文档库 最新最全的文档下载
当前位置:文档库 › 共形阵列天线超宽频带波达方向实时估计

共形阵列天线超宽频带波达方向实时估计

共形阵列天线超宽频带波达方向实时估计
共形阵列天线超宽频带波达方向实时估计

一种小型超宽带微带天线

文章编号:1005-6122(2011)02-0060-03 一种小型超宽带微带天线* 官伯然曹建伟 (杭州电子科技大学天线与微波技术研究所,杭州310018) 摘要:给出了一种小型化超宽带微带天线,该天线采用微带线对半圆形和矩形组成的阶梯状辐射单元进行馈电,基板背面为相似形缺陷地结构窗口。天线参数采用电磁仿真软件CST进行仿真和优化。所设计的小型化超宽带微带天线相对带宽达144.9%(2.15 13.47GHz),带内回波损耗均在-10dB以下,整个工作频段内天线的增益平均在4dB以上,天线的辐射方向图形状在频带内基本保持不变。该天线具有结构紧凑和形状简单的特点,易于加工和集成。最终实际制作了天线样品,并进行了测试,实测数据与仿真结果吻合良好。实验结果表明该微带天线具有良好的小型化和超宽带特性。 关键词:超宽带,小型化,微带天线,缺陷地结构 A Small Size Ultra-wideband Microstrip Antenna GUAN Bo-ran,CAO Jian-wei (Institute of Antenna and Microwave Technology,Hangzhou Dianzi University,Hangzhou310018,China) Abstract:A compact ultra-wideband microstrip antenna is presented in the paper.The radiating element of this an-tenna is made up of semicircle plane and rectangle planes,which are fed by microstrip line.The same window of Defected Ground Structre(DGS)is etched on the back of the microstrip antenna.The performance of the antenna is simulated and op-timized by CST.The simulate result shows that the relative bandwidth of the designed antenna is over144.9%(2.15 13.47GHz),and the return loss is less than-10dB.The average gain is over4dB in the operating range.The radiation pattern is remained almost same type in the operating range.In addition to small size and simple shapes,the antenna is also easier to be fabricated and integrated.Finally,a sample antenna is fabricated and the performance is tested.The measured result shows a good agreement with the simulated one.The experimental results show that the microstrip antenna has the advantages of small size and UWB characteristic. Key words:ultra-wideband,small size,microstrip antenna,DGS 引言 随着现代通讯系统的飞速发展,通信设备的体积不断减小,通信频带不断向宽频带、高频段发展,对通信设备提出了越来越高的要求,推动了作为通信系统中的关键部件天线的小型化和宽带化的发展。2002年FCC将3.1 10.6GHz频段划归为超宽带(UWB)的民用频段[1]。UWB天线是超宽带通信的关键部件之一。超宽带天线在电气指标上需要满足输入端反射特性、辐射方向图和增益等指标。 微带天线是一种用微带贴片作为辐射单元的天线,由于其结构简单、体积小、重量轻、易于集成等优点,得到了广泛的应用。由于其频带窄的缺点限制了微带天线的发展[2-4],近年来微带天线的小型化和宽带技术越来越受到大家的重视[5-6]。目前国内外采用的小型化技术有:采用高介电常数或高磁导率的特殊材料基片(如LTCC)、改变电流路径、天线加载、附加有源网络等方法[1-6,8-9]。宽带化技术有渐变结构、增大基板厚度、降低基板的相对介电常数、引入寄生元等方法[2,4-6,11-12]。 本文通过对一种缺陷地类型的超宽带微带天线[10]进行仿真研究得出,除了在辐射单元下面采用缺陷地结构外,如果在馈电部位也采用缺陷地结构,不仅能使得天线的带宽加宽,而且还可以使天线的 第27卷第2期2011年4月 微波学报 JOURNAL OF MICROWAVES Vol.27No.2 Apr.2011 *收稿日期:2011-01-08;修回日期:2011-03-27 基金项目:国家自然科学基金(60673143),浙江省科技计划(2006C21020)项目

天线线列阵方向图

阵列方向图及MATLAB 仿真 1、线阵的方向图 2 ()22cos(cos )R φψπφ=+- MATLAB 程序如下(2元): clear; a=0:0.1:2*pi; y=sqrt(2+2*cos(pi-pi*cos(a))); polar(a,y); 图形如下: 若阵元间距为半波长的M 个阵元的输出用方向向量权重11(,,)M j j M g e g e φφ???加以组合的话,阵列的方向图为 [(1)cos()]1()m M j m m m R g e ψπφφ--==∑ MATLAB 程序如下(10个阵元): clear; f=3e10; lamda=(3e8)/f;

beta=2.*pi/lamda; n=10; t=0:0.01:2*pi; d=lamda/4; W=beta.*d.*cos(t); z1=((n/2).*W)-n/2*beta* d; z2=((1/2).*W)-1/2*beta* d; F1=sin(z1)./(n.*sin(z2));i K1=abs(F1) ; polar(t,K1); 方向图如下: 2、圆阵方向图程序如下: clc; clear all; close all; M = 16; % 行阵元数 k = 0.8090; % k = r/lambda DOA_theta = 90; % 方位角 DOA_fi = 0; % 俯仰角 % 形成方位角为theta,俯仰角位fi的波束的权值m = [0 : M-1];

w = exp(-j*2*pi*k*cos(2*pi*m'/M-DOA_theta*pi/180)*cos(DOA_fi*pi/180)); % w = exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)+sin(2*pi*m'/M)*si n(DOA_fi*pi/180))); % 竖直放置 % w = chebwin(M, 20) .* w; % 行加切比雪夫权 % 绘制水平面放置的均匀圆阵的方向图 theta = linspace(0,180,360); fi = linspace(0,90,180); for i_theta = 1 : length(theta) for i_fi = 1 : length(fi) a = exp(-j*2*pi*k*cos(2*pi*m'/M-theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); %a=exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)+sin(2*pi*m'/ M)*sin(fi(i_fi)*pi/180))); % 竖直放置 Y(i_theta,i_fi) = w'*a; end end Y= abs(Y); Y = Y/max(max(Y)); Y = 20*log10(Y); % Y = (Y+20) .* ((Y+20)>0) - 20; % 切图 Z = Y + 20; Z = Z .* (Z > 0); Y = Z - 20; figure; mesh(fi, theta, Y); view([66, 33]); title('水平放置时的均匀圆阵方向图'); % title('竖面放置时的均匀圆阵方向图'); % 竖直放置 axis([0 90 0 180 -20 0]); xlabel('俯仰角/(\circ)'); ylabel('方位角/(\circ)'); zlabel('P/dB'); figure; contour(fi, theta, Y); 方向图如下:

基于遗传算法的超宽带微带天线优化设计

第26卷 第1期2011年2月 电 波 科 学 学 报 CH INESE JO URNAL OF RADIO SCIENCE Vol.26,No.1 Febru ary,2011 文章编号 1005 0388(2011)01 0062 05 基于遗传算法的超宽带微带天线优化设计孙思扬1 吕英华1 张金玲1 喇东升1 赵志东1 阮方鸣2 (1.北京邮电大学电子工程学院,北京100876; 2 贵州师范大学物理电子学院,贵州贵阳550001) 摘 要 将遗传算法应用于超宽带微带天线设计。建立了基于遗传算法和高频电磁 仿真软件(H FSS)的优化工程。在此基础之上,优化设计出了一款超宽带微带天线。 讨论了该优化工程的操作流程,并对天线特性进行了研究。研究结果表明:所设计天 线在3 1~10 6GH z频段内的回波损耗小于-10dB,具有良好的超宽频带特性。 关键词 遗传算法;超宽带天线;优化;H FSS 中图分类号 TN82 文献标志码 A 1 引 言 自从美国联邦通讯委员会(FCC)将3 1~10 6 GH z之间的频段分配给超宽带(UWB)无线通信业务使用之后,超宽带技术以其高传输速率及较强的抗多径干扰能力在短距离高速无线通信领域引起了全球范围的广泛关注。在U WB系统中,结构紧凑,低成本,易于集成的UWB天线的研究设计成为最近几年研究的一个热点。研究者们提出了许多不同形状的超宽带平面单极子天线来满足超宽带通信系统的需求[1 5]。 遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化概率搜索算法。它最早由美国密执安大学的H olland教授提出,起源于60年代对自然和人工自适应系统的研究。作为一种全局优化搜索算法,遗传算法以其简单通用、鲁棒性强、适于并行处理等显著特点,在图像处理、组合优化、自动控制等众多领域获得了成功的应用[6]。 随着微带天线设计理论与技术的不断发展,遗传算法开始引入到微带天线设计中来[7 11]。通过遗传算法对天线的结构参数进行全局优化,得到满足某些性能要求的微带天线。本文成功地将遗传算法应用于超宽带微带天线设计,建立了基于遗传算法和H FSS(hig h fr equency simulatio n so ftw are)的优化工程以执行参数优化任务。在此基础上,优化出了一款具有超宽频带特性的平面单极子天线。为了获得超宽带的频率特性,采用圆环形辐射贴片,并通过在接地板上蚀刻缝隙以改善阻抗匹配。对所设计天线的输入端反射特性及辐射方向图进行了仿真分析。结果表明:该天线在3~11GH z频段内的回波损耗小于-10dB,完全可以覆盖FCC分配给UWB 业务的3 1~10 6GH z频段。 2 遗传优化策略 本文建立了基于遗传算法和H FSS(high fre quency simulation softw ar e)的优化工程以执行参数优化任务,并对其编程实现。该工程包含两个功能模块:遗传算法模块和适应度模块,如图1所示。 遗传算法模块实现参数优化功能,如图2所示。它执行以下三个步骤 1)产生每个个体的结构参数,并将其传递给适应度模块; 2)接收由适应度模块计算并传递来的个体的适应度值; 3)对接收来的个体适应度值进行循环终止条 收稿日期:2010 02 12 基金项目:教育部高等学校博士学科点专项科研基金项目(编号:200700130046);国家自然科学基金资助项目(编号:60771060,60971078) 联系人:孙思扬E mail:ssybupt@g mail com

(重要)阵列天线

Progress In Electromagnetics Research, PIER 98, 1–13, 2009
A WIDEBAND HALF OVAL PATCH ANTENNA FOR BREAST IMAGING J. Yu ? , M. Yuan, and Q. H. Liu Department of Electrical and Computer Engineering Duke University Durham, NC 27708, USA Abstract—A simple half oval patch antenna is proposed for the active breast cancer imaging over a wide bandwidth. The antenna consists of a half oval and a trapezium, with a total length 15.1 mm and is fed by a coaxial cable. The antenna performance is simulated and measured as immersed in a dielectric matching medium. Measurement and simulation results show that it can obtain a return loss less than ?10 dB from 2.7 to 5 GHz. The scattered ?eld detection capability is also studied by simulations of two opposite placed antennas and a full antenna array on a cubic chamber. 1. INTRODUCTION Breast cancer is the most common cancer in women, but fortunately early detection and treatment can signi?cantly improve the survival rate. Ultrasound, mammography and magnetic resonance imaging (MRI) are currently used clinically for breast cancer diagnosis [1]. However, these techniques have many limitations, such as high rate of missed detections, ionizing radiation (mamography), too expensive to be widely available, and so on. Compared with conventional mammography, microwave imaging of breast tumors is a nonionizing, potentially low-cost, comfortable and safe alternative [2]. The high contrast of the dielectric property between the malignant tumor and the normal breast tissue should manifest itself in terms of lower numbers of missed detections and false positives [3, 4]. The microwave breast tumor detection also has the potential to be both sensitive and speci?c, to detect small tumors, and to be less expensive than methods such as MRI.
?
Corresponding author: M. Yuan (mengqing.yuan@https://www.wendangku.net/doc/5d9800191.html,). Also with National Key Laboratory of EMC, Wuhan, Hubei 430064, China.

一种新颖的超宽带楔形微带准喇叭天线设计

2007 年 2 月JOURNAL OF CIRCUITS AND SYSTEMS February, 2007 文章编号:1007-0249 (2007) 01-0143-04 一种新颖的超宽带楔形微带准喇叭天线设计* 李育红1,2,杨程1,周正1 (1. 北京邮电大学无线网络实验室,北京 100876;2. 北京工商大学信息工程学院,北京 100037) 摘要:近年来,超宽带(UWB)无线通信技术的发展日益引起人们的关注和兴趣,超宽带天线设计是一个具有挑战性的课题。本文提出一种新颖的超宽带楔形微带准喇叭天线设计,通过合理设计辐射贴片和介质基板的尺寸及形状,有效地展宽了天线带宽。仿真结果显示其VSWR<2的频带范围较大,而且随着频率的增加,天线的增益有增大的趋势。此外,这种天线成本较低廉,比较容易制作。 关键词:超宽带(UWB);微带天线;辐射方向图;驻波比 中图分类号:TN822 文献标识码:A 1 引言 超宽带(ultra-wideband:UWB)无线通信技术以其超高速、超大容量、低成本、低功耗、低系统复杂度、保密性好、抗多径衰落、节省频谱资源、能提供厘米级定位精度等诸多优点,特别适用于室内等密集多径场所的高速无线接入及军事通信应用,成为近年来迅速发展起来的新一代短距离无线通信系统的最强有力的候选技术。而天线在UWB无线通信系统中起着关键作用,天线设计更是一个具有挑战性的课题。传统天线不适合传输UWB信号及便携应用[1],某些天线是色散的,如对数周期天线,不具备适合UWB信号传输所应具有的良好的冲激脉冲特性,因为从天线的不同部分辐射不同的频率成分;某些天线,如UWB的环形天线,具有较好的辐射波形,但反射大而且匹配较差;其它天线,如蝴蝶结天线虽然用阻抗负载获得了良好的匹配和较大的阻抗带宽,但辐射效率又太低。 满足UWB设计的天线应该具有大带宽、高辐射效率、低功耗、易制作并且对于UWB信号的激励响应是稳定的。目前被H.G.Schantz等人[2~4]报道的较成功的UWB天线设计有:微带三角形偶极天线、微带圆形或椭圆形偶极天线、磁性缝隙天线及环形天线[5]等。 本文设计的新颖的超宽带楔形微带准喇叭天线做为一种有益的探索和尝试,为超宽带天线的设计及微带天线的应用提供了一种新的思路。通过合理地设计介质基板及辐射贴片的形状,有效地展宽了天线带宽,在天线输入端口不需要任何阻抗变换器,匹配良好,增益从 2.8GHz的7dBi到14GHz的17dBi,且具有较好的辐射方向图,易制作,成本低廉。 2 微带天线概述 微带天线的概念早在1953年就已经被提出来了,但当时并未引起工程上的足够重视。在五十年代和六十年代也只有一些零星的研究,真正的发展和推向实用是在70年代中期以后。由于微波集成技术的发展以及各种低耗介质材料的出现,微带天线的制作得到了工艺保证;而空间技术的发展,又迫切需要低剖面的天线元。1970年出现了第一批实用的微带天线。这以后微带天线的研究有了迅猛的发展,新形式和新性能的微带天线不断涌现,发表了大量学术论文和研究报告,召开了专题会议和出版专集。这些都表明微带天线以其重量轻、体积小、低成本、低剖面、易集成等显著优点已经成为天线研究中的一个重要课题[6],受到了人们的广泛关注,吸引国内外广大学者研究和探讨。甚至在微带天线处于其幼年时期就已经有许多成功和不同的应用,对于大多数的应用,它都可以取代常规的天线,实际设计中已经有的重要系统中使用微带天线的有:卫星通信、卫星导航接收机、导弹遥测、武器信管、指 * 收稿日期:2004-04-06 修订日期:2004-12-14 基金项目:国家863计划项目(2003AA123240);国家自然科学基金项目(60372097);教育部科学技术研究重点项目(03035)

阵列天线方向图的初步研究

通信信号处理实验报告 ——阵列天线方向图的初步研究 11级通信(研) 刘晓娟 一、实验原理: 1、智能天线的基本概念:智能天线是一种阵列天线,它通过调节各阵元信号的加权幅度和相位来改变阵列的方向图形状,即自适应或以预制方式控制波束幅度、指向和零点位置,使波束总是指向期望方向,而零点指向干扰方向,实现波束随着用户走,从而提高天线的增益,节省发射功率。智能天线系统主要由①天线阵列部分;②模/数或数/模转换部分;③波束形成网络部分组成。本次实验着重讨论天线阵列部分。 2、智能天线的工作原理:智能天线的基本思想是:天线以多个高增益的动态窄波束分别跟踪多个期望信号,来自窄波束以外的信号被抑制。 3、方向图的概念:以入射角为横坐标,对应的智能天线输出增益为纵坐标所作的图称为方向图,智能天线的方向图有主瓣、副瓣等,相比其他天线的方向图,智能天线通常有较窄的主瓣,较灵活的主、副瓣大小、位置关系,和较大的天线增益。与固定天线相比最大的区别是:不同的全职通常对应不同的方向图,我们可以通过改变权值来选择合适的方向图,即天线模式。方向图一般分为两类:一类是静态方向图,即不考虑信号的方向,由阵列的输出直接相加得到;另一类是带指向的方向,这类方向图需要考虑信号的指向,通过控制加权相位来实现。 二、实验目的: 1、设计一个均匀线阵,给出λ(波长),N (天线个数),d (阵元间距),画出方向图曲线,计算3dB 带宽。 2、通过控制变量法讨论λ,N ,d 对方向图曲线的影响。 3、分析旁瓣相对主瓣衰减的程度(即幅度比)。 三、实验内容: 1、公式推导与整理: 权矢量12(,,......)T N ωωωω=,本实验旨在讨论静态方向图,所以此处选择 ω=(1,1,......1)T 。 信号源矢量(1)()[1,,...]j j N T a e e ββθ---=,2sin d πβθλ = , 幅度方向图函数()()H F a θωθ== (1)1 sin 2sin 2N j n n N e β β β--== ∑=sin(sin /)sin(sin /)n d n d πθλπθλ。

超宽频微带天线设计

Ultra-Wideband Microstripe Antenna Design 陳建宏 Chien-Hung Chen 摘要 近十年來由於微帶天線具有體積小、重量輕、製作容易、價格低廉、可信度高,同時可附著於任何物體之表面上的特性,在無線通訊的應用上扮演著重要的角色。本文將利用全平面正方形單極微帶天線當作設計天線的原型,藉由調整金屬貼片的上緣、下緣部份與接地面的上緣部份來研製適用於超寬頻通訊系統的微帶天線。由模擬與實驗結果比較得知,可以發現其響應非常吻合,是一個適用於超寬頻通訊產品的天線。 關鍵詞:微帶天線、單極、超寬頻

、簡介 美國聯邦通信委員會(Federal Communication Commission,FCC)在西元2002年2月14日允許超寬頻技術使用於消費性電子產品上,並公佈了初步規格,FCC開放3.1GHz~10.6GHz提供超寬頻通信及測試使用。為了研究開發適用於此頻段的天線技術。將利用微帶天線的優點:體積小、重量輕、低成本、容易製作等特性,來研製適用於超寬頻通訊系統的微帶天線。 傳統的寬頻天線[2]中有行進波線天線(Traveling-Wave Wire Antenna)、螺旋形天線(Helical Antenna)、偶極圓錐形天線(Biconical Antenna)、單極圓錐形天線(Monoconical Antenna)、盤錐形天線(Discone Antenna)、袖子形天線(Sleeve Antenna)、渦狀天線(Spiral Antenna)和對數週期天線(Log-Periodic Antenna),不過其中適用於超寬頻系統的只有偶極圓錐形天線、單極圓錐形天線和盤錐形天線[3]。因為其不僅有大的輸入阻抗頻寬(Large Input Impedance Bandwidth)、其輻射場形(Radiation Pattern)也能控制在一定的頻寬中。 利用虛像法(Method of Image)[4]及接地面(Ground Plane)來使偶極天線變成單極天線,從早期的線型單極天線-窄頻(Narrowband),演化成單極圓錐形天線-中頻寬(Intermediate

一种宽频带微带天线的设计

一种宽频带微带天线的设计Ξ  徐 勤 ΞΞ (南京船舶雷达研究所,江苏南京210003) 摘 要:介绍了宽频带渐变式微带缝隙天线的工作原理、设计参数及其对电性能的影响,设计了一种结构简单的天线形式,给出了该天线工作于S、C频段的结构尺寸以及VSWR、辐射方向图的仿真和测试数据曲线,两者之间有很好的一致性,并对影响天线性能的关键参数进行了误差计算。结果表明:在加工精度可达到的范围内,对天线性能的影响不大。该天线可应用于宽频带单极化、双极化阵列天线单元或反射面天线馈源。 关键词:雷微带天线;宽频带;馈源;阵列单元 中图分类号:TN822.8 文献标识码:A 文章编号:100920401(2004)022******* A design of broadband microstrip antenna X U Qi n (N anji ng M ari ne Radar Instit ute,CS IC,N anj ng210003,Chi na) Abstract:The operating principle and designing parameters of the broadband microstrip slot antenna and its influence to the electrical property are proposed in this paper.A simple form of antenna is de2 signed.The scantling of structure,VSWR,the simulation of the radiation pattern and testing data curve of the antenna operating on S and C bands with a consistency between them.An error calcu2 lating to the key parameter influencing the antenna performance is carried through.The results show that the accessible machining precision range will take little influence on the antenna perfor2 mance.The antenna is applicable to the array antenna element with broadband single polarization and dual polarization or antenna feed source with reflecting surface. K ey w ords:microstrip antenna;broadband;feed source;array element 1 引 言 通常,天线工作的最高频率与最低频率之比大于2,就属于宽频带天线;两者之比大于10,则被认为是超宽频带天线。超宽频带天线的设计是未来天线设计的发展方向之一。本文设计的宽频带渐变式微带缝隙天线,最早的形式是由P.J.G ibson、Prasad和Mahapa2 tra在1979年几乎同时提出的,它由一段一端很窄另一端按指数式、V型张开或常数未张开的槽线构成,一般分别称其为Vivaldi天线、L TSA天线或CWSA天线。通常采用双面敷铜介质基片制造,微带线印刷在介质基片的一面作为馈电,指数式、V型张开或常数开口的槽线印刷在介质基片的反面,其作用相当于微带馈电线与自由空间之间的阻抗变换网络。槽线的窄端区域决定了高频端的辐射,而张开的口径区域则决定了低频端的辐射。虽然它们的结构形式不完全相同,但工作原理及辐射的本质是一样的,如图1所示,为其典型的结构示意图。 该类天线的辐射情况与微带贴片、微带振子等不同,它属于端射式行波天线,依赖的是表面波传输,至端口辐射。由于表面波的相速一般低于光速,故渐变式微带缝隙天线属于一种慢波结构。对于沿传输路径表面波相速不变的行波天线,存在一个最佳的相速比,它能导致天线获得最大的方向性和更高的增益。但该类天线由于缝隙的渐变式张开,其传输相速是变化的,从而方向性降低,副瓣电平也降低。在与介质基片平 Ξ Ξ Ξ作者简介:徐勤(1962-),男,江西临川人,南京船舶雷达研究所高级工程师,从事舰戴雷达天线设计。 收稿日期:2004201212

Vivaldi基于CST的超宽带微带天线设计

---------------------------------------------------------------范文最新推荐------------------------------------------------------ Vivaldi基于CST的超宽带微带天线设 计 摘要天线,在任何无线电系统组成中,都是必不可少的组件。随着无线电通信技术的发展,天线在各个领域得到了广泛的应用。 超宽带技术是当今最具竞争力和发展前景的技术之一。其具有许多窄带系统无法比拟的优点,例如:高数据速率、低系统成本和抗多径效应,抗干扰性强、频谱覆盖范围广、距离分辨率高、对现有系统干扰小等。 由于无线电的应用频段被不断地扩展,进而促进了超宽带电磁学的产生。在超宽带频段内,时域特性的研究表明,时域电磁波是人类非常重要的资源,作为超宽带无线电系统中不可缺少的一员,超宽带天线的研究也因此变得相当有意义。 本论文主要研究了关于超宽带微带天线的设计。首先 1 / 30

介绍了天线及微带天线的基本理论,然后重点研究了超宽带天线,Vivaldi天线,详细分析设计了Vivaldi天线的传统模型,以及改进模型,并利用CST STUDIO SUITE 2010软件仿真,分析了Vivaldi天线可以使用的工作频率范围、性能以及尺寸等。5558 关键词天线,超宽带,CST,Vivaldi天线 毕业设计说明书外文摘要 TitleTheCST-basedUltra-WidebandMicrostrip AntennaDesign Abstract Antenna, in the composed of any radio system, are essential components. With the development of radio communication technology, the antenna has been widely applied in various fields.

应用于WLAN的宽频带天线设计

应用于WLAN的宽频带天线设计

摘要:为了设计出可以覆盖无线局域网WLAN的2.4GHz,5.2GHz,5.8GHz三个频带的天线,采用一种结构简单的宽带双频共面波导馈电的单极子天线。该天线由一个平面倒L形和一个倒U形贴片连接构成,实际加工制作了一个天线并且实测了S11参数,结果表明该天线具有两个独立的谐振模式,并且在应用范围内具有良好的阻抗匹配特性。 引言 无线局域网WLAN(Wireless Local Area Network)是利用无线技术实现快速接入以太网,是无线通信技术与计算机网络相结合的产物,是对有线局域网的一种补充和扩展。和有线网络相比,WLAN具有可移动性、灵活性、更迅速、费用低、网络可靠性高等优势。近年来,随着IEEE 802.11a(5.15~5.35GHz,5.725~5.825GHz)和IEEE 802.11b/g(2.4~2.483 5GHz)标准的提出,WLAN得到了迅猛发展.与此同时对WLAN天线的要求也越来越高,要求其体积小、重量轻、生产加工便捷、天线成本低廉,同时在功能上要求使用频宽较宽以及有双频性能以同时达到IEEE 802.11a/b/g标准要求。所以,近年来对小型化的多频段WLAN天线的研究大量涌现。 在平面单极子天线中,有一种倒L形平面单极子天线,国际上已经对此进行了研究,在理论模拟仿真上,可以同时满足IEEE802.11a/b/g标准要求,其设计形式更简单,在满足带宽的要求上,体积还可进一步的缩小。所以,本文将在原来的微带馈电的倒L平面单极子天线的基础上,改变其馈电的形式,研制出一种共面波导馈电的倒L-U平面单极子天线。仿真和实测表明该天线在WLAN的三个频带范围内均具有很好的阻抗匹配和辐射特性。 1 倒L-U平面单极子天线的设计 1.1 天线分析与设计 WLAN天线形式有很多种,比如微带天线,八木天线、平面单极子天线等等。选择平面单极子天线的原因是,相对于微带天线,其带宽大;相对于八木天线,其体积小且容易共形。平面单极子天线与微带天线的结构不同在于:在金属辐射贴片对应的介质衬底另一侧的金属地板被去除,也就是采用了部分地板结构。微带天线的带宽低,因为其Q值大,即在辐射板与地板之间储存了大量的能量。平面单极子天线的辐射板的对应地板去除了,加大了辐射电阻,辐射出去的能量也大大的增加,Q值变小,带宽增大。选择共面波导馈电的形式,将地板与辐射板共面,使得带宽又增大了,而且结构更紧凑。但是由于天线与共面波导之间缺少有效的隔离,造成天线性能受共面波导尺寸的影响较严重。

阵列天线方向图的MATLAB实现

阵列天线方向图的MATLAB 实现课程名称:MATLAB程序设计与应用任课教师:周金柱 班级:04091202 姓名:黄文平 学号:04091158 成绩:

阵列天线方向图的MATLAB 实现 摘要:天线的方向性是指电磁场辐射在空间的分布规律,文章以阵列天线的方向性因子F(θ,φ)为主要研究对象来分析均匀和非均匀直线阵天线的方向性。讨论了阵列天线方向图中主射方向和主瓣宽度随各参数变化的特点,借助M ATLAB绘制出天线方向性因子的二维和三维方向图,展示天线辐射场在空间的分布规律,表现辐射方向图的特点。 关键词:阵列天线;;方向图;MATLAB 前言: 天线是发射和接收电磁波的重要的无线电设备,没有天线也就没有无线电通信。不同用途的天线要求其有不同的方向性,阵列天线以其较强的方向性和较高的增益在工程实际中被广泛应用。因此,对阵列天线方向性分析在天线理论研究中占有重要地位。阵列天线方向性主要由方向性因子F(θ,φ)表征,但F(θ,φ)在远区场是一组复杂的函数,如果对它的认识和分析仅停留在公式中各参数的讨论上,很难理解阵列天线辐射场的空间分布规律[ 1 ]。MATLAB以其卓越的数值计算能力和强大的绘图功能,近年来被广泛应用在天线的分析和设计中。借助MATLAB可以绘制出阵列天线的二维和三维方向图,直观地从方向图中看出主射方向和主瓣宽度随各参数的变化情况,加深对阵列天线辐射场分布规律的理解。 1 均匀直线阵方向图分析 若天线阵中各个单元天线的类型和取向均相同,且以相等的间隔d 排列在一条直线上。且各单元天线的电流振幅均为I,相位依次滞后同一数值琢,那么,这种天线阵称为均匀直线式天线阵,如图1 所示[ 2 ]: 均匀直线阵归一化阵因子为[ 3 ]: Fn(θ,φ)是一个周期函数,所以除§= 0 时是阵因子的主瓣最大值外,§= ±2 mπ

元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2 πθ=) 2/sin() 2/sin(1)(ψψψN N A =

式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时 0=m ?或π,也就是说阵的 各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: kd m ζ?-=cos 2π ?±=m

弹载超宽带小型化阵列天线单元及阵列设计

DOI :10.19297/j .cnki .41-1228/tj .2018.04.014 弹载超宽带小型化阵列天线单元及阵列设计 张天水,杨丽娜,张文涛,稂华清 (中国空空导弹研究院,河南洛阳 471009) 摘 要:通过天线单元中加载金属化过孔及馈电端采取三级阻抗变换等一系列手段设计一种Vivaldi 天线单元,在5~11GHz 频段内驻波VSWR <2,物理尺寸只有14mm (宽度)×32mm (高度)×1.07mm (厚度),相比于传统Vivaldi 天线,单元宽度尺寸减小了53%,并通过对辐射贴片边缘开槽降低了天线E 面耦合,达到了超宽带小型化的设计结果。利用该单元设计了一个7×7的矩形阵列,该阵列全频带内扫描角度可达±60°,满足阵列天线设计要求,可应用于空空导弹弹载的超宽带相控阵天线中。 关键词:超宽带;宽角扫描;小型化;Vivaldi 天线;天线阵列;相控阵 中图分类号:TJ 765.3+ 31;TN 821+ .8文献标识码:A 文章编号:1673-5048(2018)04-0089-06 0 引 言 在民用领域,无线移动通讯技术飞速发展,为 人们的生活提供了巨大的便利。近年来,各国研究人员在通讯设备小型化和宽频化方面开展了大量的研究工作。在宽频化天线设计方面,Leach M 等人通过对超宽带圆形天线增加贴片和改变背板设计等手段,将基板的面积减小了20%,优化了低频段匹配,最终达到了在1.5~12GHz 频段范围内 回波损耗小于-10dB [1] 。Mahmud M Z 等人设计了一个用于微波成像的超宽带贴片天线,采用芙蓉花瓣形状的辐射贴片和梯形地板,该天线在 3.01~11GHz 范围内的回波损耗小于-10dB [2] 。在小型化天线设计方面,Chan H S 等人设计了一种带有寄生结构的新型平面倒F 天线,该天线的物理尺寸为30mm ×15mm ×3mm ,在3.0~6.5GHz 频段内的回波损耗小于-10dB [3] 。在军用领域,随着雷达、探测、预警、制导以及电子对抗等技术的不断发展,促使电子设备向着小型化和宽频带方向发展。尤其是空空导弹雷达导引头部分由于 其口径尺寸较小和抗干扰的强烈需求,小型化和 宽频带的天线单元更具有研究的价值和必要性[4-5]。 Vivaldi 天线是一种高增益、宽频带的端射行波天线,由于具备成本低、易加工的特点,得到广 泛的应用和研究[6-8] 。传统的Vivaldi 天线的设计尺寸与工作频带密切相关,宽度一般为最低频点波长的一半,制约了天线单元的结构小型化。本文采用加载金属化过孔和三级阻抗变换过渡馈电技术设计的Vivaldi 天线作为阵列天线单元,在5~11GHz 的频带内,驻波VSWR <2,单元的尺寸只有14mm ×32mm ×1.07mm ,满足超宽带小型化阵列天线单元的设计要求。 1 天线单元设计 天线单元结构设计采用双面贴片的微带天线结构,基板材料选用Rogers 5880,双面辐射贴片为铜层,中间馈电线设计为带状线结构加扇形匹配枝节,带状线结构设计为三级阻抗变换。本文采用 了Gibson 提出的Vivaldi 天线指数模型[9] : 收稿日期:2017-11-06 作者简介:张天水(1988-),男,河南信阳人,硕士,研究方向为天线及馈电系统设计。 引用格式:张天水,杨丽娜,张文涛,等.弹载超宽带小型化阵列天线单元及阵列设计[J ].航空兵器,2018(4):89-94. Zhang Tianshui ,Yang Lina ,Zhang Wentao ,et al .Design of Missile -Borne Ultra -Wideband Miniaturized Array Antenna Unit and Array [J ].Aero Weaponry ,2018(4):89-94.(in Chinese ) 2018年第4期2018年8月 航空兵器AERO WEAPONRY 2018No .4 Aug .2018 万方数据

相关文档