文档库 最新最全的文档下载
当前位置:文档库 › 第6章数理统计的基本概念习题及答案

第6章数理统计的基本概念习题及答案

第6章数理统计的基本概念习题及答案
第6章数理统计的基本概念习题及答案

49

第六章 数理统计的基本概念

一.填空题

1.若n ξξξ,,,21 是取自正态总体),(2σμN 的样本,

则∑==n

i i n 11ξξ服从分布 )n

,(N 2

σμ .

2.样本),,,(n X X X 21来自总体),(~2

σμN X 则~)(22

1n

S n σ- )(1χ2-n ; ~)(n

S n X μ- _)(1-n t __。其中X 为样本均值,∑=--=n i n X X n S 122

11)(。

3.设4321X X X X ,,,是来自正态总体).(220N 的简单随机样本,

=a X

4.

1(,y U

5. 设X 为X

6. 令T =, 则2~T F (1,n ) 分布.

解:由T =, 得22

X T Y n =. 因为随机变量~(0,1)X N , 所以22~(1).X χ

再由随机变量X 与Y 相互独立, 根据F 分布的构造, 得22

~(1,).X T F n Y n

=

50

7. 设12,,,n X X X 是总体(0,1)N 的样本, 则统计量2

2

21

11n k k X n X =-∑服从的分布为

(1,1)F n - (需写出分布的自由度).

解:由~(0,1),1,2,,i X N i n = 知22

221

2

~(1),~(1)n

k k X X n χχ=-∑, 于是

221

22211

(1)

1~(1,1)./1

1n

k

n k k k X

n X F n X n X ==-=--∑∑

8. 总体2

1234~(1,2),,,,X N X X X X 为总体X 的一个样本,

9. 对”)

(1) 在 , 则 样 本 对 )

(2) 若 0≠-θθ)?(E 则 称 θ为 θ 的 渐 近 无 偏 估 计 量 .( 错 )

(3) 设总体X 的期望E(X),方差D(X)均存在,21x x , 是X 的一个样本 ,

则统计量213

2

31x x +是 E(X) 的无偏估计量。 ( 对 )

(4) 若 θθθ

==)?()?(2

1

E E 且 )?()?(2

1

θθD D <则 以 θ2估 计 θ 较 以 θ1估 计 θ 有 效 。 ( 错 )

51

(5) 设θn 为θ 的估计量,对任意ε > 0,如果0=≥-∞

→}|?{|lim εθθn

n P 则称 θn 是θ 的一致估计量 。 ( 对 )

(6)样本方差()

∑=--=n

i i

n X X n D 1

211是总体),(~2σμN X 中σ2 的无偏 估计量。()

2

1

1∑=-=n

i i X X n D *

是总体X 中σ2的有偏估计。 ( 对 )

10.设321X X X ,,是取自总体X 的一个样本,则下面三个均值估计量

3

332123211?,1254131?,2110351?X u

X X X u X X X ++=++=μ都

是总体均值的无偏估计,其中方差越小越有效,则

1、ξA C

2、=-n

i i 12)(ξξ,=i n S 2211-n 的A 3A 、)1,0(~2N

B 、)1.0(~4

N

C 、

)1,0(~/21

N n -ξ

D 、

)1,0(~/21

N n

4、设n ξξξ ,,21是总体)1,0(~N ξ的样本,S ,ξ分别是样本的均值和样本标准差,

则有( C )

A 、)1,0(~N n ξ

B 、)1,0(~N ξ

C 、

∑=n

i i

n x 1

22)(~ξ

D 、)1(~/-n t S ξ

5.. 简 单 随 机 样 本 (X X X n 12,,

,) 来 自 某 正 态 总 体,X 为 样 本 平 均 值, 则 下 述 结 论 不 成 立 的 是 ( C )。

52

( A ) X 与 (?)X

X i

i n

-=∑21

独 立

( B )X i 与X j 独 立 ( 当 j i

≠ ) ( C )

X

i i n

=∑1

X

i i n

21

=∑ 独 立

( D )X i 与X j 2 独 立 ( 当 j i

≠)

6. 设 1n 21X , ,X ,X , 来自总体2n 212

11Y ,,Y ,Y ),,(N ~X

,X σμ 来自总

体Y £, ),(N ~Y

222

σμ

, 且 X 与 Y 独 立。∑∑====2

1n 1

i ,i 2

n 1i ,i 1,Y n 1

Y ,X n 1X

∑∑==-=-=21

2

11

n 1

i 2,i 2

2

n 2n 1i 2,i 12

n 1,)Y Y (n 1S ,)X X (n 1S

则如下结论中错误的是 ( D )。 ( A ) )1,0(N ~n n )]

()Y X [(222

12

121σ+σμ-μ--=ξ

-

7. 2的无偏估计量是A 、∑=-n

i i X n 111 8. 33212

1

103X X ++,2?μ

列说法正确的是A 、321,,都是)(X E =的无偏估计且有效性顺序为321??μμ>> B 、321?,?,?μμμ

都是)(X E =μ的无偏估计,且有效性从大到小的顺序为312???μμμ

>> C 、321?,?,?μμμ

都是)(X E =μ的无偏估计,且有效性从大到小的顺序为123???μμμ

>> D 、321?,?,?μμμ不全是)(X E =μ的无偏估计,无法比

53

三. 计算题

1、在总体)2,30(~2N X 中随机地抽取一个容量为16的样本,求样本均值X 在 29到31之间取值的概率.

解:因)2,30(~2

N X ,故)16

2,30(~2N X ,即))21(,30(~2N X

)22

30

2()3120(<-<-=<<∴X P X P 9544.01)2(2)2()2(=-Φ=-Φ-Φ=

2、设某厂生产的灯泡的使用寿命),1000(~2σN X (单位:小时),抽取一容量 为9的样本,其均方差100=S ,问)940(

解:因2

σ未知,不能用),1000

(2

N X σ=来解题,

而T ∴

∴)8.1(>T 3、设X >2)4i X .

解:X ∑=∴

7

1

2(i ≈025.0)16

4、设总体)1,0(~N X ,从此总体中取一个容量为6的样本654321,,,,,X X X X X X , 设26542321)()(X X X X X X Y +++++=,试决定常数C ,使随机变量CY 服 从2x 分布.

解:)3,0(~321N X X X ++,)3,0(~654N X X X ++

)1,0(~3

321N X X X ++∴

,)1,0(~36

54N X X X ++

)2(~)3

(

)3

(

226

5423

21x X X X X X X +++++∴

54

即)2(~)(3

1

)(31226542

321x X X X X X X +++

++ 3

1

=

∴C 时,)2(~2x CY

5、设随机变量T 服从)(n t 分布,求2T 的分布.

解:因为n

Y X

T /=,其中)1,0(~N X ,)(~2n x Y ,

n

Y X n Y X T /1//222

== )1(~22x X ),1(~2n F T ∴

6. 利 用 t 分 布 性 质 计 算 分 位 数 t 0.975( 50 ) 的 近 似 值 。

( 已 知 ξ ~ N ( 0, 1 ) , p ( ξ < 1.96 ) = 0.975 )

而 ≈ 2

7. 设 心 矩 μr 的 总

体r 阶

证 r μ

上 相 等 , 说 明 样

本 的

r 估 计 。

8. 设总体2~(0,2)X N , 1210,,,X X X 为来自总体X 的样本. 令

2

2

5

10

16i j i j Y X X ==????=+ ? ?????

∑∑.

试确定常数C , 使CY 服从2χ分布, 并指出其自由度.

解:由2~(0,2)X N , 得

~(0,1),1,2,,10.2

i

X N i = 又1210,,,X X X 互相独立,

55

510

16

11~(0,5),~(0,5),22i j i j X N X N ==∑∑

10

5

~(0,1),

~(0,1),j

i

X

X

N N ∑∑

且二者独立.

从而有

2

2

510

2161~(2),20i j i j X X χ==??

??????+ ? ????????

?

∑∑ 得21

,20

C χ=

分布的自由度为2.

9. 设124125,,,,,,X X X Y Y Y 与分别是来自正态(0,1)N 的总体X 与Y 的样本,

Z =

解:

47+=.

10.设X 两 个 相 互 独 立 、Y n 的 均 值 ,

试 σ 的 概 率 大 解 : 由 于 X 及 Y 均 服 从 ???? ?

?n N ,σμ则 ??? ??-22,0~σn N Y X 要 (

)(

)

01.02)2(≈>-=>-n n Y X P Y X P σσ

(

)

99.02)2(≈<-n n Y X P σ

即 (

)99.0122=-Φ

n 即 (

)

995.02=Φ

n

n 2258=..

∴ 取 n = 14

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

《数理统计》试卷及答案

---------------------------------------- 说明:本试卷总计100分,全试卷共 5 页,完成答卷时间2小时。 ---------------------------------------- 一、填空题(本大题共8小题,每题4分,共32分) 1、随机事件A 、B 互不相容,且A =B ;则()P A = 2、已知,10/1)/(,5/1)(,5/2)(===B A P B P A P 则=+)(B A P 3、同时掷三枚均匀硬币,则恰有两枚正面向上的概率为 。 4、若随机变量)2.0,20(~B X ,则X 的最可能值是 。 5、若n X X X ,...,,21为来自泊松分布)(λP 的一个样本,2,S X 分别为样本均值和样本方差,则 =)(X E ,=)(2S E 。 6、样本0,5,10,-3样本均数为 ,样本方差为 。 7、2σ已知时检验假设0100:;:μμμμ≠=H H ,应构造统计量为 ,拒绝域为 。 8、考查4个3水平的因子A,B,C,D 及其交互作用A ×B 与A ×C ,则做正交实验设计时,可选用的行数最少的正交表为 。 二、单项选择题(本大题共8小题,每题4分,共32分) 1、设随机事件A 、B 互不相容,且()0,()0,P A P B >>则下列结论只有( ) 成立。 A 、A 、 B 是对立事件; B 、A 、B 互不相容; C 、A 、B 不独立; D 、 A 、 B 相互独立。 2、射击三次,事件i A 表示第i 次命中目标(i =1,2,3),下列说法正确的是( )。 A 、321A A A 表示三次都没击中目标; B 、313221A A A A A A ++表示恰有两次击中目标; C 、313221A A A A A A ++表示至多一次没击中目标;D 、321A A A 表示至少有一次没击中目标。 3、随机变量),(~2σμN X ,则随着σ的减小,)|(|σμ<-X P 应( )。 A 、单调增大; B 、单调减少; C 、保持不变; D 、增减不能确定

数理统计课后答案.doc

数理统计 一、填空题 1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。不含任何未知参数 2、设母体 ),,(~2 N X 已知,则在求均值 的区间估计时,使用的随机变量为 n X 3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。 025.010 1 5u 4、假设检验的统计思想是 。 小概率事件在一次试验中不会发生 5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。 0H :05.0 p 6、某地区的年降雨量),(~2 N X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2 的矩估计值为 。 1430.8 7、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2 N 与 )1,2(N , 2 *2 2*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS ,已知)4(~),20(~22 2221 ,则__________, b a 。 用 )1(~)1(22 2 * n S n ,1,5 b a 8、假设随机变量)(~n t X ,则 2 1 X 服从分布 。)1,(n F 9、假设随机变量),10(~t X 已知05.0)(2 X P ,则____ 。 用),1(~2 n F X 得),1(95.0n F

数理统计试题及答案

数理统计考试试卷 一、填空题(本题15分,每题3分) 1、总体得容量分别为10,15得两独立样本均值差________; 2、设为取自总体得一个样本,若已知,则=________; 3、设总体,若与均未知,为样本容量,总体均值得置信水平为得置信区间为,则得值为________; 4、设为取自总体得一个样本,对于给定得显著性水平,已知关于检验得拒绝域为2≤,则相应得 备择假设为________; 5、设总体,已知,在显著性水平0、05下,检验假设,,拒绝域就是________。 1、; 2、0、01; 3、; 4、; 5、。 二、选择题(本题15分,每题3分) 1、设就是取自总体得一个样本,就是未知参数,以下函数就是统计量得为( )。 (A) (B) (C) (D) 2、设为取自总体得样本,为样本均值,,则服从自由度为得分布得统计量为( )。 (A) (B) (C) (D) 3、设就是来自总体得样本,存在, , 则( )。 (A)就是得矩估计(B)就是得极大似然估计 (C)就是得无偏估计与相合估计(D)作为得估计其优良性与分布有关 4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验得拒绝域为( )。 (A) (B) (C) (D) 5、设总体,已知,未知,就是来自总体得样本观察值,已知得置信水平为0、95得置信区间为(4、71,5、69),则取显著性水平时,检验假设得结果就是( )。 (A)不能确定(B)接受(C)拒绝(D)条件不足无法检验 1、B; 2、D; 3、C; 4、A; 5、B、 三、(本题14分) 设随机变量X得概率密度为:,其中未知 参数,就是来自得样本,求(1)得矩估计;(2)得极大似然估计。 解:(1) , 令,得为参数得矩估计量。 (2)似然函数为:, 而就是得单调减少函数,所以得极大似然估计量为。 四、(本题14分)设总体,且就是样本观察值,样本方差,

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

数理统计教程课后重要答案习题

第一章:统计量及其分布 19.设母体ξ服从正态分布N (),,2 σμξ 和2 n S 分别为子样均值和子样方差,又设 ()21,~σμξN n +且与n ξξξ,,,21 独立, 试求统计量 1 1 1+--+n n S n n ξ ξ的抽样分布. 解: 因为ξξ-+1n 服从??? ??+21, 0σn n N 分布. 所以 ()1,0~12 1N n n n σξ ξ+-+ 而 ()1~22 2 -n nS n χσ 且2 n S 与ξξ-+1n 独立,, 所以 ()1~1111--÷+--+n t S n n n n S n n n σ ξ ξ分布. 即 1 1 1+--+n n S n n ε ε服从()1-n t 分布. 20. (),,,1,,n i i i =ηξ是取自二元正态分布 N () ρσσ μμ2 2212 1 ,,,的子样,设 ()∑∑∑===-===n i i i n i n i i n S n n 12 111, 1,1ξξηηξξξ 2 ,()2 1 21∑=-=n i i n S ηηη和 ()() () ()∑∑∑===----= n i i n i i i n i i r 1 2 21 1 ηηξξ ηηξξ 试求统计量 () 122 2 21--+---n S rS S S η ξηξμμηξ的分布. 解: 由于() .21μμηξ-=-E ()() = -+=-ηξηξηξ,c o v 2D D D n n n n 2 12 22 12σσρ σσ-+ . 所以 ()() n 2 12 22 121 2σρσσσμμ ηξ-+---服从()1,0N 分布 . () ()()()() ()()[] 2 1 1 2 1 2 1 212 22 122ηξηξ ηηξξηηξξ---=----+-=-+∑ ∑∑∑====i i n i i i n i i n i i n i S rS S S n

数理统计习题答案

100 11 ==∑ =n i i x n x 34 11222 =-=∑ =n i i x x n s 第一章 1.在五块条件基本相同的田地上种植某种作物,亩产量分别为92,94,103,105,106(单位:斤),求子样平均数和子样方差。 解: 2.从母体中抽取容量为60的子样,它的频数分布 求子样平均数与子样方差,并求子样标准差。 解: 411 *==∑=l i i i x m n x 67.181122*2 =-=∑=l i i i x x m n s 32.467.18==s 3.子样平均数和子样方差的简化计算如下:设子样值n x x x ,,,21?的平均数为x 和方差 为2x ε。作变换c a x y i i -= ,得到n y y y ,,,21?,它的平均数为y 和方差为2 y s 。试证:222 ,y x s c s y c a x =+=。 解:由变换c a x y i i -= ,即i i cy a x += ()y cn na x n cy a x n i i n i i +=+=∑∑==,1 1 y c a x +=∴ 而()() () ∑∑∑====-= --+=-=n i y i n i i n i i x s c y y n c y c a cy a n x x n s 1 222 2 1212211

4.对某种混凝土的抗压强度进行研究,得到它的子样的下列观测数据(单位:磅/英寸2): 1939, 1697, 3030, 2424, 2020, 2909, 1815, 2020, 2310 采用下面简化计算法计算子样平均数和方差。先作变换2000-=i i x y ,再计算y 与2y s ,然 后利用第3题中的公式获得x 和2x s 的数值。 解:作变换2000-=i i x y ,2000=a 44.24021649 1 11=?==∑=n i i y n y 444.2240=+=y a x 247.1970321122 22=-==∑=n i i y x y y n s s 5.在冰的溶解热研究中,测量从℃72.0-的冰变成0℃的水所需热量,取13块冰分别作试验得到热量数据如下: 79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04, 79.97, 80.05, 80.03, 80.02, 80.00, 80.02 试用变换()80100-=i i x y 简化计算法计算子样平均数和子样方差。 解:作变换()80100-=i i x y ,1001,80==c a 229131 11=?==∑=n i i y n y 02.80100280=+=+=y c a x 41 2 2 2222103.5-=?=-= =∑n i i y x y y n c s c s 6.容量为10的子样频数分布为 试用变换()2710-=i i x y 作简化计算,求x 与2 x s 的数值。 解:作变换()2710-=i i x y ,10/1,27==c a ()5.11510 1 11*-=-?==∑=l i i i y m n y

医药数理统计习题及答案汇编

学习好资料 第一套试卷及参考答案 一、选择题 ( 40 分) 1、根据某医院对急性白血病患者构成调查所获得的资料应绘制 ( B ) A 条图B 百分 条图或圆图C 线图D 直方图 2、均数和标准差可全面描述D 资料的特征 A 所有分布形式E负偏态分布C正偏态分布D正态分布和近似正态分布 3、要评价某市一名5岁男孩的身高是否偏高或偏矮,其统计方法是( A ) A 用该市五岁男孩的身高的95%或99%正常值范围来评价 B 用身高差别的假设检 验来评价 C 用身高均数的95%或99%的可信区间来评价 D 不能作评价 4、比较身高与体重两组数据变异大小宜采用( A ) A 变异系数 B 方差 C 标准差 D 四分位间距 5、产生均数有抽样误差的根本原因是( A ) A. 个体差异 B. 群体差异 C. 样本均数不同 D. 总体均数不同 6、男性吸烟率是女性的10 倍,该指标为( A ) (A)相对比(B)构成比(C)定基比(D )率 7、统计推断的内容为( D ) A.用样本指标估计相应的总体指标 B.检验统计上的“检验假设” C. A和B均不是 D. A和B均是 8、两样本均数比较用t 检验,其目的是检验( C ) A两样本均数是否不同B两总体均数是否不同 C 两个总体均数是否相同 D 两个样本均数是否相同 9、有两个独立随机的样本,样本含量分别为n i和住,在进行成组设计资料的t 检 验时,自由度是( D ) (A) n i+ n2 (B) n i+ n2 - C) n1+ n2 +1 D) n1+ n2 -2 10、标准误反映( A ) A 抽样误差的大小 B 总体参数的波动大小 C 重复实验准确度的高低 D 数据的离散程度 11、最小二乘法是指各实测点到回归直线的(C) A垂直距离的平方和最小E垂直距离最小 C纵向距离的平方和最小D纵向距离最小 12、对含有两个随机变量的同一批资料, 既作直线回归分析, 又作直线相关分析。 令对相关系数检验的t值为t r,对回归系数检验的t值为t b, 二者之间具有什么关系?( C) A t r >t b B t r

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

概率论与数理统计试卷及答案

概率论与数理统计 答案 一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2 ()E ξ=29、4. 0.94、5. 3/4 三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P (A )=5/625=1/125------------------------------------------------------5 分 (2) 5个盒子中选一个放两个球,再选两个各放一球有 302415=C C 种方法----------------------------------------------------7 分 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故 125 72625360)(== B P --------------------------------------------------10分 四.解:(1) ?? ∞∞-==+=3 04ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)? ==+=<10 212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3 300()()[ln(1)]1Ax E xf x dx dx A x x x ξ∞-∞= ==-++?? 13(3ln 4)1ln 4ln 4 =-=-------------------------------------10分 五.解:(1)ξ的边缘分布为 ??? ? ??29.032.039.02 1 0--------------------------------2分 η的边缘分布为 ??? ? ??28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη?的分布列为

《概率与数理统计》试题与参考答案

一、填空题(本大题共有10个小题,每小题3分,共30分) 1.设C B A 、、是3个随机事件,则“三个事件中至少有两个事件发生” 用 C B A 、、 表示为 ; 2.设P (A )=0.3,P (B )=0.6,若A 与B 独立,则)(B A P ?= ; 3.设X 的概率分布为C k k X P k ?-= =21 2)(,4,3,2,1=k ,则=C ; 4.设随机变量ξ~),(p n B ,且4=ξE ,2=ξD ,则n = ; 5.设随机变量ξ的密度函数为????? ≤ =其他,02||,cos )(πx x C x f ,则常数 C = ; 6.设n X X X ,,,21 是来自),(2σμN 的样本,则=)(X E ; 7.设随机变量X 与Y 相互独立,且X ~N (0,9),Y ~N (0,1),令Z =X -2Y ,则 D (Z )= ; 8.n X X X ,,,21 是取自总体),(2 σμN 的样本,则∑== n i i X n X 1 1 ~ ; 9.若总体),(~2σμN X ,且2σ未知,用样本检验假设0H :0μμ=时,则采用的统计量是 ; 10.设总体)(~λP X ,则λ的最大似然估计为 。

二、单项选择题(本大题共10小题,每小题2分,共20分) 1.若 A 与 B 互为对立事件,则下式成立的是 ( ) A.P (A ?B )=Ω B.P (AB )=P (A )P (B ) C. P (AB )=φ D. P (A )=1-P (B ) 2.已知一射手在两次独立射击中至少命中目标一次的概率为0.96,则该射手每次射击的命中率为 ( ) A.0.04 B.0.2 C.0.8 D.0.96 3.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,5 3)A |B (P =,则P (B )=( ) A. 5 1 B. 5 2 C. 5 3 D. 5 4 4. 随机变量X )3(~E ,则=)(X D ( ) A. 31 B. 91 C. 271 D. 81 1 5. 设随机变量X ~N (2,32),Φ(x )为标准正态分布函数,则P { 2

概率论与数理统计习题 含解答 答案

概率论与数理统计复习题(1) 一. 填空. 1.3.0)(,4.0)(==B P A P 。若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。 2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。 3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=}0{X P 。 4.1)()(==X D X E 。若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则 =≠}0{X P 。 5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P 6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。 7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示), =XY ρ 。 8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。 9.设1?θ和2?θ均是未知参数θ的无偏估计量,且)?()?(2221θθE E >,则其中的统计量 更有效。 10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的

长度愈 愈好。但当增大置信水平时,则相应的置信区间长度总是 。 二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求: (1)该时期内这个地区遭受水灾的概率; (2)当乙河流泛滥时,甲河流泛滥的概率。 三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。(1)求敌机被击落的概率;(2)若敌机被击落,求它中两弹的概率。 四. X 的概率密度为? ??<<=其它 ,0,0 ,)(c x kx x f 且E(X)=32。(1)求常数k 和c ;(2) 求X 的分布函数F(x); 五. (X,Y )的概率密度 ???<<<<+=otherwise ,02 0,42 ),2(),(y x y kx y x f 。求 (1)常数k ;(2) X 与Y 是否独立;(3)XY ρ; 六..设X ,Y 独立,下表列出了二维随机向量(X ,Y )的分布,边缘分布的部分概率,试 将其余概率值填入表中空白处.

概率论与数理统计试题及答案2[1]

概率论与数理统计B 一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12 () ,()23 P A P B == 则()P AB 可能为() (A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为() (A) 12 ; (B) 225; (C) 425 ; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( ) (A) 518; (B) 13; (C) 1 2 ; (D)以上都不对 4.某一随机变量的分布函数为()3x x a be F x e += +,(a=0,b=1)则F (0)的值为( ) (A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对 5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( ) (A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对 二.填空题(每小题3分,共15分) 1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = . 2.设随机变量~(,), ()3, () 1.2B n p E D ξ ξξ==,则n =______. 3.随机变量ξ的期望为() 5E ξ=,标准差为()2σξ=,则2()E ξ=_______. 4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为 2 ()22 a f x x x = ++,a 为常数,则P (ξ≥0)=_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 四.(本题10分) 设随机变量ξ的分布密度为 , 03()10, x<0x>3 A x f x x ?? =+???当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望. 五.(本题10分) 设二维随机变量(ξ,η)的联合分布是

概率论与数理统计试题及答案

一.选择题(18分,每题3分) 1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ) )(A 独立; )(B 不独立; )(C 相容; )(D 不相容. 2. 已知人的血型为 O 、A 、B 、AB 的概率分别是; ;;。现任选4人,则4人血 型全不相同的概率为: ( ) )(A ; )(B 40024.0; )(C 0. 24; )(D 224.0. 3. 设~),(Y X ???<+=., 0, 1,/1),(22他其y x y x f π 则X 与Y 为 ( ) )(A 独立同分布的随机变量; )(B 独立不同分布的随机变量; )(C 不独立同分布的随机变量; )(D 不独立也不同分布的随机变量. 4. 某人射击直到中靶为止,已知每次射击中靶的概率为. 则射击次数的数 学期望与方差分别为 ( ) 、 )(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ) )(A 32112110351?X X X ++=μ ; )(B 32129 4 9231?X X X ++=μ ; )(C 321321 6131?X X X ++=μ ; )(D 32141254131?X X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10 )(22 2 12n X i n i χμχ-= ∑=,其 拒域为(1.0=α) ( ) )(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(2 05.02n χχ≥. 二. 填空题(15分,每题3分) 1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则 =?)(B A P . 2. 设随机变量X 的分布律为??? ? ??-+c b a 4.01.02.043 21 ,则常数c b a ,,应满足的条件 ) 为 . 3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率

数理统计课后答案

) 数理统计 一、填空题 1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。不含任何未知参数 2、设母体σσμ),,(~2 N X 已知,则在求均值μ的区间估计时,使用的随机变量为 n X σ μ - 3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。 025.010 1 5u ?± ; 4、假设检验的统计思想是 。 小概率事件在一次试验中不会发生 5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。 0H :05.0≤p 6、某地区的年降雨量),(~2 σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2 σ的矩估计值为 。 ~ 7、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2 N 与 )1,2(N , 2 *2 2*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~22 2221χχχχ,则__________,==b a 。 用 )1(~)1(22 2 *--n S n χσ,1,5-==b a 8、假设随机变量)(~n t X ,则 21 X 服从分布 。)1,(n F

9、假设随机变量),10(~t X 已知05.0)(2 =≤λX P ,则____=λ 。 用),1(~2 n F X 得),1(95.0n F =λ 10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N , X 为子样均值,而 01.0)(=>λX P , 则____=λ 01.04)1,0(~1z N n X =?λ 11、假设子样1621,,,X X X 来自正态母体),(2 σμN ,令∑∑==-=16 11 10 1 43i i i i X X Y ,则Y 的 分布 )170,10(2 σμN % 12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2 S 分别是子样均值和子 样方差,令2*2 10S X Y =,若已知01.0)(=≥λY P ,则____=λ 。)9,1(01.0F =λ 13、如果,?1θ2?θ都是母体未知参数θ的估计量,称1?θ比2?θ有效,则满足 。 )?()?(2 1θθD D < 14、假设子样n X X X ,,,21 来自正态母体),(2σμN ,∑-=+-=1 1 2 12 )(?n i i i X X C σ 是2σ的一个无偏估计量,则_______=C 。 ) 1(21 -n 15、假设子样921,,,X X X 来自正态母体)81.0,(μN ,测得子样均值5=x ,则μ的置信度是95.0的置信区间为 。025.03 9 .05u ?± 16、假设子样10021,,,X X X 来自正态母体),(2 σμN ,μ与2 σ未知,测得子样均值 5=x ,子样方差12=s ,则μ的置信度是95.0的置信区间为 。 025.0025.0025.0)99(),99(10 1 5z t t ≈?± 17、假设子样n X X X ,,,21 来自正态母体),(2 σμN , μ与2σ未知,计算得

概率论与数理统计试题及答案

考试时间120分钟班级姓名学号 .则 . 2. 三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是 = . 3. 设随机变量2 (,) Xμσ N,X Y e =,则Y的分布密度函数为. 4. 设随机变量2 (,) Xμσ N,且二次方程240 y y X ++=无实根的概率等于0.5,则 μ=. 5. 设()16,()25 D X D Y ==,0.3 X Y ρ=,则() D X Y +=. 6. 掷硬币n次,正面出现次数的数学期望为. 7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两. 则100个该型号螺丝钉重量不超过10.2斤的概率近似为(答案用标准正态分布函数表示). 8. 设 125 ,, X X X是来自总体(0,1) X N的简单随机样本,统计量 12 ()~() C X X t n +,则常数C= ,自由度n=. 二(共50分) 1.(10分)设袋中有m只正品硬币,n只次品硬币(次品硬币的两面均有国徽),从袋中 任取一只硬币,将它投掷r次,已知每次都得到国徽.问这只硬币是正品的概率是多少? 2.(10分)设顾客在某银行窗口等待服务的时间(以分计)X服从指数分布,其概率密 度函数为 某顾客在窗口等待服务,若超过10分钟,他就离开. 他一个月到银行5次.以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律,并求{1} P Y≥. 3.(10分)设二维随机变量(,) X Y在边长为a的正方形内服从均匀分布,该正方形的对角线为坐标轴,求: (1) 求随机变量X,Y的边缘概率密度; (2) 求条件概率密度 | (|) X Y f x y. 4.(10分)某型号电子管寿命(以小时计)近似地服从2 (160,20) N分布,随机的选取四只,求其中没有一只寿命小于180小时的概率(答案用标准正态分布函数表示). 5.(10分)某车间生产的圆盘其直径在区间(,) a b服从均匀分布, 试求圆盘面积的数学 期望. 三. (10分)设 12 ,, n X X X是取自双参数指数分布总体的一组样本,密度函数为其中,0 μθ>是未知参数, 12 ,,, n x x x是一组样本值,求:

数理统计汪荣鑫版习题答案

数理统计汪荣鑫版习题答案

数理统计习题答案 第一章 1.解: () () ()()()()()122 5 2 1122222 19294103105106100 5 11100519210094100103100105100106100534 n i i n i i i i X x n S x x x n ===++++====-=-?? =-+-+-+-+-? ?=∑∑∑ 2. 解:子样平均数 * 1 1l i i i X m x n ==∑ ()1 18340610262604= ?+?+?+?= 子样方差 ( )2 2 *1 1l i i i S m x x n ==-∑ ()()()()2222 18144034106422646018.67?? = ?-+?-+?-+?-? ?= 子样标准差 4.32 S = 3. 解:因为 i i x a y c -= 所以 i i x a cy =+ 1 1n i i x x n ==∑ ()1 111n i i n i i a cy n na cy n ===+??=+ ??? ∑∑ 1 n i i c a y n a c y ==+ =+∑ 所以 x a c y =+ 成 立 ( )2 2 1 1n x i i s x x n ==-∑ () ( ) () 2 2 12 21 11n i i i n i i n i i a cy a c y n cy c y n c y y n ====+--=-=-∑∑∑

因为 ()2 2 1 1n y i i s y y n ==-∑ 所以 222x y s c s = 成 立 ()()()()()17218120 3.2147.211.2 e n n e n M X X R X X M X X +?? ??? ??+ ??? ====-=--====4. 解:变换 2000 i i y x =- 1 1n i i y y n ==∑()61303103042420909185203109240.444 =--++++-++= ( )2 2 1 1n y i i s y y n ==-∑ ()()()()()()()()()222 2 2 2 222 161240.444303240.4441030240.4449 424240.44420240.444909240.444185240.44420240.444310240.444197032.247 =--+--+-+??-+-+-+ ?--+-+-? = 利用3题的结果可知 2220002240.444 197032.247 x y x y s s =+=== 5. 解:变换 () 10080i i y x =- 13 11 1113n i i i i y y y n ====∑∑ []1 2424334353202132.00= -++++++-+++++=

概率论与数理统计试题及答案

考试时间 120 分钟 班级 姓名 学号 一. 填空题(每题3分,共24分) 1.设 A 、B 为随机事件,P (A)=0.5,P(B)=0.6, P(B A)=0.8.则P(B )A U . 2. 三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是= . 3. 设随机变量2 (,)X μσN :,X Y e =,则Y 的分布密度函数为 . 4. 设随机变量2(,)X μσN :,且二次方程2 40y y X ++=无实根的概率等于, 则μ= . 5. 设()16,()25D X D Y ==, 0.3 X Y ρ=,则 ()D X Y += . 6. 掷硬币n 次,正面出现次数的数学期望为 . 7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是两. 则100个该型号螺丝钉重量不超过斤的概率近似为 (答案用标准正态分布函数表示). 8. 设125,,X X X L 是来自总体(0,1)X N :的简单随机样本,统计量 12()/~()C X X t n +,则常数C = ,自由度n = . 二 计算题 1.(10分)设袋中有m 只正品硬币,n 只次品硬币(次品硬币的两面均有国徽),从袋中任取一只硬币,将它投掷r 次,已知每次都得到国徽.问这只硬币是正品的概率是多少?

2.(10分)设顾客在某银行窗口等待服务的时间(以分计)X 服从指数分布,其概率密度函数为 /5 (1/5)0 ()0 x e x f x -?>=? ?其它 某顾客在窗口等待服务,若超过10分钟,他就离开. 他一个月到银行5次.以Y 表示一个月内他未等到服务而离开窗口的次数,写出Y 的分布律,并求{1}P Y ≥. 3.(10分)设二维随机变量(,)X Y 在边长为a 的正方形内服从均匀分布,该正方形的对角线为坐标轴,求: (1) 求随机变量X ,Y 的边缘概率密度; (2) 求条件概率密度|(|)X Y f x y . . 4.(10分)某型号电子管寿命(以小时计)近似地服从 2(160,20)N 分布,随机的选取四只,求其中没有一只寿 命小于180小时的概率(答案用标准正态分布函数表示).

相关文档
相关文档 最新文档