文档库 最新最全的文档下载
当前位置:文档库 › 玻璃纤维纱线的最佳强力捻系数研究

玻璃纤维纱线的最佳强力捻系数研究

玻璃纤维纱线的最佳强力捻系数研究
玻璃纤维纱线的最佳强力捻系数研究

上海纺织科技S HAN GHA I TEX TI L E S C I EN CE&TECHNOLO G Y2009年9月?第37卷?第9期工艺研究Vol.37No.9,2009

玻璃纤维纱线的最佳强力捻系数研究

刘 明

(上海工程技术大学,上海201620)

摘 要:通过实验方式证明,合理的捻度结构可以提高玻璃纤维纱线的强力,由此可以提高玻璃纤维织物的拉伸强力和断裂伸长,从而使其织物具有更高的强伸性能,玻璃纤维纱线的捻度和强力的关系同其他纺织用纤维纱线。

关键词:玻璃纤维;最佳捻系数;强伸性

中图分类号:TS106.41 文献标识码:A 文章编号:100122044(2009)0920026202

A study on optima l tw ist factor of gl a ss f i ber yarn

L IU M ing

(Shanghai University of Engineering Science,Shanghai201600,China)

Abstract:It is p r oved by experi m ents that strength and el ongati on of glass fiber yarn can be increased with p r oper t w ist.Thus,stretch strength and breaking el ongati on of the glass fabric are i m p r oved.

Key words:glass fiber yarn;t w ist multi p lier;tensile el ongati on

玻璃纤维产品是一种性能优异的无机非金属材料,具有不燃、耐高温、电绝缘、拉伸强度高、化学稳定性好等优良性能,特别是某些玻璃纤维具有强度比相同粗细的钢丝高出数倍的特性,使其成为理想的增强材料,因而玻璃纤维已被广泛地应用于交通、运输、建筑、环保、石油、化工、电器、电子、机械、航空、航天、核能、兵器等领域。为了充分发挥玻璃纤维强度高的特性,许多专家学者对此做了大量研究,许多国家着手研制更高强力的玻璃纤维,例如20世纪80年代后,法国、日本先后宣布生产RT高强玻璃纤维,俄罗斯随后也研制成BM高强玻璃纤维,它们的强度都比E玻璃纤维高出30%~40%,主要被应用于航天、航空、导弹等军事领域[1]。也有人从玻璃纤维的摩擦性能方面着手,研究防止玻璃纤维因脆性而产生断裂,达到保持玻璃纤维强度的目的。本文从玻璃纤维纱线的捻度设计出发,研究玻璃纤维纱线捻度与强力的关系,探索玻璃纤维纱线的最佳强力时的捻系数,以提高普通玻璃纤维纱线的强度,使其织物具有更高的强伸性能。

1 实验原理和方法

1.1 实验原理

玻璃纤维纺织品分为无捻结构和有捻结构两大系列,在玻璃纤维的有捻结构产品中,玻璃纤维原丝、单股或多股合并经初次加捻制成单纱,两根或多根单纱合并经第二次加捻制成股线,两根或多根股线再次或

收稿日期:2009-04-25

作者简介:刘明(1957-),男,河南开封人,讲师,主要从事纺织工程学科的教学和科研工作。多次合并加捻制成缆线[2]。

一般地讲,单纱的强力、伸长率、初始模量等物理指标与纱线加工过程中的捻度大小和分布有着密切的关系。根据纱线断裂机理,纱线强力先随着捻度的增加而提高,然后随着捻度的增加而减小。纱线强力最高时的捻度称为临界捻度,其对应的捻系数为临界捻系数。近年来国内不少书籍和期刊均有文献认为,对于两股及两股以上单纱并合加捻形成股线的最佳强力捻度的选择,无论是根据股线捻合后单纱内纤维捻幅变化情况,还是以股线中纤维的曲线方程及曲线上任意点的曲率、挠率、距线轴垂直距离及对线轴倾斜角分析股线结构和物理性能关系,得到的共同结论是:股线的捻系数为单纱捻系数乘以该股线的股数平方根时,可获得股线最佳强力。按此计算2~6股的捻系数分别为1.414α

、1.732α

、2.000α

、2.236α

、2.450α

0 (α

为单纱捻系数)。但是以上结论与生产中实际使用的捻系数有很大出入。根据实验得到,棉27.8tex 3~6股的股线最大强力捻系数分别为1.042α0、1.006α0、0.978α0、0.957α0。

1.2 实验材料和方法

1.2.1 实验原料

实验原料是由上海鸿珅公司提供的CC9双股33tex×2玻璃纤维纱线,编号#A;上海朗健工业纤维有限公司提供的CC9双股33tex×2×2的玻璃纤维纱线,编号#B。

1.2.2 实验仪器

Y331型电动捻度试验机,YG(B)021D型单纱强

62

Vol.37No.9,2009工艺研究

力机,YG026B型电子织物强力机。

1.2.3 实验方法

先测试#A纱线结构和性能,再对该单纱追加不同

的捻度,并测试其不同捻度时的强力,得到纱线强力最

高时的临界捻度;然后用两根具有临界捻度的单纱进

行合股并反向加捻,股线加捻的捻系数取值分别为单

纱捻系数的0.9、1.0、1.1、1.2、1.3倍,分别测试不同

捻度股线的强力,得出最大强力时的股线捻度;最后用

不同捻度的玻璃纤维纱线织成织物,观测玻璃纤维纱

线捻度对织物强力的影响。

玻璃纤维纱线的断裂强力和断裂伸长率测定方法

采用G B/T7690.3—2001,玻璃纤维织物的断裂强力

和断裂伸长测定方法采用G B/T7689.5—2001。

2 实验结果与分析

2.1 玻璃纤维单纱的最佳强力捻系数

测试#A原纱捻度,为4.6捻/10c m,在此基础上

追加捻度,然后测试其在不同捻度下的玻璃纤维单纱

强力,结果见表1。

表1 #A单纱捻度与强力的关系

样本

原单捻度

/捻?(10cm)-1

追加捻度

/捻?(10cm)-1

实有捻度

/捻?(10c m)-1

单纱强力/c N

1 4.60 4.61263

2 4.6 3.482183

3 4.6 5.4102590

4 4.6 6.4112615

5 4.67.4122833

6 4.68.4132722

7 4.69.4142626

8 4.611.4162617

捻度较小时,玻璃纤维纱强力随着捻度的增加不断提高,增加到12捻/10c m时,强力达到最大,为2833c N,当再增加玻璃纤维的单纱捻度时,强力不但不增加,且会随捻度的增加逐渐下降。由此,根据捻度和捻系数的关系,计算#A单纱为12捻/10c m的最佳强力捻系数=号数×捻度/10c m=66×12=97.5。

2.2 玻璃纤维股线的最佳强力捻系数

根据玻璃纤维单纱在捻度12捻/10cm时获得最大纱线强力的结果,取两根12捻/10c m的玻璃纤维纱线再进行合股加捻,捻向为与单纱加捻方向相反的S捻。股线的加捻程度依照实际生产中股纱和单纱的捻系数比的经验数据确定一个范围,根据股线的捻系数计算得到股线的捻度,例如,取股线和单纱的捻系数比为1∶1,则股线的捻系数=97.5×1.1=107.3,股线捻度

=捻系数/号数=107.3/132=9.3捻/10c m。分别对不同加捻程度的玻璃纤维双股线进行强力测试,得到捻度与强力的关系,见表2。

表2 股线与单纱的捻系数比和强力的关系

股线与单纱的捻系数比股线的捻度/捻?(10c m)-1股线断裂强力/N

0.97.638

18.557.5

1.19.361.6

1.210.256.5

1.311.154

从表2可见,股线捻度—强力曲线为凸型,当股线和单纱的捻系数比为1∶1、股线的捻度为9.3捻/10c m 时,股线的强力达到最大,为61.6N。

2.3 玻璃纤维股线强力对织物强力的影响

用不同捻度的玻璃纤维纱线在实验室小样机上织成玻璃纤维织物,测试其经向强力,测试结果见表3。为了使实验结果具有可比性,在织布过程中采用同一筘号,各织物的组织相同,经密相同。织物试样1采用#A织制,织物试样3采用#B织制,以上两种纱线的捻度和强力等数据由测试而得。织制试样2和试样4织物的纱线分别在实验室中用#A再追加捻度并合加捻而得。

表3 不同捻度结构的玻璃纤维织物强力

项目试样1试样2试样3试样4玻璃纤维纱线#A#A加捻并股#B#A加捻并股

纱线细度/tex33tex×233tex×2×233tex×2×233tex×2×2单线捻度/捻?(10c m)-14.6101112

股线捻度/捻?(10c m)-1—811.69.3单纱强力/cN1263.2259026153833

股线强力/N—47.8356.7061.60

织物组织平纹平纹平纹平纹

织物经密/根?(10c m)-180808080织物经向强力/N346133414731544

织物伸长率/%2.024.965.145.34

从表3中的数据可见,织物强力随着纱线强力的提高而提高,纱线的强力随捻度结构的变化而改变。由于试样4的织物用实验得出的最佳强力捻度的玻璃纤维纱线织制,其织物强力1544N,比试样3的1473N高5%,比试样2高15.7%,说明编号为#B的33tex×2×2玻璃纤维纱线的捻度结构还没有达到最佳;试样4织物用的纱线比试样1用的纱线粗2倍,但

(下转第57页)

72

Vol.37No.9,2009技术改造(2)采用P LC控制技术,用AC300型张力调节装

置取代AB30型张力调节装置。AC300型张力调节装置采用被动与制动相结合调节经纱张力,通过车头显示器对纱线退绕长度进行设定,根据经轴退绕直径的变化,通过P LC逻辑运算出经纱退绕量,以此控制比例阀按比例减少或增加输出制动气压,以精确地调整制动力,使得生产过程实现恒张力自动控制。

4.2 改造后的特点

经轴退绕装置改造后具有如下特点:(1)整经轴支撑托架制动装置使经轴退绕灵活、平稳;(2)AC300型张力调节装置主要由比例阀实时控制,结构简单;

(3)避免了整经轴制动盘中心孔的磨损,整经轴维修费用降低95%;(4)退绕张力平稳,控制可靠。

5 改造效果

在Z AX-e-340型织机上生产CJ9.7/14.6681/ 472269品种,浆纱机改造前后工艺及效果对比见表1、2。表1 S232型祖克浆纱机改造前后上浆工艺及浆纱效果对比项目改造前改造后浆纱机线速/m?m in-14545

浆液黏度/s9.29.1

浆液固体量/%13.212.9

浆液温度/℃9898

第一压浆力/kN7~109

第二压浆力/kN1817

上浆率/%12.812.5

回潮率/% 6.87.1

伸长率/% 1.1 1.3

增强率/%51.4267.6

减伸率/%23.625.6

毛羽降低率/%60.167.3

浆纱好轴率/%85.495.6

注:使用YT-821型漏斗3#孔测试黏度;浆料配方相同。

表2 S232

型祖克浆纱机改造前后织造效果对比

项目改造前改造后织造车速/r?m in-1450450经纱断头/根?(台?h)-1 1.160.86

纬纱断头/根?(台?h)-1 3.28 2.78织机效率/%81.693.6

下机一等品率/%86.595.4

注:表2数据是一个月统计的平均值。

6 结 语

通过应用成熟的多单元同步控制技术和可编程P LC控制技术对老式祖克S232型浆纱机的4大部分进行了彻底的改造,即:(1)车头两单元改造,(2)烘筒温度自控,(3)压浆力的线性控制,(4)经轴退绕恒张力控制。经过改造前后上浆性能和织造效果的数据对比,表明该机已具有了较高的自动化程度和控制精度可靠性,实现了织轴卷绕张力、烘燥温度、压浆力和退绕张力的自动控制,使浆纱机达到了优质、高产、低消耗的目标。

参考文献:

[1] 汤其伟.G A308型浆纱机的原理及使用[M].北京:中国纺织出版

社,2005.

[2] 崔春江,张来香,曹东风.经轴退绕张力装置的使用与维护[J].棉

纺织技术,2002,30(6

):46-47.

[3] 张素香,等.G A306型浆纱机两单元传动改造实践[J].棉纺织技

术,2005,33(8):59-60.

[4] 崔运喜,韩爱国.浆纱机回丝的产生与控制[J].棉纺织技术,

2006,34(5):53.

[5] 萧汉斌.新型浆纱机与高压上浆工艺路线研究[J].棉纺织技术,

2002,30(6):10.

[6] 洪仲秋.全面理解高压上浆的优越性[J].棉纺织技术,2002,30

(6):15.

(上接第27页)

由于试样4用的纱线采用了合理的捻度,其织物强力比试样1高出3.5倍,说明通过合理的捻度结构设计可以有效地提高玻璃纤维织物的强力。

3 结 语

实验证明,玻璃纤维纱线的捻度和强力的关系和其他纤维一样,先是随着捻度的增大强力提高,当达到临界值后,纱线强力会随着捻度的增大而降低。采用合理的纱线捻度可以提高玻璃纤维纱线的强力,进而提高玻璃纤维织物的强力,有效地发挥玻璃纤维高强性能的作用。

参考文献:

[1] 危良才.国内外玻璃纤维制品生产现状及发展动向[J].纤维复合

材料,2005,(2):61-66.

[2] 张耀明,等.玻璃纤维与矿物棉全书[M].北京:化学工业出版社,

2001.

[3] 龙在吟.股线捻系数的理论探讨[J].纺织学报,1985,(7):20.

[4] 靳悦敬.产业用纺织品股线捻度与最佳强力关系的回归分析[J].

棉纺织技术,1996,(4):231-233.

[5] 何文元.维纶通丝的捻度设计[J].上海纺织科技,2004,(6):27

-28.

75

常用材料的导热系数表.

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。 总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的时间也越多,效能也越差。 c. 对于导热材料,选用合适的导热率、厚度是对性能有很大关系的。选择导热率很高的材料,但是厚度很大,也是性能不够好的。最理想的选择是:导热率高、厚度薄,完美的接触压力保证最好的界面接触。 d、使用什么导热材料给客户,理论上来讲是很困难的一件事情。很难真正的通过一些简单的数据,来准确计算出选用何种材料合适。更多的是靠测试和对比,还有经验。测试能达到产品要求的理想效果,就是最为合适的材料。 e、不专业的用户,会关注材料的导热率;专业的用户,会关注材料的热阻值。

纱线毛羽基本知识

纱线毛羽基本知识 一、基本概况 纱线毛羽是由纱线在成纱过程中,纤维露出纱体表面而形成的,棉纱是由一根一根短纤维经捻合凝聚而成的,有毛羽伸出纱体是必然的。毛羽按纤维伸出纱线基体的形态不同分为:端毛羽、圈毛羽和浮游毛羽三种;按纱线方向分为:头向毛羽、尾向毛羽、双向毛羽、圈向毛羽和乱向毛羽等。一般情况,0.5~1mm长度的毛羽占总数的60%左右,1~3mm长度的毛羽占总数的35%左右,3mm以上长度的毛羽占毛羽总数的5%左右。 毛羽是影响纱线外观和风格的一个重要质量指标,纱线毛羽的状态直接影响到织造效率、布面风格和染色效果。特别是3mm以上的毛羽会严重影响后道的生产,影响纱线及其最终产品的外观、手感和使用性能。如:纱线之间容易缠结,导致织布时纱线不能顺利通过经停片、综眼和筘齿,造成开口不清或断头增多。在无梭织机上使用时,因织机多为小梭口、大张力、高速度的工作状态,若纱线毛羽问题严重,则会引起经纱阻挡断头,织造效率降低。 随着纺织产品日新月异的变化和人们丰富多彩的消费需求,近几年来对纱线的毛羽问题也相应提出了更新的要求。由于环锭纱线的毛羽形态无规则性,在纱线表面的分布呈随机性,即使同一管纱线大、中、小纱各段长度反映的各种长度毛羽值往往差异也大。因此如何分析与评估本厂环锭纱线的毛羽状况,建立和加强纱线毛羽的质量控制和管理,必须从企业实际出发,充分利用先进的纱线毛羽检测手段,制定有关毛羽的质量标准,防止毛羽不良现象的产生,满足用户的要求。 二、毛羽不良的几种现象: 纱的毛羽问题有下列几种现象: 1、毛羽总体值较高,布面不清晰,严重影响染色效果; 2、毛羽CV值较高,布面欠平整,引起染色差异; 3、少数纱线毛羽浓密,导致在织布通道中形成棉球、棉结影响断头及布面

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

玻璃纤维的成分及性能[1]

玻璃纤维的成分及性能 生产玻璃纤维用的玻璃不同于其它玻璃制品的玻璃。目前国际上已经商品化的纤维用的玻璃成分如下: 1、E-玻璃亦称无碱玻璃,系一种硼硅酸盐玻璃。目前是应用最广泛的一种玻璃纤维用玻璃成分,具有良好的电气绝缘性及机械性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,它的缺点是易被无机酸侵蚀,故不适于用在酸性环境。 2、C-玻璃亦称中碱玻璃,其特点是耐化学性特别是耐酸性优于无碱玻璃,但电气性能差,机械强度低于无碱玻璃纤维10%~20%,通常国外的中碱玻璃纤维含一定数量的三氧化二硼,而我国的中碱玻璃纤维则完全不含硼。在国外,中碱玻璃纤维只是用于生产耐腐蚀的玻璃纤维产品,如用于生产玻璃纤维表面毡等,也用于增强沥青屋面材料,但在我国中碱玻璃纤维占据玻璃纤维产量的一大半(60%),广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,因为其人格低于无碱玻璃纤维而有较强的竞争力。 3、高强玻璃纤维其特点是高强度、高模量,它的单纤维抗拉强度为2800MPa,比无碱玻纤抗拉强度高25%左右,弹性模量86000MPa,比E-玻璃纤维的强度高。用它们生产的玻璃钢制品多用于军工、空间、防弹盔甲及运动器械。但是由于价格昂贵,目前在民用方面还不能得到推广,全世界产量也就几千吨左右。 4、AR玻璃纤维亦称耐碱玻璃纤维,主要是为了增强水泥而研制的。 5、A玻璃亦称高碱玻璃,是一种典型的钠硅酸盐玻璃,因耐水性很差,很少用于生产玻璃纤维。 6、E-CR玻璃是一种改进的无硼无碱玻璃,用于生产耐酸耐水性好的玻璃纤维,其耐水性比无碱玻纤改善7~8倍,耐酸性比中碱玻纤也优越不少,是专为地下管道、贮罐等开发的新品种。 7、D玻璃亦称低介电玻璃,用于生产介电强度好的低介电玻璃纤维。 除了以上的玻璃纤维成分以外,近年来还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。另外还有一种双玻璃成分的玻璃纤维,已用在生产玻璃棉中,据称在作玻璃钢增强材料方面也有潜力。此外还有无氟玻璃纤维,是为环保要求而开发出来的改进型无碱玻璃纤维。 玻璃纤维制品品种与用途 1、无捻粗纱 无捻粗纱是由平行原丝或平行单丝集束而成的。无捻粗纱按玻璃成分可划分为:无碱玻璃无捻粗纱和中碱玻璃无捻粗纱。生产玻璃粗纱所用玻纤直径从12~23μm。无捻粗纱的号数从150号到9600号(tex)。无捻粗纱可直接用于某些复合材料工艺成型方法中,如缠绕、拉挤工艺,因其张力均匀,也可织成无捻粗纱织物,在某些用途中还将无捻粗纱进一步短切。 (1)喷射用无捻粗纱适合于玻璃钢喷射成型使用的无捻粗纱要具备如下性能:①良好的切割性,在连续高速切割时产生的静电少; ②无捻粗纱切割后分散成原丝的效率要高,也即分束率高,通常要求90%以上;③短切后的原丝具有优良的覆模性,可覆盖在模具的各个角落;④树脂浸透快,易于被辊子辊平并易于驱赶气泡;⑤原丝筒退解性能好,粗纱线密度均匀,适合于各种喷枪及纤维输送系统。喷射用无捻粗纱都是由多股原丝络制而成,每股原丝含200根玻纤单丝。 (2)SMC用无捻粗纱 SMC即片状模塑料,主要用于压制汽车部件、浴缸、水箱板、净化槽、各种座椅等。SMC用无捻粗纱在制造SMC片材时要切成lin(25mm)的长度,分散在树脂糊中,因此对SMC用无捻粗纱的要求是短切性好,毛丝少,抗静电性优良,在切 割时短切丝不会粘附在刀辊上。对着色的SMC而言,无捻粗纱要在高颜料含量的树脂糊中被树脂浸透。通常SMC无捻粗纱一般为2400tex,少数情况下也有用4800tex的。 (3)缠绕用无捻粗纱缠绕法用于制造各种口径的玻璃钢管、贮罐等。缠绕用无捻粗纱的号数从1200号到9600号,缠绕大型管道及贮罐多倾向于直接无捻粗纱,如4800tex的直接无捻粗纱。对缠绕用无捻粗纱的要求如下:a)成带性好,呈扁带状;b)无捻粗纱退解性好,在从纱筒退解时不脱圈,不形成"鸟巢"状乱丝;c)张力均匀,无悬垂现象;d)线密度均匀,一般须小于±7%;⑤无捻粗纱浸透性好,从树脂槽通过时易为树脂润湿及浸透。 (4)拉挤用无捻粗纱拉挤用于制造断面一致的各种型材,其特点是玻纤含量高,单向强度大。拉挤用无捻粗纱可以是多股原丝并合的也可以是直接的无捻粗纱,其线密度范围为1100号到4400号。各种性能要求与缠绕无捻粗纱大体相同。 (5)织造用无捻粗纱无捻粗纱的一个重要用途是织造各种厚度的方格布或单向无捻粗纱织物,它们大多用于手糊玻璃钢成型工艺中。对强造用无捻粗纱有如下要求:a)良好的耐磨性;b)良好的成带性;c)织造用无捻粗纱在织造前需经强制烘干;d)无捻粗纱张力均匀,悬垂度应符合一定标准;e)无捻粗纱退解性好;f)无捻粗纱浸透性好。

纱线毛羽的检测

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/5b9606421.html,) 纱线毛羽的检测 关于纱线毛羽的特性及其对喷气织机效率和织物外观的影响,国内外早已进行了许多研究,对毛羽数量的测定也相应地研制出各式仪器,乌斯特07年公报是应用乌斯特条干仪—3、4、5型条干仪增加测试毛羽摸块测试毛羽。 一、德国蔡尔伟格(zweigle)g565型g566型毛羽测试仪是测定纱线毛羽长度及分布状况的最新式仪器。有人对棉、粘胶短纤的普梳及精梳纱进行了测试,认为细纱毛羽长度的分布呈指数规律分布,棉纱约有75%的毛羽及毛圈长度低于1毫米,而仅有1%的毛羽长度超过3毫米。3毫米长及以上的毛羽为有害毛羽。会显著的影响喷气织机的效率。 二、国外纱线毛羽测定的仪器除了德国的g565外,瑞士uster3-4-5型及最新的试验室usteroh传感器与ustertester5-s400或ustertester5-s800型条干仪结合测试纱线毛羽;还有英国锡莱研究所的毛羽测试仪等。 三、国产毛羽测定有yg172a型及bt—2型在线毛羽测试仪,yg172a型yg171b型毛羽仪是在yg171a型基础上进步发展起来的第三代毛羽测试仪。yg172a型仪器与日本 dt201及锡莱毛羽仪等原理基本相似,而yg171b型则与g565相似,是目前国内最为理想的毛羽测试仪。可连续则试1—50次,任意选定;毛羽长度一次同时测定1、2、3、4、5、7、10、12毫米,另外有数据自动显示及打印记录机械,可报告平均值,不匀率cv%及毛羽直方图等。,我国长岭纺织电子仪器厂生产供应以上检测毛羽的仪器。别特yg172a 型毛羽测试仪能对纱线中毛羽的长短、数量及分佈进行自动测试和统计分析,适于对短纤纱及上浆后的经纱毛羽的测试,它是利用光电转换原理,把毛羽遮光引起的光的变化转变为电信号,经放大整形处理而形成毛羽计数脉冲,经电子计算机给于转换显示。

纱线捻度机的操作规程通用版

操作规程编号:YTO-FS-PD869 纱线捻度机的操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

纱线捻度机的操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1.确定试样长度:松开固定螺钉,移动滑座,使滑座的前缘与导轨上所选取的刻度对齐。 2.夹持试样:将定位片刹好,将试样引入左纱夹夹紧,放开定位片,使试样牵动摆动片并将试样引入右纱夹夹紧。 3.将千、百位指针用手扳转到零位 4.察看试样的捻向决定解捻方向,若试样为“Z”捻,将搭牙板移至“S”处,若为“S”捻,将搭牙板移至“Z”处。 5.接通电源,打开电源开关,使右纱夹转动开始解捻。 6.细纱在解捻时,试样长度伸长,弧指针逐渐左移,直到指针与限为片接触为止,此时,试样因解捻所伸长部分受限位片停止摆动而下垂,待捻度退尽再加捻时,弧指针渐向右移回复至弧标尺“零”位,即关车,右纱夹停止回转。 7.股线在解捻时,试样长度伸长,弧指针逐渐左移,

玻璃纤维的成分及性能

◆玻璃纤维的成分及性能 生产玻璃纤维用的玻璃不同于其它玻璃制品的玻璃。目前国际上已经商品化的纤维用的玻璃成分如下: 1、E-玻璃亦称无碱玻璃,系一种硼硅酸盐玻璃。目前是应用最广泛的一种玻璃纤维用玻璃成分,具有良好的电气绝缘性及机械性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,它的缺点是易被无机酸侵蚀,故不适于用在酸性环境。 2、C-玻璃亦称中碱玻璃,其特点是耐化学性特别是耐酸性优于无碱玻璃,但电气性能差,机械强度低于无碱玻璃纤维10%~20%,通常国外的中碱玻璃纤维含一定数量的三氧化二硼,而我国的中碱玻璃纤维则完全不含硼。在国外,中碱玻璃纤维只是用于生产耐腐蚀的玻璃纤维产品,如用于生产玻璃纤维表面毡等,也用于增强沥青屋面材料,但在我国中碱玻璃纤维占据玻璃纤维产量的一大半(60%),广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,因为其人格低于无碱玻璃纤维而有较强的竞争力。 3、高强玻璃纤维其特点是高强度、高模量,它的单纤维抗拉强度为2800MPa,比无碱玻纤抗拉强度高25%左右,弹性模量86000MPa,比E-玻璃纤维的强度高。用它们生产的玻璃钢制品多用于军工、空间、防弹盔甲及运动器械。但是由于价格昂贵,目前在民用方面还不能得到推广,全世界产量也就几千吨左右。 4、AR玻璃纤维亦称耐碱玻璃纤维,主要是为了增强水泥而研制的。 耐碱玻璃纤维,又称AR玻璃纤维,英文:alKali -resistant glass fibre,主要用于玻璃纤维增强(水泥)混凝土(简称GRC)的肋筋材料,是100%无机纤维,在非承重的水泥构件中是钢材和石棉的理想替代品。它的特点是耐碱性好,能有效抵抗水泥中高碱物质的侵蚀,握裹力强,弹性模量、抗冲击、抗拉、抗弯强度极高,不燃、抗冻、耐温度、湿度变化能力强,抗裂、抗渗性能卓越,具有可设计性强,易成型等特点,是广泛应用在高性能增强(水泥)混凝土中的一种新型的绿色环保型增强材料。 5、A玻璃亦称高碱玻璃,是一种典型的钠硅酸盐玻璃,因耐水性很差,很少用于生产玻璃纤维。 6、E-CR玻璃是一种改进的无硼无碱玻璃,用于生产耐酸耐水性好的玻璃纤维,其耐水性比无碱玻纤改善7~8倍,耐酸性比中碱玻纤也优越不少,是专为地下管道、贮罐等开发的新品种。 7、D玻璃亦称低介电玻璃,用于生产介电强度好的低介电玻璃纤维。 除了以上的玻璃纤维成分以外,近年来还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。另外还有一种双玻璃成分的玻

纱线指标

https://www.wendangku.net/doc/5b9606421.html,/Articles/2008-2-22/131471.html 毛羽指数和捻度对棉纱磨损性能的影响 摘要:研究棉纱的毛羽指数和捻度对其磨损性能的影响,采用cTT纱线性能测试仪,模拟了棉纱在高速运行状态下与机件的磨损,并测试了不同线密度、不同毛羽指数和不同捻度的棉纱磨损性能。通过回归分析,发现棉纱在相同线密度条件下,其磨损性能与纱线毛羽指数和捻度有显著的线性关系,且毛羽指数对棉纱磨损性能的影响大于捻度对棉纱磨损性能的影响. 纱线的磨损性能是一项重要的物理性能指标,如何更有效地改善纱线的磨损性能成为业界关注的焦点。目前,国内测定纱线磨损性能的方法无统一标准,相关研究报道也较少。因此,纱线磨损性能的研究就显得尤为重要。本文选取多种来自不同生产厂家不同线密度的环锭精梳棉纱作为测试对象,模拟了棉纱在高速运行中对机件的磨损。通过测试不同棉纱的磨损性能,探索并建立了在线密度相同条件下棉纱磨损性能与毛羽指数和捻度问的关系。 1试验部分 1.1试验仪器 本文测试棉纱磨损性能和毛羽指数所使用的仪器均为美国劳森一亨谱希尔(Lawson?Hemp hill)公司生产的CTT(Constanf tension tansport)纱线性能测试仪。 磨损性能的测试原理如图1所示。仪器采用高速运动的棉纱对铜丝的磨损程度来模拟织造生产时棉纱存高速运行状态下对机件的磨损程度。铜丝由两个钳口固定,棉纱跨过铜丝在一定的初加张力和速度下运行,直到铜丝断裂,通过测长装置测最铜丝断裂时棉纱的运行长度,用这一长度反映棉纱对纺织机件的磨损性能。 CTT对纱线毛羽的测试原理是利用CCD摄像头精密地扫描纱线直径,CCD感光阵列将感应到的光姒转化为电压信号,再由其中的模数转换电路转化为数字信号,从而得到一幅纱线外观的数字图像。并根据设定的灰度域值得到纱线的主十轮廓、纱线的毛羽图形以及相应的纱线毛羽指数,、所谓“毛羽指数”即单位长度纱线内,纱线单侧面上伸长出长度超过某一设定长度值的毛羽根数的统计值。 棉纱捻度的测试办法采用的是退捻加捻法,测试标准为GB/T 2543?1989。 1.2试样及测试条件 本文所使用的试样是来自44个不同企业的环锭精梳优级棉纱,其线密度值如下:

(精品)热阻及热导率的测量方法

热阻及热导率测试方法 范围 本方法规定了导热材料热阻和热导率的测试方法。本方法适用于金属基覆铜板热 阻和导热绝缘材料热阻和热导率的测试。 术语和符号 术语 热触热阻 contact resistance 是测试中冷热两平面与试样表面相接触的界面产生热流量所需的温差。接触热阻 的符号为R I 面积热流量areic heat flow rate 指热流量除以面积。 符号 下列符号适用于本方法。 λ:热导率,W/(m﹒K); A:试样的面积,m 2 ; H:试样的厚度,m; Q:热流量,W 或者 J/s; q:单位面积热流量,W/ m 2 ; R:热阻,(K﹒m 2 )/W。 原理 本方法是基于测试两平行等温界面中间厚度均匀试样的理想热传导。 试样两接触界面间的温 度差施加不同温度,使得试样上下两面形成温度梯度,促使热流量全部垂直穿过试样测试表 面而没有侧面的热扩散。 使用两个标准测量块时本方法所需的测试: T1=高温测量块的高温,K; T2=高温测量块的低温,K; T3=低温测量块的高温,K; T4=低温测量块的低温,K; A=测试试样的面积,m 2 ; H=试样的厚度,m。 基于理想测试模型需计算以下参数: T H:高温等温面的温度,K; T C:低温等温面的温度,K; Q:两个等温面间的热流量 热阻:两等温界面间的温差除以通过它们的热流量,单位为(K﹒m 2 )/W; 热导率:从试样热阻与厚度的关系图中计算得到,单位为W/(m.K)。

接触热阻存在于试样表面与测试面之间。 接触热阻随着试样表面特性和测试表面施加给试样 的压力的不同而显著变化。因此,对于固体材料在测量时需保持一定的压力,并宜对压力进 行测量和记录。热阻的计算包含了试样的热阻和接触热阻两部分。 试样的热导率可以通过扣除接触热阻精确计算得到。 即测试不同厚度试样的热阻,用热阻相 对于厚度作图,所得直线段斜率的倒数为该试样的热导率,在厚度为零的截取值为两个接触 界面的接触热阻。如果接触热阻相对于试样的热阻非常小时(通常小于1%),试样的热导率 可以通过试样的热阻和厚度计算得出。 通过采用导热油脂或者导热膏涂抹在坚硬的测试材料表面来减小接触热阻。 仪器 符合本测试方法的一般特点要求的仪器见图A.1和图A.2。 该套仪器增加测厚度及压力监测等 功能,加强了测试条件的要求来满足测试精度需要。 仪器测试表面粗糙度不大于0.5μm;测试表面平行度不大于5μm。 精度为1μm归零厚度测试仪(测微计、LVDT、激光探测器等)。 压力监测系统。 图A.1 使用卡路里测量块测试架 图A.2 加热器保护的测量架 热源可采用电加热器或是温控流体循环器。主热源部分必需采用有保护罩进行保护, 保护罩 与热源绝缘,与加热器保持±0.2K的温差。避免热流量通过试样时产生热量损失。无论使用 哪一种热源,通过试样的热流量可以用测量块测得。 热流量测量块由测量的温度范围内已知其热导率的高热导率材料组成。为准确测量热流量, 必须考虑热传导的温度灵敏度。推荐测量块材料的热导率大于50 W/(m.K)。 通过推算测量块温度与测试表面的线性关系(Fourier传热方程),确定测量块的热端和冷端 的表面温度。 冷却单元通常是用温度可控的循环流体冷却的金属块,其温度稳定度为±0.2 K。 试样的接触压力通过测试夹具垂直施加在试样的表面上,并保持表面的平行性和对位。

玻纤增强尼龙材料的特点及应用

玻纤增强尼龙材料的特点及应用 玻纤增强尼龙材料是在尼龙树脂中加入一定量的玻璃纤维进行增强而得到的塑料。玻纤增强尼龙具有非常优越的综合性能,广泛应用于电工工具、汽车行业、机械工业、运动器材、办公设备等领域。 玻纤增强尼龙材料的特点 优良的机械力学性能; 良好的耐热性; 良好的尺寸稳定性; 良好的自润滑性和耐磨性; 良好的注塑成型性能和外观; 良好的着色性能; 耐低温; 其它性能。 玻纤增强尼龙的应用领域 电动工具:切割机、电锯、电钻、角磨机、抛光机、电锤、电镐、热风枪、锂电螺丝批、砂光机、雕刻机等; 汽车行业:散热水室、进气歧管、镜框支架、通风格栅、门把手、节流阀体、风扇罩、变速控制杆罩、手刹、加速器踏板、齿轮等; 机械工业:水泵、水阀、轴承、轴套、齿轮、支架、托辊等; 运动器材:滑雪器材、童车、自行车、健身器材零部件等; 办公装备:座椅支架、滑轮、转轴、碎纸机齿轮、打印机部件等。 电动工具PA6GF30关键性能特点: 1、高刚性 2、良好的耐低温韧性 3、良好的耐候性 4、优良的着色性能 5、良好的表面外观 6、成本较合算 材料牌号:PA6G308 进气歧管PA6GF30关键性能特点: 1、刚性 2、长期耐热稳定性 3、轻量化 4、良好的焊接性能 5、高爆破强度 6、低噪音 7、耐油性

材料牌号:PA6G308 散热水室PA66GF30关键性能特点: 1、耐醇解性 2、耐热稳定性 3、刚性 4、低蠕变性 5、耐疲劳性 材料牌号:SE8066HS 运动器材PA6GF30关键性能特点: 1、高刚性 2、高冲击强度 3、良好外观 4、良好着色性 5、耐低温 材料牌号:PA6G308 办公装备PA66GF30关键性能特点: 1、替代金属 2、良好表面外观 3、耐冲击 4、刚性 5、耐磨性 6、成本合算 材料牌号:PA66G308 机械工业PA66GF30关键性能特点: 1、替代金属 2、良好表面外观 3、耐冲击 4、高刚性 5、耐化学性 6、耐磨性 材料牌号:PA66G308

常见材料导热系数(史上最全版)

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于(m·K)的材料称为保温材料),而把导热系数在瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 — 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。

玻纤增强PP的特性

玻纤增强PP的特性 PP加玻纤,通常,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。如果要想 把PP用在工程结构件上,就必须使用玻璃纤维进行增强。 PP加玻纤,通过玻璃纤维增强的PP产品的机械性能能够得到成倍甚至数倍的提高。具体来说,拉伸强度达到了65MPa~90MPa,弯曲强度达到了70MPa~120MPa,弯曲模量达到了3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美,并且更耐热。 PP加玻纤,一般ABS和增强ABS的耐热温度在80℃~98℃之间,而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。 增强改性PP所用的玻璃纤维,要求长度为0.4~0.6ram,若长度小于0.04mm,玻璃纤维只起填充作用而无增强效果,发达国家都在开发长丝增强注射材料。玻璃纤维含量在40%(质量分数)含量内,玻 璃纤维含量越高,PPR弹性模量、抗张、抗弯强度也越高。但一般不能超过40%,否则流动量下降,失去补强作用,一般在10%~30%。 PP填充改性,在PP中加入一定量的无机矿物,如滑石粉、碳酸钙、二氧化钛、云母等,可提高刚性,改善耐热性与光泽性;填加碳 纤维、硼纤维、玻璃纤维等可提高抗张强度;填加阻燃剂可提高阻燃性能; 填加抗静电剂、着色剂、分散剂等可分别提高抗静电性、着色性及流动性等;填加成核剂,可加快结晶速度,提高结晶温度,形成更多更小的球晶 体,从而提高透明性和冲击强度。因此,填充剂对提高塑料制品的性能、改善塑料的成型加工性、降低成本有显著的效果。 玻纤增强PP的应用 PP作为四大通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是它也存 在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺 点。因此,必须对其进行改性,以使其能够适应产品的需求。对PP材料 的改性一般是通过添加矿物质增强增韧、耐候改性、玻璃纤维增强、阻燃改性和超韧改性等几个途径,每一种改性PP在家用电器领域都有着大量 应用。 PP加玻纤材料,可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇。此外,它也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。

纱线捻度实验

纱线捻度实验 一、实验目的与要求 通过实验,熟悉Y331A型纱线捻度仪的结构和使用方法,实测单纱的捻度、捻系数、捻度变异系数和股线的捻度及捻缩率。参阅GB 2543.1和GB 2543.2 二、实验仪器、工具及试样 Y331A型数字式纱线捻度仪(结构示意如图1),挑针,剪刀,单纱和股线各一种。 图1 Y331A型纱线捻度仪外形结构图 1―插纱架 2―导纱钩 3―定长标尺 4―辅助夹 5―衬板 6―张力砝码 7―伸长限位 8―弧标尺 9―摆片指针 10―左纱夹 11―解捻纱夹 12―控制箱 13―电源开关 14―水平泡 15-调零装置 16-锁紧螺钉 17-定位片 18-重锤盘 三、实验方法、步骤 (一)退捻加捻法测单纱捻度 1.检查仪器各部分是否正常(仪器水平,指针灵活等) 2.试样长度调整:隔距长度为(500±1)mm。 3.选择预加张力:预加张力为(0.50±0.10)cN/tex。 4.允许伸长的确定:将试样夹持在夹钳中,并将指针置零位。以每分钟800转或更慢的速度转动夹钳,直到纱线中纤维产生明显滑移。读取在断裂瞬间的伸长值,精确到±1mm,如果纱线没有断裂,读取反向再加捻前的最大伸长值。按照上述方法进行5次试验,计算平均值。取上述伸长值的25%作为允许伸长的限位位置。 5.捻向的确定:握持纱线的一端,并使其一小段(至少100mm)呈悬垂状态,观察此垂

直纱段的构成部分的倾斜方向,与字母“S”的中间部分一致的为S捻,与字母“Z”的中间部分一致的为Z捻。 6. 调节转速调节钮使转速为(1000±200)r/min。 7.按照仪器说明书预置“试验方法”,“试样长度”,“次数”,“捻向”,“纱线细度tex” 后按“试验”键进入测试状态。 8. 将试样插入纱架,调节其倾斜度,使纱经导纱钩顺利引出。穿过导纱钩,右手轻轻引纱,弃去试样始端数米,将纱线夹入左夹头后,打开左夹头定位手柄,并将纱线移至右夹头,打开右夹头夹持片,使纱线进入定位槽内并拉动纱线使左夹头指针指零后发光管亮,松开夹持片,将纱线夹紧。剪断露在右纱夹外的纱尾。 9. 按下“启动”键,右夹头旋转开始解捻,至左夹头指针指零时自停,此时显示屏显示 的是本次捻度(捻回/10cm)及捻回数。 10.重复8、9直至本次试验结束(达到预置次数)。按“打印”键,打印测试报表。 (二)直接退捻法测股线捻度 1.同单纱试验的1~6步。 2.类似单纱第7步,将试验方法设为“直接退捻法F0”,并设置“预置捻回数”,其他相同。 3.把伸长限位放开,按下“试验”键,打印机打出设置参数,仪器进入试验程序。 4.参照单纱试验装夹试样。 5.按下“启动”键,右夹头旋转开始解捻,至预置捻数时自停,观察解捻情况,再按“+”或“-”键,或用手动旋钮直至完全解捻,使用跳针从左向右分离观察。此时显示屏显示的就是该段股线的捻回数。 6.重复以上4、5步操作进行下一次试验,直至达到预置次数。 7.按“打印”键,打印报表。打印内容主要为:(1)平均捻度(捻回/10cm) (2)平均捻系数 (3)试验次数 (4)均方差 (5)平均差不匀率(%) (6)变异系数CV(%)。 四、实验报告内容 记录:温湿度,试样名称与规格,仪器型号,仪器工作参数,各指标值。 五、思考题 1.试述Y331L(N)型数字式纱线捻度机测定单纱捻度的原理。 2.影响试验结果的因素有哪些? 3.单纱与股线的捻度测定方法为何不同?

玻璃纤维——文献综述

文献综述 题目:玻璃纤维及其复合材料的性能与应用 姓名:顾典梅 专业:化学工程与工艺 班级:化工102 班 学号: 1008110206 指导教师:潘老师 日期:2013-6-17

玻璃纤维及其复合材料的性能与应用 摘要 材料是工业的基础,工业的发展,在很大程度上取决于新材料的开发与应用。玻璃纤维作为一种综合性能优良的无机非金属材料,被广泛应用于国民经济的众多领域,给工业的发展注入了新的活力。本文主要对玻璃纤维的发展、基本性能、复合材料及其应用做了介绍。 关键字:玻璃纤维复合材料性能 Abstract Material is the basis of industry,industrial development,development and depends greatly on the application of new materials.Glass fiber as a kind of inorganic non-metallic materials with excellent comprehensive properties,has been widely used in many fields of national economy,has injected new vitality to the development of industry.This paper mainly discusses the development,the basic properties of glass fiber,composite material and its application is introduced. Key words: glass fiber composite materials performance. 1、前言 在一般人的观念中,玻璃为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具有柔软性,配合树脂赋予形状以后终于可以成为优良之结构用材。可见,玻璃纤维并不是我们平日里想象的这般无用。玻璃纤维是塑料改性增强的主要品种,是实现通用塑料工程化的重要途径之一,它的使用能使制品的抗拉强度、刚性、热变形温度明显提高。玻璃纤维的应用已渗透到国民经济的各个领域,如交通、电子、建筑、卫生、环保、化工、造船、航空、航天等,已成为不可缺少的优良材料。玻璃纤维复合材料由于其材料性能的可设计性及轻质高强的特点,应用于航空、航天及国民经济的诸多领域,如建筑、陆上交通工具、船艇和近海工程、电子、电器、体育、医疗器械等。 在国发2号文件的指导及贵州省十二五规划中提出大力发展制造业,其中合成纤维产业也占很大比重,这是个良好的契机,充分利用好玻璃纤维及其复合材料,对于加快工业的进步,改善贵州经济又重要意义。 2、玻璃纤维的发展历程 文献[1][2][3]主要对玻璃纤维及其复合材料的发展性能等做了详细的介绍。玻璃纤维的发展主要经历了以下几个个阶段:

常用材料的导热系数表

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。 总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的时间也越多,效能也越差。 c. 对于导热材料,选用合适的导热率、厚度是对性能有很大关系的。选择导热率很高的材料,但是厚度很大,也是 性能不够好的。最理想的选择是:导热率高、厚度薄,完美的接触压力保证最好的界面接触。 d、使用什么导热材料给客户,理论上来讲是很困难的一件事情。很难真正的通过一些简单的数据,来准确计算出选 用何种材料合适。更多的是靠测试和对比,还有经验。测试能达到产品要求的理想效果,就是最为合适的材料。 e、不专业的用户,会关注材料的导热率;专业的用户,会关注材料的热阻值。

玻璃纤维成份和性能

玻璃纤维行业基本概念: 玻璃纤维成份和性能 生产玻璃纤维的基本原料是:石英砂、腊石、石灰石、白云石,为了熔化以上物质,还要加入硼酸和萤石作助熔剂。玻璃纤维按所含Na2O成分的多少分三类:无碱玻璃纤维、中碱玻璃纤维、高碱玻璃纤维。无碱玻璃纤维中含有SiO2 55~57%,Al2O3 10~17%,CaO 12~25%,MgO 0~8%,B2O3 8.5%,Na2O 0.5%。中碱玻璃纤维Na2O含量为12%,高碱玻璃纤维Na2O含量为15%,其它成分一样,含量稍微变动。从性能上看,无碱、中碱、高碱玻璃纤维其强度依次降低、耐久性依次变差、绝缘性依次减弱,只是耐酸性依次增强。无碱玻璃纤维多用于增强和绝缘材料,高碱玻璃纤维多用于稀酸环境,如蓄电池隔板、电镀槽、酸贮罐、酸过滤材料等,中碱玻璃纤维因价格优势在中国得到普遍使用。玻璃纤维与金属相比具有高强度、耐腐蚀、透光性和绝缘性好等特点。 玻璃纤维生产工艺 生产玻璃纤维常用的方法有两种:池窑法直接拉丝、球法坩锅拉丝。池窑法直接拉丝是将矿物原料磨细配制送入单元窑,用重油燃烧加热熔化物料后直接拉丝,具有产量大、质量稳、能耗低的特点,球法坩锅拉丝是从市场上购进玻璃球然后再通过电加热熔化拉丝,所用坩锅有陶土坩锅、全铂坩锅、代铂坩锅之分,前者只能用平板碎玻璃生产高碱玻璃纤维,全铂坩锅能耐高温且能制出干净纯净玻璃纤维,但单炉需铂铑合金3~4公斤,造价昂贵,现在主要用代铂坩锅,即熔化部分为耐高温陶土材料,拉丝漏板用铂銠合金材料,单炉用贵金属0.6 公斤既可,节省造价,但质量不如全铂坩锅,适合我国。球法坩锅拉丝所用漏板为50~800孔,单丝直径在9微米以下,一般需经过加捻纺织后制成各种玻璃纤维制品,此法能耗大、质量不稳定,但非常灵活,可补充池窑拉丝的一切空白。池窑拉丝用漏板为800~4000孔,单丝直径在11微米以上。 单丝用浸润剂涂油保护后集束成原丝,如果用于增强塑料则必需涂覆偶联剂。浸润剂的作用是:A浸润保护作用B粘结集束作用C防止玻璃纤维表面静电荷的积累D为玻璃纤维提供进一步加工和应用所需要的特性E使玻璃纤

相关文档