可能性较多。操动机构的机械状态获取是非常复杂的,出现某一种故障,机构的状态特征可能很多。 在断路器操动机构储能部分、控制部分和力量传递部分进行带电测量,来全面了解断路器机械操动部分真实状况。 通过对断路器的控制部分及分合闸线圈检测,可以有效检测控制回路完好性,分合闸线圈回路由电磁铁驱动,当线圈中通过电流时,在电磁铁内产生磁通,铁芯受到电磁力作用吸合,使断路器开始执行分或合操作。线圈电流波形中,包含很多信息,反映了电磁铁本身以及所控制的锁门或阀门以及连锁触头在操作过程中的工作状况,可以有效检测电磁铁在整个工作时是否出现磁场下降和卡涩。分、合闸回路的电磁铁电路等值电路如图2所示。

ansoft Maxwell 涡流分析材料(英文)

Chapter 6.0 Chapter 6.0 –Eddy Current Examples 6.1 –Asymmetrical Conductor with a Hole

Example (Eddy Current) –Asymmetrical Conductor The Asymmetrical Conductor with a Hole This example is intended to show you how to create and analyze an Asymmetrical Conductor with a Hole using the Eddy Current solver in the Ansoft Maxwell 3D Design Environment. Coil (Copper) Stock (Aluminum)

Example (Eddy Current) –Asymmetrical Conductor Getting Started Launching Ansoft Maxwell 1.To access Ansoft Maxwell, click the Microsoft Start button, select Programs, and select the Ansoft > Maxwell 11program group. Maxwell 11. Setting Tool Options To set the tool options: Note: In order to follow the steps outlined in this example, verify that the following tool options are set: 1.Select the menu item Tools > Options > Maxwell Options 2.Maxwell Options Window: 1.Click the General Options tab Use Wizards for data entry when creating new boundaries: ; Checked Duplicate boundaries with geometry: ;Checked 2.Click the OK button 3.Select the menu item Tools > Options > 3D Modeler Options. 4.3D Modeler Options Window: 1.Click the Operation tab Automatically cover closed polylines: ;Checked 2.Click the Drawing tab Edit property of new primitives: ;Checked 3.Click the OK button

电涡流传感器文献综述

电涡流传感器文献综述 摘要:传统的检测方法可靠性较低、具有破坏性、检测速度较慢,无法满足各种各样的检测要求,同时还会造成材料的浪费。这时,就需要使用无损检测的方法。电涡流传感器具有对介质不敏感、非接触、全方位智能测量等特点,因此现在广泛应用于对检测行业中。本文通过前人已有的大量实例和实验,对电涡流传感器的做了最基本的分类并且研究它们的异同,揭示了它在检测行业中的重要地位,并且对电涡流传感器的非线性部分补偿做了进一步改进。 关键词:电涡流传感器;基本原理;传感器的分类;传感器的应用 1、引言 电涡流无损检测是以电磁感应原理为基础的一种常规无损检测方法,相对于传统的涡流无损检测方法,电涡流检测具有包含的频率分量丰富、检测信号信息量大、时域分析方便等优点。电涡流无损检测采用的是电涡流传感器,它的主要特点是频率响应速度快、测量的精度高、不受油液污染的影响、受外界磁场干扰小等。世界上第一台涡流探伤仪诞生于1935 年,并被应用于检验焊接钢管质量。涡流传感器发展至今类型已经多种多样,并在工业生产中的各个领域得到广泛应用,尤其是在无损探伤领域,已经成为一种不可或缺的无损检测手段。本文基于前人已经著述的十篇涡流无损检测研究,从他们不同的应用角度分析他们的相同点和不同点,并且对电涡流传感器今后的应用领域做出合理的预测。 2、电涡流传感器的基本原理 根据麦克斯韦电磁场理论,金属导体处于交变的磁场中,导体内部就会感应产生电流,这种感应出来的电流在导体内部就像水的旋涡那样在导体的近表旋转,由于其运动类似于漩涡所以被人们称为电涡流,这种无法被人体感知的电涡流场就称为电涡流效应。电涡流式传感器就是利用这种电涡流效应的原理而发明的一种传感器。 从电磁学的角度可以把被测金属板也可以简化为一个简单的感应线圈,并且线圈与被测金属板之间的互感系数将随着线圈与被测金属板之间的距离的减少而增大。 被测导体的各种参数不同,既能引起电涡流传感器线圈电阻R 值的变化,也能引起线圈感抗L 和线圈品质因子Q 值的变化。线圈阻抗Z 与电阻率ρ、磁导率μ、检测距离X、线圈激励电流的频率之间的函数关系,可以简写成Z =

电涡流传感器基本原理

电涡流传感器 原理图 1、什么是电涡流效应? 电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。 注意:电涡流传感器要求被测体必须是导体。 传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。2、电涡流传感器的工作原理与结构

。 传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化。从能量角度来看,在被测导体内存在着电涡流损耗(当频率较高时,忽略磁损耗)。能量损耗使传感器的Q值和等效阻抗Z 降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电量。这便是电涡流传感器的基本原理 3、电涡流传感器的实际应用 电涡流传感器测量齿轮转速的应用

4、使用电涡流传感器时的注意事项 对被测体的要求 为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积。

水电站水轮发电机组的常见故障与维护研究

水电站水轮发电机组的常见故障与维护研究 伴随着社会的不断进步和提高,机械行业也迎来了自己的发展空间。水电站造福了社会,为人民提供生命之源。它已经摆脱了原来落后的工作模式,进而采取了水轮发电机组的方式。但是在水电站利用水轮发电机组也存在一定的问题。所以本文重点分析水电站水轮发电机组的常见故障与维护措施,进而找到行之有效的维护方式。 标签:水电站; 水轮发电机组; 常见故障; 维护分析 引言 作为水力发电的重要内容,水电站在实际运行过程中具有非常关键的作用。科学优化水电站的整体运行质量,全面优化水电站的运行安全,不仅关系着我国水力发电事业的健康持续发展,也关系着我国电能资源的节约与优化。水电站电力生产水平直接受到水电站发电机组运行能力的影响,在实际发电过程中,发电机组若出现故障或者隐患,势必影响水电站的整体运行成效,同时,也会在某种程度上造成发电机组损毁。因此,在发电机组的运行过程中,应该落实科学的运行方式,全面加强维护管理,综合性提升发电机组的整体运行安全,确保水电站平稳高效运行。 1 水电站水轮发电机组的结构与工作原理 水轮发电机组的主要组成部分就是定子、转子与励磁装置,定子主要有隔震系统、机座、铁芯,转子则主要包含了主轴、轮臂、轮毂、风扇、磁极、制动阀板等部件。水轮发电机组中的导水机构在关闭的过程中需要一定的时间,为了避免在关闭的过程中所造成的电网解列时的转速上升过快、过高的情况,就需要给水轮发电机的转子以更大的转动惯量。这是造成当前转子质量过重的主要原因。发电机同步运行的过程中,水轮发电机组内的励磁绕组会通过直流电流,直接形成正常运行的磁场,此时就需要借助励磁电源、励磁调节器、励磁绕组以及其他的组成设备才能获取给直流电流,如果直接给发电机提供励磁绕组与励磁电源,会使得水轮发电机组的定子与转子结构部分存在一定的气隙,而该气隙也会导致出现旋转磁场,这就称之为水轮发电机组的主磁场。经过分析发现,该磁场的变化呈现出正弦变化规律,在水轮发电机组主磁场与定子绕组实现切割时,定子绕组会伴随着时间的变化而产生正弦交流电动势,这样就能够达到发电的目的,这也是水轮发电机的工作原理。 2水电站水轮发电机组的常见故障 2.1水轮发电机组的温度太高。 水轮发电机组是通过电使得发电机运转起来的,水轮发电机组在转动的过程中因为机器之间的摩擦,会有热量的产生。而这些热量如果得到有效的处理,那

基于涡流传感器的研究

基于涡流检测的传感器的研究 摘要 涡流检测当中,传感器的应用也是相当广泛的,尤其是电涡流式传感器的应用,本文通过对电涡流式传感器的工作原理的简要介绍,并对涡流检测的数值仿真,阐述了作者对涡流检测当中传感器的应用方面的理解。 关键词:涡流检测,电涡流式,传感器

1.引言 人的大脑通过五种感觉器官(人的“五官”——眼、耳、鼻、舌、皮肤分别具有视、听、嗅、味、触觉),对外界的刺激做出反应。人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中,他们的功能就远远不够了。为了获取更多的信息,人类发明了传感器。人体的感官属于天然的传感器;而人们常说的传感器是人类五官的延伸,是人类的第六感官,也称之为电五官。它是人体“五官”的工程模拟物,是一种能把特定的被测量的信息(包括物理量、化学量,生物量等)按一定规律转换某种可用信号输出的器件或装置。 国家标准(GB/T7665——1987)对传感器的定义是:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。其中敏感元件是指传感器中能直接感受被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于测量的电信号。 本文首先介绍了传感器在涡流检测当中的一些电涡流式传感器的概述,再通过对涡流检测原理的简要介绍,将传感器的原理与本人课题相结合,阐述了本人对传感器领域的一些理解。 2.电涡流式传感器概述 根据法拉第电磁感应定律,块状金属导体置于变化的磁场中或在磁场中做切割磁力线运动时,导体内将产生呈旋涡状的感应电流,此电流称为电涡流,以上现象称为涡流感应。 要形成涡流,必须具备下列两个条件:1)交变磁场;2)导体处于交变磁场中[1]。因此,涡流式传感器主要由产生交变磁场的通电线圈和因置于线圈附近而处于交变磁场的金属导体两部分组成。金属导体也可以是被测对象本身。 根据电涡流式效应制成的传感器称为电涡流式传感器。电涡流式传感器在金属导体内产生涡流,其渗透深度与传感器线圈的激磁电流频率有关。按照电涡流在导体内贯穿情况,传感器可分为高频反射式和低频透射式两类,其中高频反射式应用较广,但从其基本工作原理上而言两者是相似的。 电涡流式传感器最大的特点是,能对位移、厚度、表面温度、速度、应力、材料损伤等进行非接触连续测量,另外还具有体积小、灵敏度高、频带宽等优点,

电涡流位移传感器的原理..

电涡流位移传感器的工作原理: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。 在高速旋转机械和往复式运动机 械状态分析,振动研究、分析测 量中,对非接触的高精度振动、 位移信号,能连续准确地采集到 转子振动状态的多种参数。如轴 的径向振动、振幅以及轴向位置。 电涡流传感器以其长期工作可靠 性好、测量围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。

前置器中高频振荡电流通过延伸电缆流入探头线圈, 在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I 和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定围不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。

涡流的原理及应用

涡流的原理及应用 ●涡流的定义 当金属导体处在变化着的磁场中或在磁场中运动时,由于电磁感应作用而在整块金属导体内会产生感应电动势,由于导体自身存在电阻,在导体内部便会产生电流,这种电流在导体中的分布随着导体的表面形状和磁通的分布而不同,其路径往往有如水中的漩涡,因此称为涡流。 由于金属导体本身存在电阻,所以涡流在导体中将产生热量,所消耗的能量来源于使导体运动的机械功,或者建立在磁场变化的能量,因涡流而导致的能量损耗称为涡流损耗。涡流损耗的大小与磁场的变化方式、导体的运动、导体的几何形状、导体的磁导率和电导率等因素有关。

●涡流的好处与害处 一般情况下,在实际应用过程中,都要避免涡流带来的能量损耗,比如电动机,变压器的线圈绕在铁芯上,当线圈中通过交变电流时,在铁芯中将产生涡流,涡流会使铁芯发热,不但消耗了能量,还有可能损毁电动机,因此应该想办法减小涡流,常见的措施有:增大铁芯材料的电阻率,常用表面涂有薄层绝缘漆或绝缘的氧化物硅钢片,并且用许多硅钢片叠合而成,整块金属的电阻很小,涡流很强,采用叠钢片可以将涡流限制在狭窄的薄片之内,回路中的电动势较小,回路长度较长,电阻较大,因此涡流较小,因涡流造成的损失也就较小。 当然,也可以利用涡流做成一些感应加热的设备,最常见的就是电磁炉,首先经过转换装置使电流变为高频交流电,将其加在感应加热线圈上,由此产生高频交变磁场,磁力线通过金属锅底时将产生强大的涡流,由于金属锅底的电阻存在,便会发生电能到磁能再到热能的转换,产生焦耳热,从而达到加热食品的目的。 ●涡流的应用——涡流检测 涡流在现实生活中的应用是十分广泛的,下面详细介绍涡流检测技术。利用电磁感应原理,用通过检测被检工件内感生涡流的变化无损的评定导电材料及其工件的某些性能,或发现缺陷的检测方法称为涡流检测。涡流检测是一种无损检测方法,是通过测量涡流传感器的

小型水力发电机

斜击式小型水力发电机 斜击式小型水力发电机5KW,需要水头为15-50米左右,水流量为:0.047-0.014立方米/秒。可以选配永磁单相发电机和励磁三相发电机。斜击式小型水力发电机5KW配永磁单相发电机重量约为:150kg。 一、小型水力发电站简介:建微水电站是在有一定水头落差的地方,通过筑坝拦集小溪流水,通过管道等将水引入水力发电机组,推动水轮带动电机发电,然后通过输电线供给用电户。 二、斜击式水力发电原理:在有水落差比较高的地方,用水管将水从高处引往低处,由于水位差高,水产生比较高的压力,在高压力的作用下,水的流速非常快。在水轮机处装有圆形的小喷口,高压高速的水流喷射到斗状的叶片上带动水轮机高速旋转,从而带动发电机发电。在这里主要就是利用水的高压高速能量,因此,高落差非常重要。水位差,或者说水流落差,我们简称为水头。 三、功率计算:水流量和水头就可以决定安装发电机组的功率。水流量一般是指一秒钟内流出的水的体积。以立方米/秒为单位。理想理论上安装功率的计算公式为:水头(m)×流量(m3/s)×9.8=功率(KW)。实际上机组的效率并不是100%,因此要把机组的效率算上。一般水头我们以H来表示,流量以Q来表示,机组效率为η来表示,一般η取0.7左右。g表示重力加速度,功率以P来表示,那么安装功率的计算公式为:P = HQηg 例如:水流量为0.02m3/s,水头为10米高,那么可以安装的功率为: 0.02×10×9.8×0.7 =1.372(KW),即实际可以安装功率为:1千瓦左右。 流量比较难测量一般以估算法来测。首先估算出水的流速,然后再估算出水流的横截面积大小,即可算出水流量大小。 流量(m3) Q = Sv 其中S为横段面积(m2),v为流速(m/s) ①、首先测量得水沟的横截面积S,比如可量得水沟的宽、高粗略算出横截面积S,如要测得更准确,可对水沟的横截面积进行分割细分测得各小块面积,然后再相加得出总面积。 ②、水流速的测法,可直接丢一漂浮物在水面上,然后看它在一定时间内漂流过的路程,然后再计算出其1秒内流过的路程,即为水的流速。 ③、还可以用一个比较大的水桶来直接接水,然后计算出流量。 估测流量时,要多次测量取平均值,还要考虑到每个季节的水量变化情况。四、斜击式小型水力发电机结构:斜击式小型水力发电机是专门针对高水头设计应用的。一般用在水头为6米-50米之间。典型的应用场合如:高落差的小溪旁、小瀑布边、小山水边等。斜击式小型水力发电机构造非常简单,由两大部分组成:斗式水轮机和发电机同轴构成。详细结构说明参照图“斜击式小型水力发电机结构图”。 五、主要规格及技术参数

进水口设计

第七章水电站进水口及引水建筑物 重点:水电站有压进水口的类型及适用条件、位置选择原则、高程及轮廓尺寸的拟定,及进水口设备的布置;引水渠道和有压隧洞的作用、线路选择、断面设计和水 力计算方法;压力前池的作用、组成及尺寸确定。 第一节进水口的功用和要求 一、功用和和基本要求 1.功用:进水口是水电站水流的进口,是按照发电要求将水引入水电站的引水道。 2.基本要求 (1) 要有足够的进水能力 在任何工作水位下,进水口都能引进必须的流量。因此在枢纽布置中必须合理按排进水口的位置和高程;进水口要水流平顺并有足够的断面尺寸,一般按水电站的最大引用流量Q max设计。 (2) 水质要符合要求 不允许有害泥沙和各种污物进入引水道和水轮机。进水口要设置拦污、防冰、拦沙、沉沙及冲沙设备。 (3) 水头损失要小 进水口位置要合理,进口轮廓平顺、流速较小,尽可能减小水头损失。 (4)可控制流量 进水口须设置闸门,以便在事故时紧急关闭,截断水流,避免事故扩大,也为引水系统的检修创造条件。对于无压引水式电站,引用流量的大小也由进口闸门控制。 (5) 满足水工建筑物的一般要求 进水口要有足够的强度、刚度和稳定性,结构简单,施工方便,造型美观,便于运行、维护和检修。 二、类型 按水流条件分,水电站进水口分为有压进水口和无压进水口两大类。 (1) 无压:类似于水闸,水流为明流,引表层水为主,适用于无压引水式电站。 (2) 有压:进水口在最低水位以下,水流为有压流,以引深层水为主。适用于坝式、有压引水式、混合式水电站。

第二节有压进水口 一、有压进水口的类型及适用条件 后接有压引水道,引水库深层水为主 1.隧洞式进水口 隧洞式进水口 特征:在隧洞进口附近的岩体中开挖竖井,井壁一般要进行衬砌,闸门安置在竖井中,竖井的顶部布置启闭机及操纵室,渐变段之后接隧洞洞身。 适用:工程地质条件较好,岩体比较完整,山坡坡度适宜,易于开挖平洞和竖井的情况。 2.墙式进水口 墙式进水口 特征:进口段、闸门段和闸门竖井均布置在山体之外,形成一个紧靠在山岩上的单独墙式建筑物,承受水压及山岩压力。要有足够的稳定性和强度。 适用:地质条件差,山坡较陡,不易挖井的情况

2019年电涡流传感器原理指什么

2019年电涡流传感器原理指什么 篇一:电涡流传感器基本原理 电涡流传感器 原理图 1、什么是电涡流效应? 电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。注意:电涡流传感器要求被测体必须是导体。 传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。 2、电涡流传感器的工作原理与结构 。

传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化。从能量角度来看,在被测导体内存在着电涡流损耗(当频率较高时,忽略磁损耗)。能量损耗使传感器的Q值和等效阻抗Z降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电量。这便是电涡流传感器的基本原理3、电涡流传感器的实际应用 电涡流传感器测量齿轮转速的应用 4、使用电涡流传感器时的注意事项 对被测体的要求 为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积。

水电站的水轮机设计

目录 1前言 (4) 2水电站的水轮机选型设计 (5) 2.1水轮机的选型设计概述 (5) 2.2水轮机选型的任务 (6) 2.3水轮机选型的原则 (6) 2.4水轮机选型设计的条件及主要参数 (7) 2.5确定电站装机台数及单机功率 (7) 2.6选择机组类型及模型转轮型号 (8) 2.7初选设计(额定)工况点 (11) 2.8确定转轮直径 D (12) 1 2.9确定额定转速n (12) 2.10效率及单位参数的修正 (13) 2.11核对所选择的真机转轮直径 D (14) 1 2.12确定水轮机导叶的最大开度、最大可能开度、最优开度 (18) 2.13计算水轮机额定流量 q (19) ,v r 2.14确定水轮机允许吸出高度 H (20) s 2.15计算水轮机的飞逸转速 (25) 2.16计算轴向水推力 P (25) oc 2.17估算水轮机的质量 (26) 2.18绘制水轮机运转综合特性曲线 (26) 3水轮机导水机构运动图的绘制 (35) 3.1导水机构的基本类型 (35) 3.2导水机构的作用 (36) 3.3导水机构结构设计的基本要求 (36) 3.4导水机构运动图绘制的目的 (37) 3.5导水机构运动图的绘制步骤 (37) 4水轮机金属蜗壳水力设计 (41)

4.1蜗壳类型的选择 (41) 4.2金属蜗壳的水力设计计算 (41) 5尾水管设计 (49) 5.1尾水管概述 (49) 5.2尾水管的基本类型 (49) 5.3弯肘形尾水管中的水流运动 (49) 6水轮机结构设计 (50) 6.1概述 (50) 6.2水轮机主轴的设计 (50) 6.3水轮机金属蜗壳的设计 (51) 6.4水轮机转轮的设计 (52) 6.5导水机构设计 (55) 6.6水轮机导轴承结构设计 (58) 6.7水轮机的辅助装置 (61) 7金属蜗壳强度计算 (63) 7.1金属蜗壳受力分析 (63) 7.2蜗壳强度计算 (63) 7.3计算程序及结果 (66) 8结论 (71) 1 前言 水轮机是水电站的重要设备之一,它是靠自然界水能进行工作的动力机械与其他动力机械相比,它具有效率高、成本低、环境卫生等显著特点。另外,水轮机的好坏直接影响到水电站的能量转换效率,在水轮机生产制造前,我们必须首先根据给定电站的水力条件对水轮机进行

涡流现象

《涡流现象及其应用》教学设计 广州市花都区实验中学物理科陈丽华 ★新课标要求 (一)知识与技能 1.知道涡流是如何产生的。 2.知道涡流对我们有不利和有利的两方面,以及如何利用和防止。 3.知道电磁阻尼和电磁驱动。 (二)过程与方法 培养学生客观、全面地认识事物的科学态度。 (三)情感、态度与价值观 培养学生用辩证唯物主义的观点认识问题。 ★教学重点 1.涡流的概念及其应用。 2.电磁阻尼和电磁驱动的实例分析。 ★教学难点 电磁阻尼和电磁驱动的实例分析。 ★教学方法 通过演示实验,引导学生观察现象、分析实验 ★教学用具: 电机、变压器铁芯、演示涡流生热装置(可拆变压器)、电磁阻尼演示装置(示教电流表、微安表、弹簧、条形磁铁),电磁驱动演示装置(U形磁铁、能绕轴转动的铝框)。 ★教学过程 (一)引入新课 教师:出示电动机、变压器铁芯,引导学生仔细观察其铁芯有什么特点? 学生:它们的铁芯都不是整块金属,而是由许多薄片叠合而成的。 教师:为什么要这样做呢?用一个整块的金属做铁心不是更省事儿?学习了涡流的知识,同学们就会知道其中的奥秘。 (二)进行新课 1、涡流 教师:[演示1]涡流生热实验。 在可拆变压器的一字铁下面加一块厚约2 mm的铁板,铁板垂直于铁芯里磁感线的方向。在原线圈接交流电。几分钟后,让学生摸摸铁芯和铁板,比较它们的温度,报告给全班同学。 学生:铁板的温度比铁芯高。 教师:为什么铁芯和铁板会发热呢?原来在铁芯和铁板中有涡流产生。安排学生阅读教材,了解什么叫涡流? 学生:当线圈中的电流发生变化时,这个线圈附近的导体中就会产生感应电流。这种电流看起来很像水的旋涡,所以叫做涡流。 师生共同活动:分析涡流的产生过程。 分析:如图所示,线圈接入反复变化的电流,某段时间内, 若电流变大,则其磁场变强,根据麦克斯韦理论,变化的磁场 激发出感生电场。导体可以看作是由许多闭合线圈组成的,在

相关文档