文档库 最新最全的文档下载
当前位置:文档库 › 图像锐化的方法及比较

图像锐化的方法及比较

图像锐化的方法及比较
图像锐化的方法及比较

图像的锐化

摘要:图像平滑往往使图像中的轮廓变得模糊,为了减少这类不利影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。本文分析了图像锐化方法中的梯度算子法和二阶导数算子法的各自特点,其中梯度算子法主要是Roberts 梯度算子法、Prewitt 梯度算子法、Sobel 算子法;二阶导数算子法为Laplacian 算子法,并通过编程对一张实际图片进行了试验对比,结果证明Laplacian 算子法锐化效果最好。

引言 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。图像锐化处理的主要技术体现在空域和频域的高通滤波,而空域高通滤波主要用模版卷积来实现。

1、梯度算子法

在图像处理中,一阶导数通过梯度来实现,因此利用一阶导数检测边缘点的方法就称为梯度算子法。梯度值正比于像素之差。对于一幅图像中突出的边缘区,其梯度值较大;在平滑区域梯度值小;对于灰度级为常数的区域,梯度为零。

1.1、Roberts 梯度算子法

Roberts 梯度就是采用对角方向相邻两像素之差,故也称为四点差分法。对应的水平和垂直方向的模板为:

标注

的是当前像素的位置(i,j)为当前像素的位置,其计算公式如下:

??????-=?

1001x G ??????-=?0110y G ?

特点:用4点进行差分,以求得梯度,方法简单。其缺点是对噪声较敏感,常用于不含噪声的图像边缘点检测。梯度算子类边缘检测方法的效果类似于高通滤波,有增强高频分量,抑制低频分量的作用。这类算子对噪声较敏感,而我们希望检测算法同时具有噪声抑制作用。所以,下面给出的平滑梯度算子法具有噪声抑制作用。

利用Roberts 梯度算子法对灰度数字图像lena.bmp 进行边缘检测程序代码如下:

I=imread('C:\Documents and Settings\Administrator\桌面\数字图象处理实验\mape_file\lena.bmp');

[H,W]=size(I);

M=double(I);

J=M;

for i=1:H-1

for j=1:W-1

J(i,j)=abs(M(i,j)-M(i+1,j+1))+abs(M(i+1,j)-M(i,j+1));

end;

end;

subplot(1,2,1);imshow(I);title('原图');

subplot(1,2,2);imshow(uint8(J));title('Roberts 处理后');

)

1,(),1()1,1(),(),(+-++++-=j i f j i f j i f j i f j i G

1.2、Prewitt 梯度算子法(平均差分法)

因为平均能减少或消除噪声,Prewitt 梯度算子法就是先求平均,再求差分来求梯度。水平和垂直梯度模板分别为:

利用检测模板可求得水平和垂直方向的梯度,再通过梯度合成和边缘点判定,就可得到平均差分法的检测结果。

利用Prewitt 算子对灰度数字图像lena.bmp 进行边缘检测,程序代码如下: I=imread('C:\Documents and Settings\Administrator\桌面\数字图象处理实验\mape_file\lena.bmp');

[H,W]=size(I);

M=double(I);

J=M;

for i=2:H-1

for j=2:W-1

J(i,j)=abs(M(i-1,j+1)-M(i-1,j-1)+M(i,j+1)-M(i,j-1)+M(i+1,j+1)-M(i+1,j -1))+abs(M(i+1,j-1)-M(i-1,j-1)+M(i+1,j)-M(i-1,j)+M(i+1,j+1)-M(i-1,j+1));

end;

end;

subplot(1,2,1);imshow(I);title('原图');

subplot(1,2,2);imshow(uint8(J));title('Prewitt 处理后');

??????????---=?

101101101x d ????

??????---=?111000111y d

1.3、Sobel 算子法(加权平均差分法)

Sobel 算子就是对当前行或列对应的值加权后,再进行平均和差分,也称为加权平均差分。水平和垂直梯度模板分别为:

Sobel 算子和Prewitt 算子一样,都在检测边缘点的同时具有抑制噪声的能力,检测出的边缘宽度至少为二像素。由于它们都是先平均后差分,平均时会丢失一些细节信息,使边缘有一定的模糊。但由于Sobel 算子的加权作用,其使边缘的模糊程度要稍低于程度要稍低于Prewitt 算子。

利用Sobel 边缘检测算子法对灰度数字图像lena.bmp 进行边缘检测,程序代码如下:

I=imread('C:\Documents and Settings\Administrator\桌面\数字图象处理实验\mape_file\lena.bmp');

[H,W]=size(I);

M=double(I);

J=M;

for i=2:H-1 for j=2:W-1

y

x S S j i G +=),(??????????---=?

10120210

1x S ??????????---=?121000121y S

J(i,j)=abs(M(i-1,j+1)-M(i-1,j-1)+2*M(i,j+1)-2*M(i,j-1)+M(i+1,j+1)-M(i +1,j-1))+abs(M(i-1,j-1)-M(i+1,j-1)+2*M(i-1,j)-2*M(i+1,j)+M(i-1,j+1)-M (i+1,j+1));

end;

end;

subplot(1,2,1);imshow(I);title('原图');

subplot(1,2,2);imshow(uint8(J));title('Sobel 处理后

');

2、二阶导数算子法

对于阶跃状边缘,其二阶导数在边缘点处出现过零交叉,即边缘点两旁的二阶导数取异号,据此可以通过二阶导数来检测边缘点。

2.1、Laplacian 算子法

对数字图像 f (m ,n ),用差分代替二阶偏导,则Laplacian 算子为:

写成检测模板为:

)1,()1,(),1(),1(),(4),(--+---+-=j i f j i f j i f j i f j i f j i G

Laplacian检测模板的特点是各向同性,对孤立点及线端的检测效果好,但边缘方向信息丢失,对噪声敏感,整体检测效果不如梯度算子。

按下面要求编写程序并运行结果。

用Laplacian 锐化算子对灰度数字图像lena.bmp进行锐化处理,显示处理前、后图像。程序代码如下:

I=imread('C:\Documents and Settings\Administrator\桌面\数字图象处理实验\mape_file\lena.bmp');

[H,W]=size(I);

M=double(I);

J=M;

for i=2:H-1

for j=2:W-1

J(i,j)=4*M(i,j)-[M(i+1,j)+M(i-1,j)+M(i,j+1)+M(i,j-1)];

end;

end;

subplot(1,2,1);imshow(I);title('原图');

subplot(1,2,2);imshow(uint8(J));title('锐化处理后的图');

运行结果如下:

3、结语

锐化的实质是:锐化图像g(m,n) = 原图像f(m,n) + 加重的边缘(α*微分)由实验效果对比图可以看出Sobel算子处理图像后使边缘有一定的模糊。但其边缘的模糊程度要稍低于程度要稍低于Prewitt算子。Laplacian检测模板的特点是各向同性,对孤立点及线端的检测效果好,但边缘方向信息丢失,对噪声敏感,整体检测效果不如梯度算子。

参考文献:

[1] MATLAB7.X图像处理M.何兴华,周媛媛.人民邮电出版社:北京,2006,72-73.

[2] 数字图像处理M.阮秋琦.电子工业出版社:北京,2005,12-14.

[3] MATLAB函数速查手册M.邓微.人民邮电出版社:北京,2008,23-24.

实验三 空间域数字图像的平滑与锐化

福建农林大学计算机与信息学院实验报告系:专业:年级: 姓名:学号:实验室号_______ 计算机号 实验时间:指导教师签字:成绩:报告退发(订正、重做) 实验三空间域数字图像的平滑与锐化 1.实验目的和要求 掌握空间域数字图像的平滑与锐化。 2.实验内容和原理 (1)利用加权平均掩模实现数字图像的平滑; (2)利用拉普拉斯算子实现数字图像的锐化 3.实验环境 硬件:一般PC机 操作系统:WindowsXP 编程平台:MATLAB 或高级语言 4.算法描述及实验步骤 Code: X=imread('moon.tif'); subplot(2,2,1) ;imshow(X); title 原图 b=size(X); X=double(X); %f=[0 -1 0;-1 4 -1;0 -1 0;]; %用四领域 f=[-1 -1 -1;-1 8 -1;-1 -1 -1;]; %用八领域 g=[1 2 1;2 4 2;1 2 1;]; %模糊用的算子 Y=zeros(b); for(i=2:b(1)-1)

for(j=2:b(2)-1) Y(i,j)=X(i,j)*g(2,2)+X(i+1,j)*g(3,2)+X(i,j+1)*g(2,3)+X(i+1,j+1 )*g(3,3)+X(i+1,j-1)*g(3,1)+X(i-1,j+1)*g(1,3)+X(i-1,j-1)*g(1,1) +X(i-1,j)*g(1,2)+X(i,j-1)*g(2,1); end; end; Y=mat2gray(Y/16); subplot(2,2,2) ;imshow(Y); title 模糊后 Z=zeros(b); for(i=2:b(1)-1) for(j=2:b(2)-1) Z(i,j)=Y(i,j)*f(2,2)+Y(i+1,j)*f(3,2)+Y(i,j+1)*f(2,3)+Y(i+1,j+1)* f(3,3)+Y(i+1,j-1)*f(3,1)+Y(i-1,j+1)*f(1,3)+Y(i-1,j-1)*f(1,1)+Y(i -1,j)*f(1,2)+Y(i,j-1)*f(2,1); end; end; Z=mat2gray(Z); subplot(2,2,3) ;imshow(Z); title 锐化后 M=zeros(b); for(i=2:b(1)-1) for(j=2:b(2)-1) M(i,j)=X(i,j)+Y(i,j);

图像的平滑处理与锐化处理

数字图像处理作业题目:图像的平滑处理与锐化处理 :张一凡 学号:4 专业:计算机应用技术

1.1理论背景 现实中的图像由于种种原因都是带噪声的,噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来了困难。一般数字图像系统中的常见噪声主要有:高斯噪声、椒盐噪声等。 图像去噪算法根据不通的处理域,可以分为空间域和频域两种处理方法。空间域处理是在图像本身存在的二维空间里对其进行处理。而频域算法是用一组正交函数系来逼近原始信号函数,获得相应的系数,将对原始信号的分析转动了系数空间域。 在图像的识别中常需要突出边缘和轮廓信息,图像锐化就是增强图像的边缘和轮廓。 1.2介绍算法 图像平滑算法:线性滤波(邻域平均法) 对一些图像进行线性滤波可以去除图像中某些类型的噪声。领域平均法就是一种非常适合去除通过扫描得到的图像中的噪声颗粒的线性滤波。 领域平均法是空间域平滑噪声技术。对于给定的图像()j i f,中的每个像素点()n m,,取其领域S。设S含有M个像素,取其平均值作为处理后所得图像像素点()n m,处的灰度。用一像素领域内各像素灰度平均值来代替该像素原来的灰度,即领域平均技术。

领域S 的形状和大小根据图像特点确定。一般取的形状是正方形、矩形及十字形等,S 的形状和大小可以在全图处理过程中保持不变,也可以根据图像的局部统计特性而变化,点(m,n)一般位于S 的中心。如S 为3×3领域,点(m,n)位于S 中心,则 ()()∑∑-=-=++=1111 ,91,i j j n i m f n m f 假设噪声n 是加性噪声,在空间各点互不相关,且期望为0,方差为2σ,图像g 是未受污染的图像,含有噪声图像f 经过加权平均后为 ()()()()∑∑∑+==j i n M j i g M j i f M n m f ,1 ,1 ,1 , 由上式可知,经过平均后,噪声的均值不变,方差221σσM = ,即方差变小,说明噪声强度减弱了,抑制了噪声。 图像锐化算法:拉普拉斯算子 拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性,比较适用于改善因为光线的漫反射造成的图像模糊。其原理是,在摄像记录图像的过程中,光点将光漫反射到其周围区域,这个过程满足扩散方程: f kV t f 2=?? 经过推导,可以发现当图像的模糊是由光的漫反射造成时,不模糊图像等于模糊图像减去它的拉普拉斯变换的常数倍。另外,人们还发现,即使模糊不是由于光的漫反射造成的,对图像进行拉普拉斯变换也可以使图像更清晰。

图像平滑及锐化

1.图像锐化的目的 是使灰度反差增强,从而增强图像中边缘信息,有利于轮廓抽取。因为轮廓或边缘就是图像中灰度变化率最大的地方。因此,为了把轮廓抽取出来,就是要找一种方法把图像的最大灰度变化处找出来。 2.实现图像的锐化可使图像的边缘或线条变得清晰,高通滤波可用空域高通滤波法来实现。本节将围绕空间高通滤波讨论图像锐化中常用的运算及方法,其中有梯度运算、各种锐化算子、拉普拉斯(Laplacian)算子、空间高通滤波法和掩模法等图像锐化技术。 3.梯度算子——是基于一阶微分的图像增强. 梯度算子: 梯度对应的是一阶导数,梯度算子是一阶导数算子。 梯度方向:在图像灰度最大变化率上,反映出图像边缘上的灰度变化。梯度处理经常用于工业检测、辅助人工检测缺陷,或者是更为通用的自动检测的预处理。 4.拉普拉斯算子——基于二阶微分的图像增强 Laplacian算子是不依赖于边缘方向的二阶微分算子,是常用的二阶导数算子. 拉普拉斯算子是一个标量而不是向量,具有线性特性和旋转不变,即各向同性的性质。 拉普拉斯微分算子强调图像中灰度的突变,弱化灰度慢变化的区域。这将产生一幅把浅灰色边线、突变点叠加到暗背景中的图像。 计算数字图像的拉普拉斯值也可以借助于各种模板。拉普拉斯对模板的基本要对应中心像素的系数应该是正的,而对应于中心像素邻近像素的系数应是负的,它们的和应该为零。 将原始图像和拉普拉斯图像叠加在一起的简单方法可以保护拉普拉斯锐化处理的效果,同时又能复原背景信息。 5.同态滤波器图像增强的方法 一幅图像f(x,y)能够用它的入射光分量和反射光分量来表示,其关系式如下 f(x,y)=i(x,y)r(x,y) 图像f(x,y)是由光源产生的照度场i(x,y)和目标的反射系数场r(x,y)的共同作用下产生的。 该模型可作为频率域中同时压缩图像的亮度围和增强图像的对比度的基础。但在频率域中不能直接对照度场和反射系数场频率分量分别进行独立的操作。

图像锐化处理

课 程 设 计 报 告 学 院: 自动化学院 专业名称: 信息工程 学生姓名: 赵建涛 指导教师: 赵春晖 时 间: 2011年9月

课程设计任务书 一、设计内容 对图像采用微分运算的方法进行锐化处理。 要求:编写Matlab 程序对图像进行处理。图像必须存于指定位置,处理后的图像也必须存于指定位置。该程序能运行,可处理不同的图像。图像处理算法自己制定,不得使用现成的Matlab 函数。拉普拉斯算子如下: -4-4-4 -4-4-4-4-4-41111111 111 111111111111111111 111111110 二、主要技术指标 1、熟悉图像锐化处理基本原理; 2、对彩色图像进行图像锐化处理; 3、将该模版与其他模版的图像分析效果进行比较; 4、阅读参考文献10篇以上。 三、进度要求 两周完成设计任务,写5000字以上的小论文。附参考文献并在论文上相应位置进行标注。 学 生 赵建涛 指导教师 赵春晖

基于微分运算的彩色图像锐化处理 摘要 数字图像处理(Digital Image Processing)又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20 世纪60年代初期。图像处理的基木目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。随着图像处理技术的深入发展,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更局、更深层次发展[1]。 在数字图像处理中,图像经转换或传输后,质量可能下降,难免有些模糊。另外,图像平滑在降低噪声的同时也造成目标的轮廓不清晰和线条不鲜明,使目标的图像特征提取、识别、跟踪等难以进行,这一点可以利用图像锐化来增强.图像锐化的主要目的有两个:一是增强图像边缘,使模糊的图像变得更加清晰,颜色变得鲜明突出,图像的质量有所改善,产生更适合人眼观察和识别的图像;二是希望经过锐化处理后,目标物体的边缘鲜明,以便于提取目标的边缘、对图像进行分割、目标区域识别、区域形状提取等,为进一步的图像理解与分奠定定基础。图像锐化一般有两种方法:一是微分法,二是高通滤波法。 本文着重介绍的是基于拉普拉斯的一种典型的微分算法,并选择不同的模版进行图像锐化,分析比较不同模版下锐化效果的异同。 关键字:图像锐化拉普拉斯算子模版

数字图像处理-图像平滑和锐化变换处理

图像平滑和锐化变换处理 一、实验内容和要求 1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。 2、空域平滑:box、gauss模板卷积。 3、频域平滑:低通滤波器平滑。 4、空域锐化:锐化模板锐化。 5、频域锐化:高通滤波器锐化。 二、实验软硬件环境 PC机一台、MATLAB软件 三实验编程及调试 1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。 ①灰度拉伸程序如下: I=imread(''); J=imadjust(I,[,],[]); subplot(2,2,1),imshow(I); subplot(2,2,2),imshow(J); subplot(2,2,3),imhist(I); subplot(2,2,4),imhist(J); ②直方图均衡程序如下: I=imread(''); J=histeq(I); Subplot(2,2,1); Imshow(I); Title('原图像'); Subplot(2,2,2);

Imshow(J); Title('直方图均衡化后的图像') ; Subplot(2,2,3) ; Imhist(I,64); Title('原图像直方图') ; Subplot(2,2,4); Imhist(J,64) ; Title('均衡变换后的直方图') ; ③伽马校正程序如下: A=imread(''); x=0:255; a=80,b=,c=; B=b.^(c.*(double(A)-a))-1; y=b.^(c.*(x-a))-1; subplot(3,2,1); imshow(A); subplot(3,2,2); imhist(A); subplot(3,2,3); imshow(B); subplot(3,2,4); imhist(B); subplot(3,2,6); plot(x,y); ④log变换程序如下: Image=imread('');

MATLAB-实现数字图像锐化处理

MATLAB 实现数字图像锐化处理 摘要:讨论了数字图像增强技术中空域图像锐化的四种算法及其用MATLAB的实现;同时给出了利用四种算法进行图像锐化后的对照图像。比较实验结果,可知运用算法锐化处理后,图像比原来图像清晰。 关键词:MATLAB、线性锐化、非线性锐化、sobel算子、prewitt算子、log算子 1.引言 MATLAB全称是Matrix Laboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际运用中MATLAB 中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了MATLAB 在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。 二维图像均匀采样,可得到一幅离散化成M ×N 样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的。而MATLAB 的长处就是处理矩阵运算,因此用MATLAB 处理数字图像非常的方便。MATLAB 支持五种图像类型,即索引图像、灰度图像、二值图像、RGB 图像和多帧图像阵列;支持BMP,GIF,HDF,JPEG,PCX,PNG,XWD,CUR,ICO等图像文件格式的读、写和显示。MATLAB 对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。图像处理工具箱是由一系列支持图像处理操作的函数组成,可以进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作口。 数字图像处理中图像锐化的目的有两个:一是增强图像的边缘,使模糊的图像变得清晰起来;这种模糊不是由于错误操作,就是特殊图像获取方法的固有影响。二是提取目标物体的边界,对图像进行分割,便于目标区域的识别等。通过图像的锐化,使得图像的质量有所改变,产生更适合人观察和识别的图像。 2.数字图像的锐化 数字图像的锐化可分为线性锐化滤波和非线性锐化滤波。如果输出像素是输入像素领域像素的线性组合则称为线性滤波,否则称为非线性滤波。 2.1线性锐化滤波器 线性高通滤波器是最常用的线性锐化滤波器。这种滤波器必须满足滤波器的中心系数为正数,其他系数为负数。线性高通滤波器3 ×3 模板的典型系数如表1 所示:

图像平滑与锐化处理

图像平滑与锐化处理 1 图像平滑处理 打开Image Interpreter/Utilities/Layer Stack对话框,如图1-1 图1-1 打开Layer Stack对话框 在Input File中打开tm_striped.img,在Layer中选择1,在Output File中输入输出文件名band1.img,单击Add按钮。忽略零值,单击OK(如图1-2所示)。 图1-2 Layer Stack对话框设置

打开Interpreter>Spatial Enhancement>Convolution对话框。如图1-3 图1-3 打开Convolution对话框 在Input File中选择band1.img。在Output File中选择输出的处理图像,命名为lowpass.img。在Kernel中选择7*7Low Pass,忽略零值。单击OK完成图像的增强处理(如图1-4所示)。 图1-4 卷积增强对话框(Convolution) 平滑后的图像去掉噪音的同时造成了图像模糊,特别是对图像的边缘和细节消弱很多。而且随着邻域范围的扩大,在去噪能力增强的同时模糊程度越严重(如图1-5)。

图1-5 处理前后的对比 为了保留图像的边缘和细节信息,可对上述算法进行改进,引入阈值T,将原有图像灰度值f(i,j),和平均值g(i,j)之差的绝对值与选定的阈值进行比较,根据比较结果决定像元(i,j)的最后灰度值G(i,j)。当差小于阈值的时候取原值;差大于阈值的时候取平均值。这里通过查询得T取4,其表达式为下: g(i,j),当| f(i,j)-g(i,j)|>4 G(i,j)= f(i,j),当| f(i,j)-g(i,j)|<=4 具体操作步骤:在图标控制面板工具栏中点击空间建模Modeler>Model Maker选项。先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图 1-6,1-7,1-8,1-9,1-10,1-11所示)。

图像锐化的目的和意义

图像锐化的目的和意义图像模糊的主要原因是图像中的高频成分低于低频成分,它对图像质量的影响体现在两个不同均匀灰度区域的边界部分。 当成像参数正确,图像的亮度变化传递正常时,在图像中对象边缘与背景之间的理想边缘面应该时阶梯形的,这样的图像看上去边缘清晰,反之,则会边缘模糊,其特征时对象与背景间的灰度改变有一个过渡带,这将损害图像的视觉效果。要消除图像中不应又的模糊边缘,需要增强图像中的高频成分,使边缘锐化。 图像锐化是一种使图像原有的信息变换到有利于人们观看的质量,其目的是为了改善图像的视觉效果,消除图像质量劣化的原因(模糊),使图像中应又的对象边缘变得轮廓分明。 图像的锐化,需要利用积分的反运算(微分),因为微分运算是求信号的变化率,又加强图像中高频分量的作用,从而要锐化图像需要采用各向同性的,具有旋转不变特征的线性微分算子。 图像锐化是一种补偿轮廓、突出边缘信息以使图像更为清晰的处理方法. 锐化的目标实质上是要增强原始图像的高频成分 .常规的锐化算法对整幅图像进行高频增强 , 结果呈现明显噪声 .为此, 在对锐化原理进行深入研究的基础上 ,提出了先用边缘检测算法检出边缘 , 然后根据检出的边缘对图像进行高频增强的方法 . 实验结果表明 , 该方法有效地解决了图像锐化后的噪声问题图像的锐化可以在空间域中进行,也可以在频率域中实现。 一. 图像信号的锐化过程 1. 空间域中锐化图像的目的在空间域中进行图像的锐化也成为空间滤波处 理,目的又 (1)一是提取图像中用于认识和识别图像特征的参量,为图像识别准备数据 (2)消除噪声。图像数字化时产生的噪声主要是造成对图像内容的干扰,这用图像的平滑处理。图像数字化时在信号高频区域产生的 误差以及设备自身噪声对图像的高频(轮廓特征)干扰同样也是一 种噪声,可以用空间滤波的方法去除。 (3)采用空间滤波的方法可以更鲜明地保持图像的边缘特征,这也是空间滤波的主要目的,即锐化图像。处理效果 锐化的目的在于使图像中对象轮廓上的像素灰度大的更大,小的更小,但

基于MATLAB的图像锐化算法研究

中北大学 课程设计说明书 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 基于MATLAB的图像锐化算法研究 指导教师:陈平职称: 副教授 2013 年 12 月 15 日 中北大学 课程设计任务书

13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 课程设计题目:信息处理综合实践: 基于MATLAB的图像锐化算法研究起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日 课程设计任务书

课程设计任务书

目录 1 绪论 (1)

1.1 MATLAB简介 (1) 1.2 MATLAB对图像处理的特点 (1) 1.3 图像锐化概述 (2) 1.4 图像锐化处理的现状和研究方法 (2) 2 设计目的 (2) 3 设计内容和要求 (2) 4 总体设计方案分析 (2) 5 主要算法及程序 (4) 5.1 理想高通滤波器锐化程序 (4) 5.2 高斯高通滤波器锐化程序 (5) 5.3 高提升滤波器锐化程序 (6) 6 算法结果及比较分析 (8) 6.1 理想高通滤波器锐化结果 (8) 6.2 高斯高通滤波器锐化结果 (9) 6.3 高提升滤波器锐化结果 (10) 6.4 算法结果比较分析 (11) 7 设计评述 (11) 参考文献 (12)

1 绪论 数字图像处理(Digital Image Processing)又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。图像处理的基本目的是改善图像的质量。它以人为对象,改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常见的图像处理方法有图像增强、复原、编码、压缩等。图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天。生物医学工程、工业检测、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注意、前景远大的新型科学。随着图像处理技术的深入发展,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理更高、更深层次发展。 1.1 MATLAB简介 MATLAB全称Matrix Laboratory(矩阵实验室),最早初由美国Cleve Moler 博士在20世纪70年代末讲授矩阵理论和数据分析等课程时编写的软件包Linpack和Eispack组成。它用于数学、信息工程、摇感、机械工程、计算机等专业。它的推广得到各个领域专家的关注,其强大的扩展功能为各个领域应用提供了基础,各个领域的专家相继推出MATLAB工具箱,而且工具箱还在不断发展,借助于这些工具箱,各个层次的研究人员可直接、直观、方便地进行工作,从而节省大量的时间。目前,MATLAB语言已经成为科学计算、系统仿真、信号与图像处理的主流软件。本文主要从MATLAB图像处理方面做应用。 1.2MATLAB对图像处理的特点 MATLAB全称Matrix Laboratory(矩阵实验室),是一种主要用于矩阵数据值计算的软件,因其在矩阵运算上的特点,使得MATLAB在处理图像上具有独特优势,理论上讲,图像是一种二维的连续函数,而计算机在处理图像数字时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样个量化的过程。二维图像均匀采样,课得到一副离散化成N×N样本的数字图像,该数字图像是一个整数列阵,因而用矩阵来描述该数字图像是最直观最简便的。

数字图像处理-图像平滑和锐化变换处理

图像平滑和锐化变换处理 一、实验容和要求 1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。 2、空域平滑:box、gauss模板卷积。 3、频域平滑:低通滤波器平滑。 4、空域锐化:锐化模板锐化。 5、频域锐化:高通滤波器锐化。 二、实验软硬件环境 PC机一台、MATLAB软件 三实验编程及调试 1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。 ①灰度拉伸程序如下: I=imread('kids.tif'); J=imadjust(I,[0.2,0.4],[]); subplot(2,2,1),imshow(I); subplot(2,2,2),imshow(J); subplot(2,2,3),imhist(I); subplot(2,2,4),imhist(J); ②直方图均衡程序如下: I=imread('kids.tif'); J=histeq(I);

Imshow(I); Title('原图像'); Subplot(2,2,2); Imshow(J); Title('直方图均衡化后的图像') ; Subplot(2,2,3) ; Imhist(I,64); Title('原图像直方图') ; Subplot(2,2,4); Imhist(J,64) ; Title('均衡变换后的直方图') ; ③伽马校正程序如下: A=imread('kids.tif'); x=0:255; a=80,b=1.8,c=0.009; B=b.^(c.*(double(A)-a))-1; y=b.^(c.*(x-a))-1; subplot(3,2,1); imshow(A); subplot(3,2,2); imhist(A);

图像锐化的目的和意义

图像锐化的目的和意义 图像模糊的主要原因是图像中的高频成分低于低频成分,它对图像质量的影响体现在两个不同均匀灰度区域的边界部分。 当成像参数正确,图像的亮度变化传递正常时,在图像中对象边缘与背景之间的理想边缘面应该时阶梯形的,这样的图像看上去边缘清晰,反之,则会边缘模糊,其特征时对象与背景间的灰度改变有一个过渡带,这将损害图像的视觉效果。要消除图像中不应又的模糊边缘,需要增强图像中的高频成分,使边缘锐化。 图像锐化是一种使图像原有的信息变换到有利于人们观看的质量,其目的是为了改善图像的视觉效果,消除图像质量劣化的原因(模糊),使图像中应又的对象边缘变得轮廓分明。 图像的锐化,需要利用积分的反运算(微分),因为微分运算是求信号的变化率,又加强图像中高频分量的作用,从而要锐化图像需要采用各向同性的,具有旋转不变特征的线性微分算子。 图像锐化是一种补偿轮廓、突出边缘信息以使图像更为清晰的处理方法.锐化的目标实质上是要增强原始图像的高频成分.常规的锐化算法对整幅图像进行高频增强,结果呈现明显噪声.为此,在对锐化原理进行深入研究的基础上,提出了先用边缘检测算法检出边缘,然后根据检出的边缘对图像进行高频增强的方法.实验结果表明,该方法有效地解决了图像锐化后的噪声问题 图像的锐化可以在空间域中进行,也可以在频率域中实现。 一. 图像信号的锐化过程 1.空间域中锐化图像的目的 在空间域中进行图像的锐化也成为空间滤波处理,目的又 (1)一是提取图像中用于认识和识别图像特征的参量,为 图像识别准备数据 (2)消除噪声。图像数字化时产生的噪声主要是造成对图像 内容的干扰,这用图像的平滑处理。图像数字化时在信号 高频区域产生的误差以及设备自身噪声对图像的高频(轮 廓特征)干扰同样也是一种噪声,可以用空间滤波的方法 去除。

图像锐化的方法及比较

图像的锐化 摘要:图像平滑往往使图像中的轮廓变得模糊,为了减少这类不利影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。本文分析了图像锐化方法中的梯度算子法和二阶导数算子法的各自特点,其中梯度算子法主要是Roberts 梯度算子法、Prewitt 梯度算子法、Sobel 算子法;二阶导数算子法为Laplacian 算子法,并通过编程对一张实际图片进行了试验对比,结果证明Laplacian 算子法锐化效果最好。 引言 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。图像锐化处理的主要技术体现在空域和频域的高通滤波,而空域高通滤波主要用模版卷积来实现。 1、梯度算子法 在图像处理中,一阶导数通过梯度来实现,因此利用一阶导数检测边缘点的方法就称为梯度算子法。梯度值正比于像素之差。对于一幅图像中突出的边缘区,其梯度值较大;在平滑区域梯度值小;对于灰度级为常数的区域,梯度为零。 1.1、Roberts 梯度算子法 Roberts 梯度就是采用对角方向相邻两像素之差,故也称为四点差分法。对应的水平和垂直方向的模板为: 标注 的是当前像素的位置(i,j)为当前像素的位置,其计算公式如下: ??????-=? 1001x G ??????-=?0110y G ?

常见的各种锐化方式和简单操作

常见的各种锐化方式和简单操作 翼狐网:https://www.wendangku.net/doc/5f10835052.html, 01、Lightroom锐化 最便捷的锐化方式,可以直接在Lightroom里面进行操作。 “数量”即为锐化强度,数值越大强度越高,但是可能出现晕影和噪点。数值通常保持在50-100之间,数值太小效果不明显,数值太大会出现失真。 “半径”决定应用锐化影响的像素数量,细节精细的用小半径,细节粗大的用大半径,一般使用1.0像素即可,尽量不要超过2.0像素。 “细节”调整在图像中锐化多少高频信息和锐化过程强调边缘的程度。较低的设置主要锐化边缘以消除模糊,较高的值有助于使图像中的纹理更显著。

“蒙版”用来控制锐化的区域,0时,图像中所有区域接受等量的锐化,100时,只会锐化边缘区域。 如果只在Lightroom中处理的话,可以直接使用其中的锐化,但是这种锐化效果通常不会很好,而精细的锐化一般都是在Photoshop中进行的。 02、Photoshop锐化/进一步锐化/锐化边缘 (在Photoshop菜单里面找到“滤镜”→“锐化”) 防抖就不说了,可以自己试一试,有时候也还算是有用。 “锐化”和“进一步锐化”都是自动对照片进行锐化,“进一步锐化”的锐化强度要略强于“锐化”。这两种锐化滤镜都没有调参的选项,无法精细控制,除非实在没时间做锐化,否则尽量不要使用。

“锐化边缘”相当于给非边缘处做了蒙版,只会对边缘进行锐化,不会破坏整体效果,但是同样没有调参选项,所以也不推荐使用。 03、USM锐化 USM锐化和Lightroom中的锐化有些类似,可以调参数,可以看100%预览。

“数量”即为锐化强度,通常选择在50-200之间 “半径”与Lightroom中的相同,半径值越大,锐化范围越广,数值取决于画面中细节的大小以及输出尺寸,一般在1.0像素左右。 “阈值”同样是用来控制锐化范围,只有当相邻像素之间的灰度差高于阈值的时候,才会有锐化效果,也就是说阈值越大,锐化效果越弱,阈值为0则对所有像素锐化,一般来说设置在2-20之间的色阶。 04、智能锐化

三图像的平滑与锐化

实验三 图像的平滑与锐化 一.实验目的 1.掌握图像滤波的基本定义及目的; 2.理解空域滤波的基本原理及方法; 3.掌握进行图像的空域滤波的方法。 二.实验基本原理 图像噪声从统计特性可分为平稳噪声和非平稳噪声两种。统计特性不随时间变化的噪声称为平稳噪声;统计特性随时间变化的噪声称为非平稳噪声。 另外,按噪声和信号之间的关系可分为加性噪声和乘性噪声。假定信号为S (t ),噪声为n (t ),如果混合叠加波形是S (t )+n (t )形式,则称其为加性噪声;如果叠加波形为S (t )[1+n (t )]形式, 则称其为乘性噪声。为了分析处理方便,往往将乘性噪声近似认为加性噪声,而且总是假定信号和噪声是互相独立的。 1.均值滤波 均值滤波是在空间域对图像进行平滑处理的一种方法,易于实现,效果也挺好。 设噪声η(m,n)是加性噪声,其均值为0,方差(噪声功率)为2σ,而且噪声与图像f(m,n)不相关。 除了对噪声有上述假定之外,该算法还基于这样一种假设:图像是由许多灰度值相近的小块组成。这个假设大体上反映了许多图像的结构特征。 ∑∈=s j i j i f M y x g ),(),(1 ),( (3-1) 式(2-1)表达的算法是由某像素领域内各点灰度值的平均值来代替该像素原来的灰度值。 可用模块反映领域平均算法的特征。对模板沿水平和垂直两个方向逐点移动,相当于用这样一个模块与图像进行卷积运算,从而平滑了整幅图像。模版内各系数和为1,用这样的模板处理常数图像时,图像没有变化;对一般图像处理后,整幅图像灰度的平均值可不变。

(a) 原始图像 (b) 邻域平均后的结果 图3-1 图像的领域平均法 2.中值滤波 中值滤波是一种非线性处理技术,能抑制图像中的噪声。它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的象素很少,而图像则是由像素数较多、面积较大的小块构成。 在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。在处理之后,位于窗口正中的像素的灰度值,用窗口内各像素灰度值的中值代替。例如若窗口长度为5,窗口中像素的灰度值为80、90、200、110、120,则中值为110,因为按小到大(或大到小)排序后,第三位的值是110。于是原理的窗口正中的灰度值200就由110取代。如果200是一个噪声的尖峰,则将被滤除。然而,如果它是一个信号,则滤波后就被消除,降低了分辨率。因此中值滤波在某些情况下抑制噪声,而在另一些情况下却会抑制信号。 中值滤波很容易推广到二维的情况。二维窗口的形式可以是正方形、近似圆形的或十字形的。在图像增强的具体应用中,中值滤波只能是一种抑制噪声的特殊工具,在处理中应监视其效果,以决定最终是福才有这种方案。实施过程中的关键问题是探讨一些快速算法。 3.空域低通滤波: 从信号频谱角度来看,信号的缓慢变化部分在频率域属于低频部分,而信号的迅速变化部分在频率域是高频部分。对图像来说,它的边缘以及噪声干扰的频率分量都处于频率域较高的部分,因此,可以采用低通滤波的方法来去除噪声。而频域的滤波又很容易从空间域的卷积来实现,为此只要适当设计空间域的单位冲激响应矩阵,就可以达到滤除噪声的效果。下面是几种用于噪声平滑低通卷积模板。

利用laplacian算子对图像进行锐化操作

[键入文档标题][键入文档副标题] 班级:计0905 姓名:车雨欣 学号: 20091221018

利用laplacian 算子对图像进行锐化操作Laplacian 算子定义 Laplacian算子是n维欧几里德空间中的一个二阶微分算子,定义为梯度()的散度() 。因此如果 f 是二阶可微的实函数,则 f 的拉普拉斯算子定义为: (1) f 的拉普拉斯算子也是笛卡儿坐标系xi 中的所有非混合 二阶偏导数: (2)作为一个二阶微分算子,拉普拉斯算子把C函数映射到C函数,对于k > 2。表达式(1)(或⑵)定义了一个算子△ : C(R)- C(R),或更一般地,定义了一个算子△ : C( Q) - C( Q),对于任何开集Q。 运算模板 函数的拉普拉斯算子也是该函数的黑塞矩阵的迹, 可以证明,它具有各向同性,即与坐标轴方向无关,坐标轴旋转后梯度结果不变。如果邻域系统是 4 邻域,Laplacian 算子的模板为: 0 1 0 1 -4 1 0 1 0 如果邻域系统是8 邻域,Laplacian 算子的模板为:

1 1 1 1 -8 1 1 1 1 前面提过,Laplacian 算子对噪声比较敏感,所以图像一般先经过平滑处理,因为平滑处理也是用模板进行的,所以,通常的分割算法都是把Laplacian 算子和平滑算子结合起来生成一个新的模板。图像图像最基本的特征是边缘。所谓边缘是指周围像素有阶跃变化或屋顶状变化的那些象素的集合。他存在于目标与背景、目标与目标、区域与区域、基元与基元之间,因此他是图像分割所依赖的最重要的特征,他两边象素的灰度值有显著不同;其二是屋顶装边缘,他位于灰度值从增加到减少的变化转折点。 图像边缘检测 一种定位二维或三维图像(特别是医学图像)中的对象的边缘的 系统。通过输入端(31 0)接收表示该图像的各元素值的数据元素集。该数据集被存储在存储装置(3 2 0 )中。处理器(3 4 0 )确定该图像中的对象的边缘。该处理器计算所述数据元素的至少一阶和/或二阶导数,并且计算该图像的等照度线曲率,所述曲率由K 标识。该处理器还确定校正因数a,该校正因数a对于由对象的曲 率和/或所述数据的模糊造成的边缘错位进行校正。该校正因数 a 取决于所述等照度线曲率K。然后,该处理器确定取决于所计算出的导数和所述等照度线曲率的算子的过零点。该系统的输出端(33 0)提供对于该图像

数字图像处理--图像的锐化处理实验报告

江 西 理 工 大 学 江 西 理 工 大 学 实 验 报 告 纸 第 1 页/共 2页 一、实验目的 了解图像增强中的模板锐化法; 要求先选择两幅图像,对其进行a=1和a=2的锐化处理,实现教材中图4.4.2的效果; 再选择一幅图像,验证教材中提出的锐化实质,实现教材中图4.4.3的效果,并对实验结果进行分析。 二、实验内容 1、选择两幅图像,对其进行a=1和a=2的锐化处理,实现教材中图4.4.2的效果,并分析实验结果。 2、选择一幅图像,验证教材中提出的锐化实质,实现教材中图4.4.3的效果,并分析实验结果。 三、实验步骤和设计思想 设计思想: 在matlab 环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。 f11=imread('lena1.bmp'); f21=imread('442.bmp');%读取图像 subplot(2,3,1);imshow(f11) %输出图像 title('原图') %在原始图像中加标题 a=1; %当a=1时 w1=[0 -a 0;-a 1+4*a -a;0 -a 0]; %设置w1 J1= imfilter(f11,w1,'symmetric','conv'); %进行锐化处理 f12=uint8(J1); %数据类型转换 subplot(2,3,2); imshow(f12); %显示锐化后的图像 title('a=1'); 实验步骤: 1. 启动matlab 双击桌面matlab 图标启动matlab 环境; 2. 在matlab 命令窗口中输入相应程序。书写程序时,首先读取图像,一般调用matlab 自带的图像,如: lena1.bmp 、lena1.bmp 图像;再调用相应的锐化函数,设置参数;最后输出处理后的图像; 3.浏览源程序并理解含义; 4运行,观察显示结果; 5结束运行,退出; 四、程序清单 任务一源代码: clc close clear all f11=imread('lena1.bmp'); f21=imread('442.bmp'); figure(1); subplot(2,3,1); imshow(f11); title('原图'); subplot(2,3,4); imshow(f21); a=1; w1=[0 -a 0;-a 1+4*a -a;0 -a 0]; J1= imfilter(f11,w1,'symmetric','conv'); f12=uint8(J1); subplot(2,3,2); imshow(f12); title('a=1'); a=2; w2=[0 -a 0;-a 1+4*a -a;0 -a 0]; J1= imfilter(f11,w2,'symmetric','conv'); f13=uint8(J1); subplot(2,3,3); imshow(f13); title('a=2'); 数字图像处理 实验报告

图像锐化和边缘检测

图像锐化和边缘检测 本文内容构成: 1、图像锐化和边缘检测的基本概念,微分梯度已经差分的定义 2、锐化和边缘检测的像素处理方式(3种) 3、单方向一阶微分锐化,包括: 水平方向 垂直方向 Kirsch算子 4、无方向微分锐化,包括: Roberts算子 Sobel算子 Prewitt算子 Laplacian算子(二阶微分) LOG算子(二阶微分 5、二阶微分 6、实验结果对比 在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。微分运算是求信号的变化率,由傅立叶变换的微分性质可知,微分运算具有较强高频分量作用。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。 图像锐化的方法分为高通滤波和空域微分法。图像的边缘或线条的细节(边缘)部分与图像频谱的高频分量相对应,因此采用高通滤波让高频分量顺利通过,并适当抑制中低频分量,是图像的细节变得清楚,实现图像的锐化,由于高通滤波我们在前面频域滤波已经讲过,所以这里主要讲空域的方法——微分法。

图像的拉普拉斯锐化方法及讨论

图像的拉普拉斯锐化方法及讨论 摘要:本文讲述了空域锐化中常用的二阶微分算法——拉普拉斯算子法。全文首先对拉普拉斯运算做了简单的描述,并简明地分析了其原理:通常是将原图像和对他实施拉式算子后的结果组合后产生一个锐化图像。然后对其在数字图像处理方面进行举例分析,并编程实现锐化效果。最后对实验结果进行分析与讨论,说明其在图像处理应用方面,特别是用来改善因扩散效应的模糊方面特别有效。 关键字:图像处理二阶微分锐化拉普拉斯锐化 1.引言 图象在传输和转换过程中,一般情况下质量都要降低,除了加入了噪声的因素之外,图象还要变得模糊一些。这主要因为图象的传输或转换系统的传递函数对高频成分的衰减作用,造成图象的细节和轮廓不清晰。图象锐化就是加强图象中景物的细节和轮廓,使图象变得较清晰。在数字图象中,细节和轮廓就是灰度突变的地方。我们知道,灰度突变在频城中代表了一种高频分量,如果使图象信号经历一个使高频分量得以加强的滤波器,就可以达到减少图象中的模糊,加强图象的细节和轮廓的目的。可以看出,锐化恰好是一个与平滑相反的过程。我们使用对象素及其邻域进行加权平均,也就是用积分的方法实现了图象的平滑;反过来,应当可以利用微分来锐化一个图象。 2.理论和方法 拉式算子是一个刻画图像灰度的二阶商算子,它是点、线、边界提取算子,亦称为边界提取算子。通常图像和对他实施拉式算子后的结果组合后产生一个锐化图像。拉式算子用来改善因扩散效应的模糊特别有效,因为它符合降制模型。扩散效应是成像过程中经常发生的现象。 拉普拉斯算子也是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数的拉普拉斯变换是各向同性的二阶导数,定义为:

图像锐化处理实验报告

图像锐化处理实验报告 一.实验目的 学会用Matlab 中的函数对输入图像按实验内容对图像进行锐化,感受各种不同的图像处理方法对最终图像效果的影响,最后进行综合练习。 二.实验内容 1.仔细阅读Matlab 帮助文件中有关以下函数的使用说明,主要有imfilter 、fspecial 、imadjust 等。 2.使用imfilter 函数分别采用Sobel ,Laplacian 算子对cameraman.jpg 图像作锐化运算,显示运算前后的图像。算子输入方法(两种方法都做): (1)用fspecial 函数产生(fspecial 仅能产生垂直方向sobel 算子,产生Laplacian 算子时alpha 参数选择0)。 (2)直接输入 Sobel 算子形式为 121000121x d ---??=??????(水平Sobel ) 101202101y d -?? =-????-?? (垂直Sobel ) Laplacian 算子形式为 010141010-?? --????-?? 。 对于Sobel 算子,采用Laplacian 算子,直接采用计算结果作为锐化后图像。 3.将skeleton.jpg 图像文件读入Matlab ,按照以下步骤对其进行处理: (1)用带对角线的Laplacian 对其处理,以增强边缘。 对角线Laplacian 算子为111181111---??--????---?? 。 (2)将(1)结果叠加到原始图像上。可以看出噪声增强了(Laplacian 算子对噪声敏感),应想办法降低。 (3)获取Sobel 图像并用imfilter 对其进行5×5邻域平均,以减少噪声 (4)获取2)和3)相乘图像,噪声得以减少。 (5)将(4)结果叠加到原始图像上。 (6)最后用imadjust 函数对5)结果做幂指数为0.2的灰度变换。 4.编写Roberts 梯度锐化函数。Roberts 梯度为 [(,)]|(,)(1,1)||(1,)(,1)|G f x y f x y f x y f x y f x y =-++++-+

相关文档
相关文档 最新文档