文档库 最新最全的文档下载
当前位置:文档库 › DHPLC变性高效液相色谱原理

DHPLC变性高效液相色谱原理

DHPLC变性高效液相色谱原理
DHPLC变性高效液相色谱原理

DHPLC变性高效液相色谱原理

DHPLC变性高效液相色谱技术是近年来发展起来的一项新的分析技术,它是分离核苷酸片段及分析检测已知未知基因突变和SNP的最佳技术平台,其核心技术采用Transgenomic公司专利技术的DNA SepCartridge分离柱。DHPLC能够分析检测已知未知突变和SNP,技术关键是依靠这样专利技术的分离系统,在专利技术的DNA SepCartridge分离柱中的基质为聚苯乙烯-二乙烯基苯(PS-DVB)交联聚合物微球体,固定相为碳-18烷烃链,PS-DVB微球体与碳-18烷烃链之间形成碳碳共价键共同组成柱填料,填料是电中性、疏水性的,不易与核酸发生反应。三乙基铵醋酸盐(TEAA)是一种离子对试剂,离子对试剂既是疏水性的又带正电荷,既能与核酸主链上的磷酸基团的负电荷反应,同时TEAA的疏水基团又与固定相碳-18链的疏水基团发生反应。这种离子对试剂是连接核酸和柱基质之间的桥梁,因此,它作为“桥分子”使DNA片段吸附在固定相上面。通过改变流动相中乙氰及离子对试剂的浓度实现DNA片段的分离。

WAVE? DHPLC分离系统的三种操作模式:

WAVE?系统是一套经济、高效及多用途的仪器。标准WAVE系统提供可选择的冷却设备、双板自动进样器、柱箱、紫外检测器和分离柱组成。这套系统可在同一分析标准下实现三种模式的运行。将标准WAVE系统加工和升级可以进一步提升系统的可用性。

执行模式温度应用分离基础

非变性 50℃测量双螺旋DNA的大小(小于2000bp)依赖大小 PCR质量检测及纯化依赖序列定量分析

部分变性 52-75℃变性检测依赖大小

(平均范围)单核酸多态性检测依赖序列完全变性 75-80℃测量双螺旋DNA大小(小于2000bp)依赖大小

(平均范围) DNA分析(DNA SepR柱)依赖序列

寡核苷酸质量(DNA SepR柱和OLIGO SepR柱)和纯度分析(片段收集器)

大量纯化需要OLIGOSepPrep TM HC柱

非变性条件:依赖分子量的分离

WAVEMAKER TM软件能根据DNA片段分子量大小最大限度完善分离条件。在这些条件下,序列顺序并非是决定DNA洗脱方式的因素。系统在50℃运行,碱基对的数量决定洗脱顺序。这种应用在非变性条件下能将染色体插入和缺失片段分开。一般说来,产物分子量的1%大小的片段能够被分离。例如,100bp的产物能和101bp的产物分开,300bp的产物能和303bp的产物分开。分子量较小的核酸片段含有相应较少的磷酸盐基团结合柱基质,而分子量较大的片段则含有较多的磷酸盐基团结合柱基质。因此,当我们将过柱的乙腈浓度提高,核酸片段就会根据分子量从小到大的顺序被洗脱出来。在不包括柱温度和碱基对序列的影响下,这种柱运行模式已被证明是正确的。对于想用一些已知片段大小的核酸梯度检验其PCR反应的顾客,我们推荐用这种方法。

部分变性条件:根据片段大小,序列和温度的分离

WAVEMAKER软件也能预测突变检测的分析条件。在部分变性的条件下,分离不同成分是根据核酸的大小、序列以及分析温度。以下是变性检测技术原理的阐述,以及它是如何应用的。先设计一对PCR引物,使最大不超过600bp的PCR 产物覆盖你所感兴趣的序列。然后将PCR样本移入一块96微孔金属板的孔中,登录WAVE系统分析。在这步后,你就不再需要操作员的进一步帮助。在单核苷酸突变或多态性杂交个体中,野生型DNA和突变型DNA的比率是1:1。加热至95℃,然后慢慢冷却,使PCR产物杂交形成同源双链和异源双链的混合。在分析含有两个等位基因(纯合突变)的DNA时,这种方法需要稍微修改一些。覆盖纯合突变点的PCR产物与野生型扩增DNA混合并杂交。在这步骤后,样本包括异源和同源双螺旋的混合物。

WAVE的分析系统在能在足以使DNA异源双链变性(融解)的温度下运行。融解的异源双链在离子对反相液相色谱层析与相应的同源双链分离。这个过程也称为温度调控的异源双链层析或分析。在DNASep柱基质中的精确保留时间使得对单核苷酸多态性(SNP)和短串联重复序列(STRs)的高灵敏、快速检测成为可能。在这里我们应用的一个范例是位于基因座位DYS271上,位点168的核苷

酸发生从腺嘌呤到鸟嘌呤的突变。图4-5显示了运用WAVE系统在一定范围温度变化下四种相应的杂交产物。在用于测定DNA片段大小的非变性条件下(50℃),所有四种杂交产物都有着相同的保留时间。当温度上升到54℃时,异源双链复制物开始在错配碱基两侧区域变性。这种变性导致PCR产物的双链比例减少。在洗脱温度下,单链DNA片段比双链片段更早洗脱。这主要是因为在单链片段分子的负电荷与双链相比较少。因此,异源双链PCR产物比同源双链含有更高的单链的比例,保留时间更短。当同源双链DNA还尚未变性时,异源双链已经被洗脱出来了。在55℃,同源双螺旋开始变性,野生型腺嘌呤-胸腺嘧啶比突变型胞嘧啶-鸟嘌呤型同源双链变性更快一些。最佳分离温度设为56℃。两种异源双螺旋并没有必要完全分开,因为所感兴趣的样本序列和野生型对照之间的区别表明DNA 序列差异的存在。分辨率是依赖于突变位点,片段长度以及序列的具体构象的。

完全变性条件:根据片段大小和序列的单链分析

单核苷酸和RNA都需要在完全变性的条件下在WAVE系统中分析。在这些洗脱温度下,核酸完全变性,分离是根据片段的大小和序列来实现的。想获得更多完全变性条件的WAVE系统和分析软件的资料,请登录我们的网站

https://www.wendangku.net/doc/5010604981.html,并且阅读我们的应用手册,或者打电话至Transgenomic公司技术支持热线或服务台。

高效液相色谱分析原理及流程

高效液相色谱分析原理及流程 高效液相色谱以经典的液相色谱为基础,是以高压下的液体为流动相的色谱过程。通常所说的柱层析、薄层层析或纸层析就是经典的液相色谱。所用的固定相为大于100um的吸附剂(硅胶、氧化铝等)。这种传统的液相色谱所用的固定相粒度大,传质扩散慢,因而柱效低,分离能力差,只能进行简单混合物的分离。而高效液相所用的固定相粒度小(5um-10um)、传质快、柱效高。高效液相色谱法(HPLC)是20世纪60年代后期发展起来的一种分析方法。近年来,在保健食品功效成分、营养强化剂、维生素类、蛋白质的分离测定等应用广泛。世界上约有80%的有机化合物可以用HPLC来分析测定。 高效液相色谱分析原理 (一)高效液相色谱分析的流程 由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。废液流入废液瓶。遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。 (二)高效液相色谱的分离过程 同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。分配系数大的组分C 在固定相上滞留时间长,较晚流出色谱柱。组分B的分配系数介于A,C之间,第二个流出色谱柱。若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。 不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等

动物结核病原菌检测方法变性高效液相色谱法

动物结核病原菌检测方法变性高效液相色谱法 1范围 本标准规定了结核分枝杆菌复合群、结核分枝杆菌、牛分枝杆菌多重PCR联合变性高效液相色谱(mPCR-DHPLC)检测方法的技术要求和操作规范。 本标准适用于快速检测细菌培养物、动物组织、血样、痰液等临床样品中结核分枝杆菌复合群、结核分枝杆菌、牛分枝杆菌。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 6682 分析实验室用水规格和试验方法 GB 19489 实验室生物安全通用要求 3 缩略语 下列缩略语适用于本标准。 3.1 DHPLC:Denaturing high-performance liquid chromatography,变性高效液相色谱。 3.2 dNTP:deoxyribonuclesosde triphosphate,脱氧核苷三磷酸。 3.3 PBS:phosphate buffer solution,磷酸盐缓冲液。 3.4 mPCR:multiplex-polymerase chain reaction,多重聚合酶链式反应。 3.5 TEAA:三乙基铵醋酸盐 4 概述 人与动物结核病涉及多种病原菌或病原菌复合群。结核分枝杆菌复合群(Mycobacterium tuberculosis complex, MTC)是感染人与哺乳动物的结核病原菌,包括结核分枝杆菌和牛分枝杆菌、非洲分枝杆菌和田鼠分枝杆菌。其中,主要感染人与家畜并致病的是结核分枝杆菌和牛分枝杆菌。与MTC相对应的是种类繁多的各种非结核分枝杆菌(NTM)。NTM感染患者的临床症状及病理变化与MTC引起的结核病极为相似,但多数NTM对抗结核药物有天然耐药性。此外,NTM感染可造成结核菌素皮内变态反应或血清学检测假阳性。采用多重PCR联合变性高效液相色谱检测的方法可同步区分结核分枝杆菌复合群与非结核分枝杆菌复核群,并鉴别结核分枝杆菌与牛分枝杆菌 多重PCR反应的原理、操作过程与普通PCR相同。在同一PCR反应体系里加入多对特异性引物,对多个DNA模板或同一模版不同区域扩增出多个目的DNA片段。DHPLC分析技术是利用液相色谱技术,在高压闭合液相流路中,将DNA样品自动注入并在缓冲液携带下流过DNA分离柱,DNA片段分子中带负电荷的磷酸根基团与TEAA分子中带正电荷的氨基发生静电作用相互吸引,同时TEAA分子中的三个乙基与固定相C18表面的烷基发生疏水作用力而相互吸引,通过流动相中的乙腈的梯度洗脱达到将不同大小的DNA片段分离。由紫外或荧光检测被分离的DNA样品。根据DNA扩增片段长度大

变性高效液相色谱在分子生物学中的应用

变性高效液相色谱在分子生物学中的应用 白 桦综述 邓大君 潘凯枫审阅 北京市肿瘤防治研究所病因室(北京,100034) 摘要 变性高效液相色谱法(DHPL C)是在高效液相色谱法的基础上发展起来的一种新方法。它因使用的温 度不同而有不同的应用价值:在非变性温度下进行双链DN A 分离,在部分变性温度下进行基因突变、单核苷酸多态性和甲基化测定,在完全变性温度下对寡核苷酸进行质控和纯化等。由于该技术具有快速、经济、准确和自动化程度高等特点,目前已经成为分子生物学常用技术之一。 关键词 变性高效液相色谱法;突变;单核苷酸多态性;甲基化;基因型 DNA 序列变异分析是遗传学研究的基础。随着人类基因组计划的完成,迫切需要一种敏感、高效、经济的方法来检测庞大的序列变异。大规模检测SNP 和突变的技术要求经济、自动化,高通量,无需修饰引物,无需纯化样品等。在目前分析点突变的诸多方法中,变性高效液相色谱法是少数能同时满足上述条件的技术之一。它可以自动检测单碱基置换,小片段插入和缺失。DHPLC 利用杂合双链和纯合双链部分变性温度的不同来检测这些变异。 1 DHPLC 的基本工作原理 DNA 分子带负电荷,而分离用色谱柱的固相呈电中性疏水性,因此DNA 分子本身不能直接吸附到柱子上。一种充当-桥梁.作用的分子)))离子对试剂TEAA(三乙铵醋酸盐),可以帮助DNA 分子与柱子固相填料表面分子结合,使TEAA 的阳性铵离子与DNA 相互作用,同时烷基链与柱子的疏水表面相互作用。这样DNA 分子越长,结合的TEAA 越多,与固相结合得越牢固。羟基链与固相结合的强度会随着流动相中乙睛浓度的增加而减弱,DNA 片段越长,结合的TEAA 越多,越不易被洗脱。因此DNA 片段大小分析是长度依赖性分离,而非序列依赖性分离。变性温度是影响DNA 片段分析的一个重要因素,变性温度升高保留时间缩短,在适宜的温度下可使DNA 双螺旋呈舒展状态,最大限度的暴露出用于离子对形成的磷酸根基团,使DNA 分子与分离柱产生很强的相互作用,因此40e ~50e 最适合做DNA 片段大小分析,随着温度的升高,分离效率迅速下降,较高的温度常用于进行突变分析。 如果一个二倍体细胞的单拷贝DNA 序列中的 碱基存在多态性,或其中一个等位基因(点)存在胚 系突变,则其杂合或突变位点上2种碱基的出现频率均等;如果组织中的部分细胞发生了均一的体细胞点突变(如肿瘤细胞),则组织中突变位点上2种碱基的出现比例不均等。在经历95e 变性再缓慢 复性后,这种存在多态或突变位点的靶序列PCR 产物会杂交形成杂合双链(heteroduplex )和纯合双链(homoduplex )混合物(图1)。 图2 N 端晶体结构 通常一个杂合个体中突变型G/C(或多态性)与野生型A /T 的比例是1B 1。分别进行P CR 扩增后,将两种产物混合并加热至95e 再缓慢降温,形成2种杂合双链(A/C 和G/T )和2种纯合双链(A /T 和G/C) 如果PCR 产物源自纯合子或者发生了纯合突变的个体,那么只有在与另外一种纯合野生型序列的PCR 产物混合,再变性复性,才能够形成上述杂合和纯合双链。杂合双链存在错配碱基,其变性温度低于纯合双链,当温度升高到一定程度,先于纯合双链在错配碱基周围解链变性,导致双链减少和单链增多。由于单链比双链所带的负电荷少,杂合双链比纯合双链更容易形成单链,其保留时间短于纯合双链,在图谱上先于未解链的纯合双链出现。随着变性温度升高,纯合双链也会部分变性,A=T 含有2个氢键,C S G 含有3个氢键,前者变性程度比后者低,因此先出现的峰为含有AT 的双链,后出现的为含CG 的双链。利用这种杂合和纯合双链在保

液相色谱仪的工作原理

液相色谱仪的工作原理 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~ 350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于 1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于 400 以上)的有机物(这些物质几乎占有机物总数的 75% ~ 80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液—液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography)

高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

变性高效液相色谱原理

高效液相色谱原理 DHPLC变性高效液相色谱技术是近年来发展起来的一项新的分析技术,它是分离核苷酸片段及分析检测已知未知基因突变和SNP的最佳技术平台,其核心技术采用Transgenomic公司专利技术的DNA SepCartridge分离柱。DHPLC能够分析检测已知未知突变和SNP,技术关键是依靠这样专利技术的分离系统,在专利技术的DNA SepCartridge分离柱中的基质为聚苯乙烯-二乙烯基苯(PS-DVB)交联聚合物微球体,固定相为碳-18烷烃链,PS-DVB微球体与碳-18烷烃链之间形成碳碳共价键共同组成柱填料,填料是电中性、疏水性的,不易与核酸发生反应。三乙基铵醋酸盐(TEAA)是一种离子对试剂,离子对试剂既是疏水性的又带正电荷,既能与核酸主链上的磷酸基团的负电荷反应,同时TEAA的疏水基团又与固定相碳-18链的疏水基团发生反应。这种离子对试剂是连接核酸和柱基质之间的桥梁,因此,它作为“桥分子”使DNA片段吸附在固定相上面。通过改变流动相中乙氰及离子对试剂的浓度实现DNA片段的分离。

WAVE? DHPLC分离系统的三种操作模式: WAVE?系统是一套经济、高效及多用途的仪器。标准WAVE系统提供可选择的冷却设备、双板自动进样器、柱箱、紫外检测器和分离柱组成。这套系统可在同一分析标准下实现三种模式的运行。将标准WAVE系统加工和升级可以进一步提升系统的可用性。 执行模式温度应用分离基础 非变性 50℃测量双螺旋DNA的大小(小于2000bp)依赖大小 PCR质量检测及纯化依赖序列定量分析

部分变性 52-75℃变性检测依赖大小 (平均范围)单核酸多态性检测依赖序列完全变性 75-80℃测量双螺旋DNA大小(小于2000bp)依赖大小 (平均范围) DNA分析(DNA SepR柱)依赖序列 寡核苷酸质量(DNA SepR柱和OLIGO SepR柱)和纯度分析(片段收集器) 大量纯化需要OLIGOSepPrep TM HC柱 非变性条件:依赖分子量的分离

高效液相色谱原理

高效液相色谱法(HPLC) 一、方法原理 1、液相色谱法概述 高效液相色谱分析法

其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。

HPLC仪器的基本结构 2、高效液相色谱法的特点(HPLC) 与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分

配系数、离子交换作用或分子尺寸大小的差异来进行分离。 由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。 特点是选择性高、分离效能高、分析速度快的特点。 高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。 高效液相色谱法与气相色谱法相比,各有所长,互相补充。 如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。 3、高效液相色谱法的固定相和流动相 (1)固定相 表面多孔型和全多孔型两大类。 (2)流动相(淋洗液) 流动相的选择对改善分离效果产生重要的辅助效应。 从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求: ①与固定相互不相溶,并能保持色谱柱的稳定性。 ②高纯度,以防所含微量杂质在柱中积累,引起柱 性能的改变。 ③与所用的检测器相匹配。 ④应对样品有足够的溶解能力,以提高测定的灵敏 度。 ⑤具有低的黏度(可减少溶质的传质阻力,提高柱 效)和适当低的沸点。

利用变性高效液相色谱(dHPLC)进行小麦等位基因差异表达分析*____韩宗福--DNASep柱

第18卷 第11期 2008年11月 利用变性高效液相色谱(dHPLC )进行小麦等位基因差异表达分析* 韩宗福 倪中福**王晓娜 逯腊虎 姚颖垠 孙其信** 中国农业大学植物遗传育种系,农业生物技术国家重点实验室,教育部杂种优势研究与利用重点实验室, 北京市作物遗传改良重点实验室,农业部作物基因组与遗传改良重点实验室,北京100193  2008-03-19收稿,2008-04-25收修改稿  *国家重点基础研究发展计划(批准号:2007C B109000)和国家自然科学基金(批准号:30671297)资助项目 **通信作者,E -mail :w heat3392@cau .edu .cn ;qxsun @cau .edu .cn 摘要 等位基因变异是生物体基因组中普遍存在的现象,也是物种进化和育种的重要基础.等位基因可以通过编码区的改变或者表达来影响基因的功能,因此研究等位基因的表达具有重要的 生物学意义.由于小麦基因组的复杂性,造成等位基因的鉴定比较困难,这极大地制约了小麦等位基因表达研究的开展.利用CA U36和CA U328两个ES T -SSR 标记,结合变性高效液相色谱(dHPLC )分析技术,在35个小麦基因型中分别检测到4种和3种等位变异类型,并且以抽穗期的穗下节节间为材料,对其在4×6的小麦双列杂交组合杂交F 1代中进行了表达分析.结果表明,这两个ES T -SSR 引物扩增的等位基因在多个组合中均存在显著的差异表达,且CA U36标记检测到的等位基因表达变化值与部分杂交种的株高之间存在显著的相关性. 关键词 EST -SSR 等位基因 表达变异 变性高效液相色谱 小麦 等位基因是位于一对同源染色体的相同位置上而序列有差异的基因,其变异是物种进化和育种的重要基础.在植物上,对一些重要的农艺性状基因(水稻的淀粉合成酶基因(Oriza sativa )和玉米(Zea may )的D war f8矮秆基因)的等位基因变异分析已有较多报道,并已鉴定出了多个功能优异的等位基因[1,2] .研究表明,不同等位基因之间的序列差异 主要表现为单核苷酸多态性及较短序列的插入或缺 失 [3] ,而这些变异可能会引起编码蛋白质的改变, 也可能通过影响基因的表达水平而导致基因功能发生差异[4]. 不同等位基因不仅存在序列变异,也存在表达上的变异[4].全基因组水平上的表达分析结果显示,等位基因差异表达在人类(H omo sapiens )、小鼠(Mus musculus )、果蝇(D rosophila melano -gaster )和拟南芥(Arabidopsis thaliana )中是广泛存 在的[5—9],并且可能与生物的抗病和抗逆性及杂种优势形成有关.例如,不同等位基因对于非生物逆境的响应存在明显差异,其在抗旱过程中所起的作用可能有所不同[4].又如,在授粉早期的玉米杂合子胚中来自父本的部分等位基因就已经被激活,并且在授粉后15d 的杂合子胚中,来自两个亲本的许多等位基因存在表达差异,这可能与胚的杂种优势有关[10,11]. 关于小麦的等位基因序列和表达变异研究也有报道,其中对品质相关基因,如编码麦谷蛋白、醇溶蛋白、淀粉合成酶和多酚氧化酶基因的研究最为深入,但主要集中在基因组和蛋白质水平.迄今为止,在转录水平上对小麦等位基因表达的研究相对较少,这是因为普通小麦A ,B 和D 三个不同基因组上的部分同源基因存在很高的序列相似性.例如,Shitsukava 等 [12] 对小麦MADS -BOX 基因 1256

高效液相色谱原理和操作详解

高效液相色谱 我国药典收载高效液相色谱法项目和数量比较表: 鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。 I.概论 (3) 一、液相色谱理论发展简况 (3) 二、HPLC的特点和优点 (4) 三、色谱法分类 (5) 四、色谱分离原理 (5) II.基本概念和理论 (10) 一、基本概念和术语 (10) 二、塔板理论 (17) 三、速率理论(又称随机模型理论) (19) III.HPLC系统 (22) 一、输液泵 (23) 二、进样器 (27) 三、色谱柱 (29)

四、检测器 (35) 五、数据处理和计算机控制系统 (41) 六、恒温装置 (42) IV.固定相和流动相 (43) 一、基质(担体) (43) 二、化学键合固定相 (46) 三、流动相 (49) 1.流动相的性质要求 (49) 2.流动相的选择 (50) 3.流动相的pH值 (51) 4.流动相的脱气 (52) 5.流动相的滤过 (53) 6.流动相的贮存 (54) 7.卤代有机溶剂应特别注意的问题 (54) 8.HPLC用水 (55) V.HPLC应用 (56) 一、样品测定 (56) 二、方法研究 (58) 附件:高效液相色谱法(HPLC)复核细则 (58) 一、对起草单位的要求: (58) 二、对复核单位的要求: (59)

I.概论 一、液相色谱理论发展简况 色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。 色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。 液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用 液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure Liquid Chromatography,HPLC)。又因分析速度快而称为高速液相色谱法(High Speed Liquid Chromatography,HSLP)。也称现代液相色谱。

液相色谱仪的原理和分析方法

液相色谱仪的原理及分析方法 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点: 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理

DHPLC变性高效液相色谱原理

DHPLC变性高效液相色谱原理 DHPLC变性高效液相色谱技术是近年来发展起来的一项新的分析技术,它是分离核苷酸片段及分析检测已知未知基因突变和SNP的最佳技术平台,其核心技术采用Transgenomic公司专利技术的DNA SepCartridge分离柱。DHPLC能够分析检测已知未知突变和SNP,技术关键是依靠这样专利技术的分离系统,在专利技术的DNA SepCartridge分离柱中的基质为聚苯乙烯-二乙烯基苯(PS-DVB)交联聚合物微球体,固定相为碳-18烷烃链,PS-DVB微球体与碳-18烷烃链之间形成碳碳共价键共同组成柱填料,填料是电中性、疏水性的,不易与核酸发生反应。三乙基铵醋酸盐(TEAA)是一种离子对试剂,离子对试剂既是疏水性的又带正电荷,既能与核酸主链上的磷酸基团的负电荷反应,同时TEAA的疏水基团又与固定相碳-18链的疏水基团发生反应。这种离子对试剂是连接核酸和柱基质之间的桥梁,因此,它作为“桥分子”使DNA片段吸附在固定相上面。通过改变流动相中乙氰及离子对试剂的浓度实现DNA片段的分离。

WAVE? DHPLC分离系统的三种操作模式: WAVE?系统是一套经济、高效及多用途的仪器。标准WAVE系统提供可选择的冷却设备、双板自动进样器、柱箱、紫外检测器和分离柱组成。这套系统可在同一分析标准下实现三种模式的运行。将标准WAVE系统加工和升级可以进一步提升系统的可用性。 执行模式温度应用分离基础 非变性 50℃测量双螺旋DNA的大小(小于2000bp)依赖大小 PCR质量检测及纯化依赖序列定量分析

部分变性 52-75℃变性检测依赖大小 (平均范围)单核酸多态性检测依赖序列完全变性 75-80℃测量双螺旋DNA大小(小于2000bp)依赖大小 (平均范围) DNA分析(DNA SepR柱)依赖序列 寡核苷酸质量(DNA SepR柱和OLIGO SepR柱)和纯度分析(片段收集器) 大量纯化需要OLIGOSepPrep TM HC柱 非变性条件:依赖分子量的分离

高效液相色谱法基本原理

高效液相色谱法基本原理 一、实验目的 1. 了解高效液相色谱法分离的基本原理; 2. 了解高效液相色谱仪的基本构造; 3. 了解高效液相色谱仪的基本操作。 二、基本原理 高效液相色谱(HPLC)法是以高压下的液体为流动相,并采用颗粒极细的高效固定相的柱色谱分离技术。高效液相色谱对样品的适用性广,不受分析对象挥发性和热稳定性的限制,因而弥补了气相色谱法的不足。在目前已知的有机化合物中,可用气相色谱分析的约占20%,而80%则需用高效液相色谱来分析。 高效液相色谱和气相色谱在基本理论方面没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质的差别。 高效液相色谱分析原理: (一)高效液相色谱分析的流程:由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。废液流入废液瓶。遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。 (二)高效液相色谱的分离过程:同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。 开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。分配系数大的组分C在固定相上滞留时间长,较晚流出色谱柱。组分B的分配系数介于A,C之间,第二个流出色谱柱。若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。 不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等有关。所以分离最终效果则是热力学与动力学两方面的综合效益。 三、系统构成 1.主机:Waters Allance 2695高效液相色谱仪,分为①分离单元Allance2695;②紫外-可见检测器2487;③荧光检测器2474;④示差折光检测器2414。 2.操作控制系统:DELL Dimmsen 4550微机;Waters Millunnium32 V4.0 色谱管理器软件。 3.打印机:HP LaserJet 1000激光打印机。 四、实验步骤 1. 系统开机准备 (1)接通电源。

高效液相色谱法的主要类型及其分离原理

高效液相色谱法的主要类型及其分离原理 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液—液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式: 式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度;Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。 a. 正相液—液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液—液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。

超高效液相色谱原理

超高效液相色谱原理:分配系数与组分、流动相和固定相的热力学性质有关,也与温度、 压力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,离子交换色谱法为选择性系数,凝胶色谱法为渗透参数。但一般情况可用分配系数来表示。 在条件一定,样品浓度很低时时,K只取决于组分的性质,而与浓度无关。这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰;在许多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;而有时随着溶质浓度增大,K也增大,这时色谱峰为前延峰。因此,只有尽可能减少进样量,使组分在柱内浓度降低,K恒定时,才能获得正常峰。 超高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。 超高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待测物所含有的物质。 高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。 超高效液相色谱主要类型: 1.液液分配色谱分离原理:分配色谱法的原理与液液萃取相同,都是分配定律。 2.液固吸附色谱分离原理:液固色谱是基于各组分吸附能力的差异进行混合物分离的,其固定相是固体吸附剂。 3.键合相色谱分离原理:正键合相色谱分离远离:使用的是极性键和固定性,溶质在此类固定相上的分离机理属于分配色谱。 畜禽中瘦肉精分析 瘦肉精是盐酸克伦特罗的俗称,将其添加到饲料中可使动物生长速率、饲料转化率和胴体的瘦肉率提高10%以上,并降低其脂肪含量。长期使用会使该药蓄积在动物的组织中,造成组织中残留药物的浓度很高,人食用这种组织后15min~6h就可出现中毒症状。气相色谱技术可用于动物毛发、尿液及组织中盐酸克伦特罗的定性定量分析。样品从预处理到得出结果需要2天时间,检测下限为0.5μg/kg。 色谱技术的不断发展,以及高科技的应用,气相色谱技术将越来越完善。因其特别适用于气体混合物或易挥发性的液体或固体检测,即便对于很复杂的混合物,其分离时间也很短。其高分辨率、分析迅速和检测灵敏等显著优点使之成为每个分析检测实验室已采用的常规检测方法。因大多数食品中对人体有毒有害物质的组分复杂且是易挥发的有机化合物,所以,气相色谱技术在食品安全检测中有着非常广泛的应用前景。 气相色谱法是以惰性气体(N2或He)为载体将样品带入气相色谱仪进行分析的色谱法,而利用气相色谱仪对气体或液体样品进行组分分析的技术被称之为气相色谱技术。它特别适用于气体混合物或易挥发性的液体或固体检测,即便对于很复

液相色谱原理

高效液相色谱分析原理 2009年05月12日星期二 17:46 高效液相色谱以经典的液相色谱为基础,是以高压下的液体为流动相的色谱过程。通常所说的柱层析、薄层层析或纸层析就是经典的液相色谱。所用的固定相为大于100um的吸附剂(硅胶、氧化铝等)。这种传统的液相色谱所用的固定相粒度大,传质扩散慢,因而柱效低,分离能力差,只能进行简单混合物的分离。而高效液相所用的固定相粒度小(5um-10um)、传质快、柱效高。 高效液相色谱法(HPLC)是20世纪60年代后期发展起来的一种分析方法。近年来,在保健食品功效成分、营养强化剂、维生素类、蛋白质的分离测定等应用广泛。世界上约有80%的有机化合物可以用HPLC来分析测定。高效液相色谱分析原理(一)高效液相色谱分析的流程 由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。废液流入废液瓶。遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。这和气相色谱的程序升温类似,不同的是气相色谱改变温度, 而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。

(二)高效液相色谱的分离过程 同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。 开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。分配系数大的组分C在固定相上滞留时间长,较晚流出色谱柱。组分B的分配系数介于A,C之间,第二个流出色谱柱。若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。 不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等有关。所以分离最终效果则是热力学与动力学两方面的综合效益。高效液相色谱的类型(一)吸附色谱 在吸附色谱中,样品的极性官能团牢固地保留在填料的吸附活性中心上,非极性烃基几乎不予保留。所以,要清楚地辨别极性功能团的种类、数量和位

比较气相色谱法与高效液相色谱法分离原理、仪器构造及应用范围的不同点

比较气相色谱法与高效液相色谱法分离原理、仪器构造及应用范围的不同点。 一、分离原理: 1.气相:气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。 2.液相:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 二、应用范围: 1.气相:气相色谱法具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。一般对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。 2.液相:高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 三、仪器构造: 1.气相:由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。 1.1 柱箱:色谱柱是气相色谱仪的心脏,样品中的各个组份在色谱柱中经过反复多次分配后得到分离,从而达到分析的目的,柱箱的作用就是安装色谱柱。 由于色谱柱的两端分别连接进样器和检测器,因此进样器和检测器的下端(接头)均插入柱箱。 柱箱能够安装各种填充柱和毛细管柱,并且操作方便。 色谱柱(样品)需要在一定的温度条件下工作,因此采用微机对柱箱进行温度控制。并且由于设计合理,柱箱内的梯度很小。 对于一些成份复杂、沸程较宽的样品,柱箱还可进行三阶程序升温控制。且程序设定后自动运行无需人工干预,降温时还能自动后开门排热。 1.2 进样器: 进样器的作用是将样品送入色谱柱。如果是液体样品,进样器还必须将其汽化,因此采用微机对进样器进行温度控制。 根据不同种类的色谱柱及不同的进样方式,共有五种进样器可供 选择: 1.填充柱进样器 2.毛细管不分流进样器附件 3.毛细管分流进样器附件 4.毛细管分流/不分流进样器 5.六通阀气体进样器 1.3检测器:

高效液相色谱原理

高效液相色谱原理 1、概述 在所有色谱技术中,液相色谱法(liquid chromatography,LC)是最早(1903年)发明的,但其初期发展比较慢,在液相色谱普及之前,纸色谱法、气相色谱法和薄层色谱法是色谱分析法的主流。到了20世纪60年代后期,将已经发展得比较成熟的气相色谱的理论与技术应用到液相色谱上来,使液相色谱得到了迅速的发展。特别是填料制备技术、检测技术和高压输液泵性能的不断改进,使液相色谱分析实现了高效化和高速化。具有这些优良性能的液相色谱仪于1969年商品化。从此,这种分离效率高、分析速度快的液相色谱就被称为高效液相色谱法(high performance liquid chromatography,HPLC),也称高压液相色谱法或高速液相色谱法。 气相色谱只适合分析较易挥发、且化学性质稳定的有机化合物,而HPLC则适合于分析那些用气相色谱难以分析的物质,如挥发性差、极性强、具有生物活性、热稳定性差的物质。现在,HPLC的应用范围已经远远超过气相色谱,位居色谱法之首。 2、液相色谱流程图 3、原理 液相色谱根据不同的种类其原理也不相同,但是其大致过程不外乎根据不同化学物质的性质不同,把这些物质用色谱柱的方式分离再进行定性定量分析的过程。下表主要为液相色谱的种类及其原理和相对应的应用。

4、关于HPLC软件 高效液相色谱软件在数据处理方面是以时间为横坐标,以探测器探测的信号的强度为纵坐标形成一系列谱图。 高效液相色谱研发的难点不在软件,而在于电气电路控制系统的开发。 5、HPLC在不同领域的主要应用 HPLC几乎在所有学科领域都有广泛应用,可以用于绝大多数物质成分的分离分析,它和气相色谱都是应用最广泛的仪器分析技术,HPLC在部分领域的主要分析对象物质列于下表: 总之:高效液相色谱是一种应用范围相当广泛的测试仪器,不同种类的高效液相色谱有不同的原理。但是其结构基本上一致,因此只要更换其中的部分零件,就可以用于测试不同的物质。高效液相色谱从1969年至今,其发展速度令人惊奇,其应用的范围也逐渐拓展。在中国的市场上,随着医药、化工、环保行业的发展,其市场前景不可限量。 张红平 2011年9月2日

相关文档