文档库 最新最全的文档下载
当前位置:文档库 › 连铸板坯质量提升措施

连铸板坯质量提升措施

连铸板坯质量提升措施
连铸板坯质量提升措施

连铸板坯质量提升措施

[摘要]:连铸板坯的质量控制十分重要。自从应用连铸以来在实验中和生产实践中找到了很多提高连铸板坯质量的方法,随着科技的进步新的更好的方法会不断地涌现。

[关键词]: 板坯连铸机钢水质量温度控制中间包

扇形段

中图分类号:f416.4 文献标识码:f 文章编号:

1009-914x(2012)29- 0060-01

连续铸钢技术经历了“从上世纪40年代的试验开发、50年代开始步入工业生产、60年代弧形铸机的出现、70年代由能源危机推动的大发展、到80年代日趋成熟的技术和90年代面临新的变革”的60年历史发展历程。 80年代连铸技术日趋成熟连铸已不再是一种“保密的工艺”。开始普遍建立人员培训和教育制度以及预防性维护。同时也出现结晶器自动调宽、流式结晶器液面控制、漏钢预报、中间包等离子加热等。90年代以后连铸技术又面临一场新的革命。目前所能预测的发展方向大致包括近终形连铸(尤其是薄板坯,薄带铸轧)、高速浇铸、高清洁性产品的连铸、低过热度浇铸、半凝固加工技术和过程与质量系统控制技术等。为了改善铸坯质量,在弧形连铸机上采用直结晶器,在结晶器下口设2-3m垂直线段,带液芯的铸坯经多点弯曲,或逐渐弯曲进入弧形段,然后再多点矫直。垂直段可使液相穴内夹杂物充分上浮,因而铸坯夹杂物的不均匀分布有所改善,偏析减轻。下面简介提高铸坯质量的措施。

板坯连铸机粘结漏钢的原因分析及预防 刘雷锋

板坯连铸机粘结漏钢的原因分析及预防刘雷锋 发表时间:2018-01-02T16:54:15.037Z 来源:《基层建设》2017年第28期作者:刘雷锋 [导读] 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。 宁波钢铁有限公司浙江宁波 315807 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。连铸过程开始广泛运用于有色金属行业,尤其是铜和铝。连铸技术迅速发展起来。本文对此进行了分析研究。 关键词:坯;连铸;连铸工艺 连铸漏钢是个常见现象。钢水在结晶器内形成坯壳,连铸坯出结晶器后,薄弱的坯壳抵抗不住钢水静压力,出现断裂而漏钢。对于薄板坯连铸来说更易发生漏钢事故。漏钢对连铸生产危害很大。即影响了连铸车间的产量,又影响了连铸坯的质量,更危及操作者的安全。因此,降低薄板坯连铸漏钢率是提高生产效率,提高产量,提高产品质量,降低成本的重要途径。现对某厂自2008~2013年薄板坯漏钢率进行统计。2008年漏钢率达0.56%;2009年漏钢率达0.19%;2010年漏钢率达0.19%;2011年漏钢率达0.19%;2012年漏钢率达0.15%;2013年漏钢率达0.07。 1 工艺流程 某厂第一钢轧厂工艺流程为:鱼雷罐供应铁水/混铁炉供应铁水→铁水预处理→转炉炼钢→氩站→精炼→薄板坯连铸 2 薄板坯漏钢类型 某厂薄板坯连铸漏钢主要有:粘结漏钢、裂纹漏钢、卷渣漏钢、开浇漏钢、鼓肚漏钢五个类型。 3 薄板坯漏钢特征、原因及预防措施 3.1 粘结漏钢 粘结漏钢是指钢水直接与结晶器铜板接触形成粘结点,粘结点处坯壳与结晶器壁之间发生粘结,此处在结晶器振动和拉坯的双重作用下被撕裂,并向下和两侧扩展,形成倒“V”形破裂线,钢水补充后又形成新的粘结点,这一过程反复进行,粘结点随坯壳运动不断下移,此处坯壳较薄,出结晶器后,坯壳不能承受上部钢水的静压力,便会发生漏钢事故。据统计,粘结漏钢发生率最高,高达50%以上。 (1)铸坯粘结漏钢后特征。粘结漏钢后铸坯特征。坯壳呈“V”字型或“倒三角”状,粘结点明显。 (2)粘结漏钢的原因: 1)保护渣性能不好。保护渣在结晶器铜板与凝固坯壳之间起润滑的效果。保护渣的性能好坏直接影响凝固坯壳的质量,保护渣的粘度是一个重要指标,它决定渣膜的薄厚,保护渣粘度高,不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。2)钢水纯净度低。钢水中[O]含量高,使得钢水中A12O3含量升高,进而结晶器保护渣中A12O3含量高,保护渣性能发生变化,渣粘度增大、不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。3)结晶器振动参数不合适。合适的振动形式和振动参数可以降低结晶器铜板与凝固坯壳之间的摩擦力和减小振痕深度,改善铸坯表面的质量。若结晶器振动参数不合适,负滑脱时间过长造成凝固坯壳上的振痕过深,使坯壳容易在应力的作用下断裂产生粘结。4)浸入式水口烘烤不符合标准。如果浸入式水口烘烤温度不够,连铸开浇时水口与结晶器内外弧间的保护渣产生搭桥现象,保护渣不易熔化,进而流入到坯壳和结晶器之间的保护渣减少,渣膜变薄,润滑效果变差,容易粘结漏钢。5)钢水温度过低。钢水温度过低,保护渣粘度大,润滑效果不好,易粘结漏钢。 3.2 卷渣漏钢 定義:由于结晶器液面波动会将渣卷入初生坯壳,这些渣子附着在坯壳表面,由于其导热性差,卷渣处的坯壳较薄,铸坯出结晶器后,渣子在钢水静压力作用下脱落产生漏钢。 在结晶器内的固态或半熔融的夹渣物随着浇注钢流的运动,被推向结晶器壁;或在更换中间包长水口时,中间包内钢液面下降后,中间包内钢渣易随钢流进入结晶器,最后被初生坯壳捕捉; (1)卷渣漏钢后特征。卷渣漏钢主要特征表现为:漏钢部位有“孔洞或结渣”,漏钢部位一般发生在结晶器出口位置。 (2)卷渣漏钢原因: 1)残留在钢中的大型夹杂物较多造成卷渣现象;2)较大的结晶器液面波动造成卷渣现象;3)捞渣不及时或捞不净造成的卷渣现象。 3.3开浇漏钢 开浇漏钢是指铸机开浇或者换中间包时,由于连接不好而造成的漏钢。 (1)开浇漏钢后铸坯特征。开浇漏钢铸坯特征为:漏钢一般发生在开浇起步期间,引锭头刚拉出结晶器就发生漏钢。(2)开浇漏钢原因:引锭头未扎好,包括石棉绳没扎紧;开浇起步过快,凝固时间不够开拉,坯头强度不够,将引锭头处拉裂漏钢。 4 薄板坯漏钢的预防措施 4.1 优化结晶器保护渣性能 通过优化保护渣碱度、熔点、熔速、粘度等指标,有效地减少了粘结、卷渣、裂纹漏钢等生产事故。 4.2 恒温恒拉速浇注 恒温恒拉速浇注是降低薄板坯漏钢率的主要因素。 4.3 优化连铸工艺参数 对不同钢种、不同断面的连铸相关参数(结晶器水流量、结晶器初始锥度、二冷水各段分配比例及比水量、扇形段压下终点位置等)进行优化调整,并固化使用。 4.4 连铸耐材优化与管理 (1)加强水口的烘烤操作。(2)优化中间包结构。中间包控流装置由“单挡渣坝”式改为“一挡墙+两挡坝”组合结构,将钢包下渣完全挡在冲击区内,产生的流场有利于钢液中夹杂物的充分上浮,有利于钢液成分、温度的均匀,提高了钢水质量,降低了漏钢事故。(3)加

连铸板坯缺陷特征和缺陷图谱

连铸板坯缺陷特征和 缺陷图谱 首钢京唐板坯质检编制 2010年8月8日

一.连铸坯质量特征综述 1.1连铸坯质量定义和特征 所谓连铸坯质量是指的到合格产品所允许的铸坯缺陷的严重程度。对铸坯质量要求而言,主要有四项指标,即连铸坯几何形状、表面质量、内部组织致密性和钢的洁净性;而这些质量要求与连铸机本身设计,采取的工艺以及凝固特点密切相关。 1.2铸坯的检查和清理的意义 提高钢的质量,降低成本,加强产品市场的竞争力是企业追求的目标,生产无缺陷连铸坯以保证高附加值产品优良的性能是永恒的主题,连铸坯的裂纹和夹杂物所产生的缺陷可以说是影响产品质量的两大障碍,生产无缺陷或缺陷不足以影响产品质量的连铸坯,这是要努力达到的目标,而连铸坯裂纹和夹杂物所产生的缺陷是受设备、工艺、管理等多种因素制约的。因此设备、工艺和管理的现代化加上人的质量意识是提高产品质量的关键。,但是在连铸生产中,铸坯的各种缺陷总是无法避免的,铸坯清理对钢厂保障铸坯质量、降低废品比例具有重要意义。 (1)火焰铸坯清理的注意事项 1)一般对表面质量要求较高的钢种,铸坯清理的目的以检查铸坯表面和皮下质量为主,包括夹杂物、气泡、裂纹等分布情况,在清理检查的基础上提供铸坯的进一步处理(清除缺陷、决定铸坯表面质量级别、是否送机器去皮、决定钢种是否达到热送条件等)的意见。 2)微合金钢如Nb、V微合金钢和包晶钢等容易产生角部横裂纹,往往位于铸坯振痕谷底,也需要用火焰清理才能发现。这方面也应引起足够重视。 3)对于包晶钢、中碳钢等钢种,则以人工清理肉眼可见缺陷为主,包括铸坯常见的表面缺陷,如纵裂、角横裂、重接、凹陷、夹渣、毛刺等,以便尽量降低铸坯判废损失。 (2)不良的火焰清理的危害 虽然火焰清理是检查和去除连铸坯表面缺陷的一个极好的方法。但是,这项操作的确需要掌握一定的技巧,一旦能够正确地操作可确保最终产品不产生额外的表面缺陷。连铸坯表面上的深槽、凸脊和界面必须平滑以确保清理操作本身不造成额外表面缺陷。如果采取了正确的操作,轧制表面通常不会产生与清理操作有关的缺陷。一个确保光滑过渡的良好操作是清理工作宽度要6倍于清理深度,如果没有采用正确的清理操作,那么缺陷会折叠,轧制后看起来像一条连续的划伤。 二连铸板坯内部缺陷 1.1中心疏松和缩孔 【定义与特征】在板坯断面上就可以发现中心附近有许多细小的空隙,中心疏松严重时会形成中心缩孔。 【鉴别与判定】用肉眼观察,铸坯轧制压缩比达3~5mm时,中心疏松可焊合,所以小的中心疏松和缩孔可以放过。但是严重的中心疏松会对产品质量危害甚大,所以必须进行切尺处理。 【图谱】

板坯缺陷原因

板坯缺陷之二—《中厚板质量工程师手稿》—陈定乾 (2011-06-07 19:45:19) 转载 分类:中厚板质量工程师手稿 标签: 杂谈 板坯缺陷 2、板坯裂纹 据现场经验,铸坯表面存在深1㎜、长10㎜的裂纹,会在后面的轧制工序中引起质量问题。YB/T2012-2004《连续铸钢板坯》的表面质量规定为:1、连铸板坯表面不得有目视可见的重接、重叠、翻皮、结疤、夹杂、深度或高度大于3㎜的划痕、压痕、擦伤、气孔、冷溅、皱纹、凸坑、凹坑和深度大于2㎜的裂纹,不得有高度大于5㎜的火焰切割瘤。2、连铸板坯横截面不得有影响使用的缩孔、皮下气泡、裂纹。3、连铸板坯表面如存在上述缺陷,应沿轧制方向清除,清除处应圆滑无棱角。清除宽度不得小于深度的6倍,长度不得小于深度的10倍。表面清除的深度,单面不得大于连铸板坯厚度的10%,两相对面清除深度之和不得大于厚度15%。清除深度自实际尺寸算起。4、如果清除深度大于厚度的4%,而清除处又不在连铸坯宽度方向的中部1/3内时,可在连铸板坯同一面上与长度方向的中心轴线对称位置修磨相应的面积和深度。5、经供需双方协商,连铸板坯表面质量要求可在适当范围内调整。 板坯表面裂纹主要有:表面纵裂或角部纵裂、表面横裂或角部横裂、星裂。资料显示:钢的温度与裂纹有关系,称之为“钢的高温性能”。⑴钢可分为三个延性区:Ⅰ区凝固脆性区(Tm-1350℃),Ⅱ区高温塑性区(1300-1000℃),Ⅲ区低温脆化区(900-700℃),Ⅰ区使铸坯产生内裂纹,Ⅲ区使铸坯产生表面裂纹。⑵外力作用为:结晶器坯壳与铜板摩擦力、钢水静压力产生鼓肚、喷水冷却不均匀产生热应力、铸坯弯曲或矫直力、支承辊不对中产生的机械力、相变应力,当这些力作用在高温铸坯表面或凝固前沿产生的应力或应变量超过钢的σ临或ε临时就产生裂纹,然后在二冷区裂纹进一步扩展。⑶工艺性能为:浇注过热度、杂质元素含量( S 、Mn/S 、P 、Cu 、Sn 、Zn……)、二冷水量和铸坯表面温度分布、坯壳与结晶器铜板良好的润滑性、结晶器液面的稳定性、结晶器内坯壳均匀生长。设备性能:结晶器锥度、结晶器的振动(振动频率f,振幅S,负滑脱时间tN)、气水喷雾冷却、对弧准确,防止坯壳变形(对弧误差[0.5mm])、在线检测支承辊开口度([0.5mm])、支承辊变形、多点矫直或连续矫直、多节辊、压缩浇注等。外力、钢的高温性能、工艺性能和设备性能共同作用下产生缺陷。 ⑴表面纵向裂纹(见图8) 连铸坯表面纵裂纹是指在铸坯长度方向的裂纹。资料表明:纵裂一般发生在铸坯内弧,长度有几十毫米到几百毫米,有的甚至贯穿,裂纹长度不小于100㎜,深有几毫米,一般出现在铸坯宽面中部,经常在Q235B等钢种中出现,裂纹处有初次树枝晶,一般可以通过按标准进行修磨(可参考YB/T2012)给予去除。尺寸较小的裂纹,长度不大于20~30㎜,深度不大于1㎜,随机出现在铸坯宽面中部到1/4宽处,可用手砂轮修磨掉,如果不进行处理,钢板上面会有裂纹,大多数可以轻微修磨消除。

连铸工职业标准

《连铸工》国家职业技能标准 1.职业概况 1.1 职业名称 连铸工 1.2 职业定义 操作连铸机设备进行钢水浇铸、拉矫、切割,使钢水连续均匀地凝固成合格的连铸坯人员。 1.3 职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1.4 职业环境 室内,高温、噪音、粉尘。 1.5 职业能力特征 具有较强的适应能力、身体健康、四肢灵活、动作协调。 1.6 基本文化程度 高中毕业(或同等学历)。 1.7 培训要求

1.7.1 培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级不少于500标准学时;中级不少于400标准学时;高级不少于300标准学时;技师不少于300标准学时;高级技师不少于200标准学时。 1.7.2 培训教师 培训初、中、高级人员的教师应具有本职业技师及以上职业资格证书或本专业(或相关专业)中级及以上专业技术职务任职资格;培训技师的教师应具有本职业高级技师职业资格证书或本专业(或相关专业)高级专业技术职务任职资格;培训高级技师的教师应具有本职业高级技师职业资格证书2年以上或本专业(或相关专业)高级专业技术职务任职资格。 1.7.3 培训场地设备 满足理论培训的标准教室,和满足实际操作培训用的具有连铸机及相关设备的生产现场或模拟现场。 1.8 鉴定要求 1.8.1 适用对象 从事或准备从事本职业的人员。 1.8.2 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达到规定标准学时数,并取得结业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。

板坯连铸机弯曲段的工作原理

板坯连铸机弯曲段的工作原理[工程]收藏转发至天涯微博 悬赏点数10 该提问已被关闭2个回答 匿名提问2009-04-26 11:36:26 板坯连铸机弯曲段的工作原理 最佳答案 297006692009-04-26 12:52:27 近年来,我国钢铁行业发展迅速,我国已成为世界上钢铁消费和钢铁生产大国,2005年我国的粗钢产量~3.4亿吨,连铸比达到95%以上。其中由于连铸具有显著的高生产率、高成材率、高质量和低成本的优点,因此连铸技术对钢铁工业生产流程的变革、产品质量的提高和结构化等方面起了革命性的作用。 钢铁技术的引进为我国钢铁工业的发展做出了巨大的贡献,特别是上世纪90年代以来,连铸技术的引进与推广极大的壮大了我国钢铁工业的实力,同时在连铸技术的消化吸收和创新的方面也取得了长足的进步,极大提高了我国连铸技术的自行设计和制造能力,实现了连铸技术的国产化。中冶京诚(原北京钢铁设计研究总院)在板坯连铸技术的集成创新和自主开发方面始终走在前列,随着国内连铸技术和连铸设备制造能力的发展与进步,为我国板坯连铸机的国产化做出了重要贡献。 板坯连铸国产化实践 板坯连铸机机型经历了由立式-弧形-直弧形的发展历程,特别是从世界上近10多年来新建的高质量板坯连铸机来看,直弧形连铸机已成为发展趋势和方向。直弧形连铸机兼具弧形和立式连铸机的优点,可根据产品方案和生产品种的不同,设计不同的基本弧半径和适宜的结晶器及以下的直线段长度,从而大大提高铸坯的洁净度和内部质量;国内外的生产实践证明,特别是在生产汽车用钢、管线钢等高质量钢方面,直弧形板坯连铸机有不可替代的作用。 中冶京诚是国内最早研究开发并参与引进消化国外先进直弧形板坯连铸工艺及装备技术的单位。多年以来,中冶京诚一直致力于研究开发、重视技术和理念的创新,先后成功地设计或总包建设了一大批技术经济指标达到国际先进水平的板坯连铸工程,拥有着丰富的先进技术资源和设计经验。无论是设计水平、总包能力还是设备集成技术,京诚公司在国内板坯连铸行业均占据着不可动摇的业绩优势和技术领先地位。 在多年的设计和生产实践中,开发出了如多种连铸机机型的辊列设计(连续弯曲连续矫直技术)、结晶器铜板传热计算、矫直反力计算、大包回转台有限元计算、扇形段有限元计算、小辊径密排分节辊、结晶器电动及液压调宽、扇形段远程调辊缝等软件技术,以及结晶器液压振动、动态二冷控制、扇形段轻压下等连铸工艺技术。新技术的不断应用大大提高了

常规板坯连铸机结晶器技术

常规板坯连铸机结晶器技术 【保护视力色】【打印】【进入论坛】【评论】【字号大中小】2006-12-07 11-07 杨拉道刘洪王永洪刘赵卫邢彩萍田松林 (西安重型机械研究所) 结晶器是连铸机中的铸坯成型设备, 是连铸机的核心设备之一。其作用 是将连续不断地注入其内腔的钢液通过水冷铜壁强制冷却,导出钢液的热量,使 之逐渐凝固成为具有所要求的断面形状和一定坯壳厚度的铸坯,并使这种芯部 仍为液相的铸坯连续不断地从结晶器下口拉出.为其在以后的二冷区域内完全 凝固创造条件。在钢水注入结晶器逐渐形成一定厚度坯壳的凝固过程中.结晶器 一直承受着钢水静压力、摩檫力、钢水热量的传递等诸多因素引起的的影响. 使结晶器同时处于机械应力和热应力的综合作用之下.工作条件极为恶劣.在此 恶劣条件下结晶器长时间地工作.其使用状况直接关系到连铸机的性能.并与铸 坯的质量与产量密切相关。因此.除了规范生产操作、选择合适的保护渣和避免 机械损伤外.合理的设计是保证铸坯质量、减小溢漏率、提高其使用寿命的基础 和关键。 板坯连铸机一般采用四壁组合式(亦称板式)结晶器.也有一个结晶器 浇多流铸坯的插装式结构。 结晶器主要参数的确定 1 结晶器长度H 结晶器长度主要根据结晶器出口的坯壳最小厚度确定。若坯壳过薄.铸 坯就会出现鼓肚变形.对于板坯连铸机.要求坯壳厚度大于10~15mm。结晶器长 度也可按下式进行核算: H=(δ/K)2Vc+S1+S2 (mm) 式中δ——结晶器出口处坯壳的最小厚度.mm K——凝固系数.一般取K=18~22 mm/min0.5 Vc——拉速.mm/min S1——结晶器铜板顶面至液面的距离.多取S1=100 mm S2——安全余量.S=50~100 mm 对常规板坯连铸机可参考下述经验:

连铸坯质量缺陷

连铸坯的质量缺陷及控制 摘要 连铸坯质量决定着最终产品的质量。从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。连铸坯质量是从以下几个方面进行评价的: (1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。 (2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。 (3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。 (4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。 下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。 关键词:连铸坯;质量;控制 1 纯净度与质量的关系 纯净度是指钢中非金属夹杂物的数量、形态和分布。夹杂物的存在破坏了钢基体的连续性和致密性。夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。 此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。随着薄板与薄带技术的发展,S/V 可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。所以降低钢中夹杂物就更为重要了。 提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。为此应采取以下措施:

轧钢用水平连铸圆坯标准

轧钢用水平连铸圆坯标准 QJ/HYXC03.01—2002 1 范围 本标准规定了轧钢用水平连铸圆坯(以下简称圆棒)的尺寸、外形、重量及允许偏差、技术要求、试验方法、检验规则、包装、标志及质量证明书。 本标准是我公司购水平连铸圆坯签订合同和对圆坯检查、验收、使用的依据。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。 GB700 普通碳素钢; GB1591 低合金结构钢; GB1222 弹簧钢; GB222 钢的化学分析用试验取样法及成品化学成分允许偏差; GB223 钢铁及合金化学分析法; GB2101 型钢验收、包装标专及质量证明书的一般规定。 3 术语 热点裂纹:由于铸坯热收缩,集中发生在凝固壳最薄弱的热点处而引起的与冷隔平行的一种横裂纹。 4 尺寸、外形、重量及允许偏差 4.1 直径及允许偏差和外形 圆棒的直径及允许偏差和外形应符合附表1规定 4.2 长度及允许偏差 圆棒通常定尺长度为6m±mm,非定尺长度应是1.5m的倍数,即3.0m、4.5m,但总量不超过10%。 4.3 重量 圆棒按实际重量交货。 5 技术要求 5.1 牌号及化学成分

5.1.1 牌号及化学成分应符合附表2规定。 5.1.2 圆棒的化学成分允许偏差应符合GB222的标准。 5.2 冶炼方法 电弧炉冶炼。 5.3 交货状态 圆棒以铸态交货。 5.4 表面质量 5.4.1 圆棒表面不应有肉眼可见的结疤、纵裂纹、夹渣及深度超过3mm的气孔等缺陷。圆棒端面不应有肉眼可见的缩孔。允许有从实际尺寸算起不超过2mm的划痕、压痕及折皱存在,允许有深度不大于1mm的热点裂纹及冷隔存在。 5.4.2 圆棒表面缺陷应清除,清除深度从实际尺寸算起不应大于直径的5%,清理处应圆滑无棱角,清理宽度不应小于深度的6倍,在同一截面最大清理深度只准有一处。 6 试验方法 圆棒的试验方法、取样部位及数量应符合附表3的规定。 7 检验规则 7.1 检查和验收 圆棒的化学成分由供方提供。 圆棒的尺寸和表面质量由技术质量部负责检查验收。 7.2 炉号划分 圆棒的上下相邻炉号划分方法:以盛钢桶钢水注入中间包时起,即做为下一炉的开始。 7.3 组坯规则 圆棒应按批进行检查和验收,每批由同一牌号、同一炉号的圆棒组成。 8 包装、标志及质量证明书 8.1 包装 每批圆棒可分为若干捆包装,通常每捆10—15支(重量不应超过10吨),用盘条或铁丝均匀捆扎结实。 8.2 标志

板坯粘结漏钢原因与预防措施

板坯粘结漏钢原因与预防措施 Doi :10.3969/j .issn .l 006-110X .2018.z l .005 板坯粘结漏钢原因与预防措施 孟阳 (天津钢铁集团有限公司炼钢厂,天津300301) [摘要]天津钢铁集团有限公司3号板坯连铸机短时间内多次发生的漏钢事故,作者通过排除法分析出漏钢 事故类型为粘结性漏钢。重点分析了发生粘结漏钢的原因,并对其他类型的漏钢机理进行简要介绍。针对3号板坯连 铸机的工艺操作和设备精度调整等方面制定了详细的改进措施,实施后,天钢3号板坯连铸机发生漏钢的几率大大降 低,降低了其对生产顺行的影响。 [关键词]漏钢;粘结;工艺;改进;板坯;连铸 Causes and Preventive Measures of Steel B1eed-out by Slab Bonding MENG Yang (Steel-making Plant , Tianjin Iron and Steel Group Co ., Ltd . Tianjin 300301, Ch 74$比"8+ In Tianjin Iron and Steel Group Co . Ltd . the bleed-out accident occurred many times in a short period of t ime on the No .3 slab continuous caster , and the author analyzed that the type of bleed-out accident by the method of exclusion was adhesive bleed -out . The cau were analyzed , and the mechanism of other types of bleed-out was brie process operation of No . 3 slab continuous casting machine and the adjustment of equ the detailed improvement measures were made . After the implementation , the probability of steel bleed-out in the No . 3 slab caster was greatly reduced , and the influence on production was reduced .Ke5 bleed -out , bonding , technology , improvement , slab , continuous casting o 引言 随着天钢板坯的连铸技术操作水平逐年提高, 漏钢率已经控制的很低。但是在2015年7月底至8 月初的5天时间内,天钢3#板坯连铸机出现两次漏 钢,经过仔细分析和逐一排除法,分析出这两次漏 钢均属于粘结漏钢。漏钢发生于板坯连铸生产环 节,造成设备损坏、产量降低、生产不稳定等严重后 果。本文分析了漏钢的原因,并提出解决漏钢问题 的方法,以预防漏钢事故的发生。 1连铸机基本情况 1.1 天钢炼钢厂3(板坯连铸机主要技术参数 (1) 机型:一机一流直结晶器弧形板坯连铸机, R =8.4m ; (2) 铸坯断面尺寸:180/200/250mm x 1050" 收稿日期:2018-06-02 作者简介:孟阳(1991一)男,天津人,主要从事板坯连铸工艺技 1600mm ; (3) 铸坯定尺:一切 6~9.9m ,二切 2"3.3m ;(4) 拉速范围:0.4~1.6m/min ;(5) 引锭杆插入方式:下装式;(6) 结晶器铜板长度:900mm ; (7) 振动装置:四偏心高频率小振幅振动系统;(8) 中间包容量:35~38t 。2 漏钢种类及原因 漏钢的种类大致可分为3种,开浇漏钢、尾坯 封顶漏钢和浇铸过程中漏钢。 2.1 开F 漏钢 指开浇过程中,不当的操作致使引锭头刚被拉 出结晶器,随机出现漏钢事故。2.2封顶漏钢 当浇注结束时,对尾坯进行尾坯封顶操作,封 顶前熔化的保护渣未捞干净,如二冷强度过大,出 结晶器的板坯收缩过大,使板坯鼓肚且又受到支撑 术管理工作。 tmmsmmmmm 你〈钢铁冶炼〉你 -15 -

连铸板坯质量

连铸板坯质量 概述 纵裂纹时发生在板坯宽面与浇注方向平行的表面裂纹。该类缺陷造成板坯表面清理量增大,收得率低,严重时大量报废,甚至漏钢,给生产带来不稳定因素,影响铸机生产和铸坯质量。 铸坯纵裂纹影响因素 ?钢水过热度与拉速 过热度高,拉速波动大,对板坯表面质量有显著影响。过热度和拉速决定结晶器内坯壳的厚度。在结晶器水量设定不变,二冷水自动控制的条件下,拉速与过热度的匹配,对纵裂纹的发生率有着重要影响。过热度过高时,拉速降低,虽然能在结晶器上部形成一定厚度的坯壳,但在结晶器中下部过早形成气隙,使传热不均匀,坯壳不能均匀生长,造成热应力,摩擦力加大,极易导致纵裂纹,另外,钢水过热度高,导致钢水凝固推迟,坯壳厚度薄且平均温度高,坯壳温度向钢的第Ⅰ脆性区移动,使纵裂倾向加重。 ?钢种成份 1、碳的影响 C在0.10%—0.16%范围内的碳钢凝固过程会发生包晶反应,在凝固点附近体积收缩率增大,属于裂纹敏感区,极易因收缩不均匀产生纵裂。而又因Mn等合金的加入,碳的范围还要向下移,宝钢生产的中碳钢相当一部分在这个范围内。例如,表3-1中Ⅳ钢,其碳含量在0.08%—0.11%之间,属亚包晶钢,占每个月纵裂报废的大头。 2、钢种各元素对纵裂纹的影响程度用纵裂纹敏感因子表示如下: CSF=36%C+12%Mn+8%Si+540%S+812%P+5%Ni+3.5%Co-20%V 从上式中可以看到,P和S对纵裂的影响极大,主要是因为P、S在δ-Fe中的溶解度和扩散系数要比在γ-Fe中大得多,在相变时有可能产生晶界富集,导致裂纹的发生。 因此降低钢中P、S含量,对提高坯壳的强度,减少裂纹的初生与扩展都是有益的,有经验表明提高Mn/S可以有效降低S对裂纹的影响,减少纵裂的发生,当Mn/S<40时,会发生严重的晶界脆化现象,Mn/S>100时,使FeS充分转化为MnS,减少了低熔点硫化物的析出,可使裂纹发生率降低。 3、另外Cu、Sn等元素在钢种能显著降低钢的热塑性,在晶界富集降低晶界表面能, 增大晶界处孔洞形核与长大速度,增加裂纹的敏感度。 宝钢生产的耐候钢中P含量很高,C含量又在亚包晶范围内,因此纵裂发生率及报废量特别高,约占50%,在不影响产品质量的情况下,我们对其中的几个钢种进行了降碳试验,结果表明,C含量避开包晶范围能有效降低纵裂的发生率。 ?结晶器一冷水 结晶器缓冷能减轻初生坯壳的热应力,有效减少纵裂的发生。 ①提高结晶器入口水温,经与能源部水处理分厂协商,为减少纵裂的发生,把结晶器入 口水温目标值由原来的36℃提高到38℃,对防止纵裂有一定的好处。 ②减小结晶器水量,减小结晶器水量能有效减少结晶器的冷却强度,对纵裂敏感性钢种 均采用K1方式(小水量)取得了一定效果,但为防止结晶器一冷水的局部沸腾,对一冷水的流速有最低限制,为了能得到进一步的缓冷,我们采取了减少结晶器水槽深度的方法,把原来深度为28-29mm的水槽改为25-26mm,22-23mm,这样水量有了进一步调节的余地。 ?铸坯纵裂影响因素 结晶器内形成的裂纹大都细而浅,铸坯进入二冷区后,如果冷却强度过大或冷却不均匀,强的热应力会促使铸坯已形成的微细裂纹扩大、延伸,最终发展成表面纵裂缺陷。目前

连铸机漏钢的原因及防范措施

漏钢 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间,因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。 漏钢的影响因素影响漏钢发生的因素有: 温度和拉速不一致——钢水过热度越高,坯壳厚度越薄。由于结晶器中钢水施加的静压力,导致坯壳发生膨胀。当坯壳强度不够时,容易发生漏钢。不一致和不均匀的温度对漏钢的产生有很大影响。当拉速增大时,较易发生漏钢,因为结晶器不够润滑,从弯月面到坯壳/结晶器壁面,结晶器保护渣流动性较差,而且增大拉速会导致总放热量减少。漏钢常常是由于拉速太高造成的,当坯壳没有足够时间凝固到需要厚度时,或者金属太热,这意味着最终凝固正好发生在矫直辊下方,因矫直时施加应力,坯壳撕裂。对于钢中碳含量一定时,温度高且拉速快容易发生漏钢。在振动设置上所作的任何改变都会促使漏钢发生,因为通过提高振动频率来减少振痕的做法会增加结晶器速率,从而增加交界面处的摩擦力。

结晶器和坯壳之间润滑不良——如果使用质量较差的保护渣,弯月面下方的钢水容易夹渣,导致结晶器和坯壳粘结,拉坯中断,造成悬挂漏钢。方坯连铸时,因润滑不良或不均,坯壳粘结到结晶器上,影响传热,造成粘结漏钢。 保护渣加入方式不正确——由于现场工人操作习惯,一次性加入过多,且主要集中在内弧,呈斜坡状,会造成液渣不均匀填充,影响结晶器与坯壳间的润滑与均匀传热。在正常浇注情况下,小渣条没必要捞出,且应禁止用捞渣棒试探结晶器内是否形成渣条,会破坏弯月面初始坯壳的均匀形成。 结晶器中无效水流——减少进入结晶器的水流会导致传热降低,致使形成薄坯壳,最终导致漏钢。进出口的水温、压力和流速的不同直接影响结晶器的冷却。结晶器冷却系统堵塞导致压力增加,流速减小,影响传热,易发生漏钢。因而进出口水温(高温) 的巨大差异导致结晶器与坯壳粘结,容易发生拉断漏钢。 结晶器几何形状不当——为增加钢水一结晶器接触面,调节结晶器锥度,以适应钢的凝固收缩,从而增加结晶器的传热,增加坯壳厚度。对于高速方坯连铸机上带线性锥度的传统结晶器而言,弯月面处的热传递迅速使铸流凝固成一固体外壳,随着外壳的收缩,角部脱离结晶器,停止热传递。因此,在结晶器底部,除了角部有再熔化之外,坯壳继续生长。当坯壳离开结晶器时,坯壳温度变化较大,此时增加拉速可能导致漏钢。如果调节的锥度不合要求,结晶器和坯壳之间就会产生气隙,当空气对结晶器中热量传递的阻力达到最大时,它将严

连铸板坯缺陷图谱及产生的原因分析(新)

第二篇连铸板坯缺陷(AA)

第二篇连铸板坯缺陷(AA) (1) 2.1表面纵向裂纹(AA01) (4) 2.2表面横裂纹(AA02) (6) 2.3星状裂纹(AA03) (7) 2.4角部横裂纹(AA04) (8) 2.5角部纵裂纹(AA05) (10) 2.6气孔(AA06) (11) 2.7结疤(AA07) (12) 2.8表面夹渣(AA08) (13) 2.9划伤(AA09) (14) 2.10接痕(AA13) (15) 2.11鼓肚(AA11) (16) 2.12脱方(AA10) (17) 2.13弯曲(AA12) (18) 2.14凹陷(AA14) (19) 2.15镰刀弯(AA15) (20) 2.16锥形(AA16) (21) 2.17中心线裂纹(AA17) (22) 2.18中心疏松(AA18) (23) 2.19三角区裂纹(AA19) (25) 2.20中心偏析(AA20) (27) 2.21中间裂纹(AA21) (28)

2.1表面纵向裂纹(AA01) 图2-1-1 1、缺陷特征 表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。 2、产生原因及危害 产生原因: ①钢中碳含量处于裂纹敏感区内; ②结晶器钢水液面异常波动。当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生; ③结晶器保护渣性能不良。保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹; ④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。 危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。 3、预防及消除方法 ①控制好钢中碳含量,使钢中碳含量不在裂纹敏感区; ②减少结晶器钢水液面异常波动,将结晶器钢水液面波动控制在±5mm以内; ③选择合适的结晶器保护渣; ④保证中间包浸入式水口与结晶器对中,防止钢水出浸入式水口侧孔后出现偏流。 4、检查判断 肉眼检查,必要时用钢卷尺测量裂纹长度及其分布位置;

连铸坯缺陷及对策

连铸坯在凝固过程中形成裂纹的原因 随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析: 一、铸坯凝固过程的形成 铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。 二、连铸坯裂纹形态和影响因素 连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。 连铸坯裂纹的影响因素: 连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为: 1、连铸机设备状态方面有: 1)结晶器冷却不均匀 2)结晶器角部形状不当。 3)结晶器锥度不合适。 4)结晶器振动不良。 5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。 6)支承辊对弧不准和变形。

热轧带钢及板坯标准要求及不同厚度精度范围

热轧带钢及板坯标准要求 及不同厚度精度范围 The Standardization Office was revised on the afternoon of December 13, 2020

1、板坯尺寸要求 板坯采用100%的连铸坯 板坯厚度:210、230mm 板坯宽度:950~1650mm 板坯长度:长尺:9000~11000mm 短尺:4500~5300mm 最大坯重: 厚度公差:±5mm 宽度公差:±10mm 长度公差:±30mm 镰刀弯:长尺:≤50mm 短尺:≤25mm 上下弯:长尺:≤50mm 短尺:≤25mm 板坯表面不允许有裂纹、角裂、拉裂和结疤 板坯端面不允许有肉眼可见的内裂 板坯表面允许有深度不大于3mm的气孔、划痕、凹坑,以及深度不大于2mm的水纹 2、产品的质量要求 产品的尺寸、外形质量应符合GB709-88的规定 ①厚度偏差如表1-6所示 ②宽度偏差带宽≤1000mm+20mm 带宽>1000mm +30mm ③带钢的镰刀弯每米不大于3mm ④塔形高度 产品厚度<2.5mm 产品厚度≥2.5mm 带宽≤1000mm60 50(60*) 带宽>1000mm 80 70(80*) *塔形的高宽比≤时适用 表面质量要求 产品表面质量的保证条件一般参照碳素钢和低合金钢的GB912—89(适用于厚度≤4.0mm的产品)与GB3274—88(适用于厚度>4.0mm的产品)的现行国标。 (1)GB/912—89 ①钢板表面不允许有裂纹、结疤、折迭、气泡和夹杂,钢板不得有分层。 ②钢板和钢带的表面允许有深度和高度不大于厚度公差之半的折印、麻点、划伤、小拉痕、压痕以及氧化铁皮脱落所造成的表面粗糙等局部缺陷。对表面的薄层氧化铁皮,轻微铁锈和残余涂料、污迹等不影响表面检查的局部缺陷允许存在。 ③钢板和钢带表面的局部缺陷,允许用修磨方法清除,但清除深度不得大于钢板和钢带厚度公差之半。 ④钢带允许带缺陷交货,但缺陷部分,不得超过每卷总长度的8%。 表1-6产品厚度精度

连铸粘结漏钢成因机理分析

2011年9月 连 铸 增刊 连铸粘结漏钢成因机理分析 王叶婷1, 赵洪强1, 国兴龙1, 曾 智2, 孙立根2, 张家泉 2 (1. 大连重工·起重集团公司,辽宁 大连 116013; 2. 北京科技大学,北京 100083) 摘 要:粘结漏钢是连铸过程中漏钢的主要形式,许多文献都尝试解释结晶器中的粘结现象。本文认为其成因应从整个结晶器包括物质流进出的平衡、拉坯过程中摩擦阻力的变化以及产生粘结的现象等各方面的因素来综合考虑。基于弄清整个结晶器的进出物流平衡来分析粘结形成原因,可为开发有效的漏钢预报系统提供有力的依据。 关键词:结晶器;粘结漏钢;漏钢预报;摩擦力 Investigation on the Mechanism of Sticker-Type Breakout WANG Ye-ting 1, ZHAO Hong-qiang 1, GUO Xing-long 1, ZENG Zhi 2, SUN Li-gen 2, ZHANG Jia-quan 2 (1. DHI·DCW Group Co., Dalian 116013, Liaoning,China;2.University of Science and Technology Beijing, Beijing 100083, China) Abstract :Shell sticking is the main type of breakouts in the process of continuous casting, and the literature contains several explanations for mold sticking. This paper considered its causes from new perspectives, including the balance of inlet and outlet material flow, variation of the withdrawal resistance during casting and other phenomena throughout the mold. Based on material balance analysis, the mechanism of sticker-type was proposed to provide a strong basis to develop an effective breakout prevention system. Key words :casting mold; sticker-type breakout; breakout prevention; friction 1 前言 连铸坯的质量与生产顺行始终是连铸生产者 关注的两大焦点问题。在高效连铸的背景下,围绕这两点开展了大量研究。然而,由于连铸过程的复杂性和随机性,一些问题依然难以完全解决,漏钢就是其一。有报道称一次典型的漏钢事故的损失竟高达20万美元,如果再加上因漏钢导致的生产停滞以及前后铸坯质量的影响,其损失可能是不可估量的[1]。因此,要开发出有效的漏钢预报系统避免漏钢的发生,正确了解漏钢的产生机理是必需的前提。 漏钢按产生的原因可分为四大类,分别是由传热不足引起的漏钢、粘结漏钢、缺陷漏钢和操作失误引起的漏钢,具体划分见图1。其中粘结漏钢是漏钢的主要形式,在规范操作条件下,粘结漏钢可占漏钢总数的90%以上[2],因此最初开发出的漏钢预报系统大多针对漏钢的粘结行为,成为名副其实 的粘钢预报。 2 结晶器物流状态分析 由于粘结生成于结晶器这个黑匣子之中,关于粘结的成因暂时只能通过推理得到。本文从结晶器的物流平衡状态以及从能量角度考虑的物流平衡状态出发展开推理。 首先从图2我们可以得知从物流平衡角度考虑,从结晶器上口进入的物质有结晶器保护渣、钢液(其中包含钢液中的夹杂物)以及随钢液卷入结晶器的大包渣和中包渣,而从结晶器流出的物质有连铸坯和固态的保护渣皮(包括上口捞出的渣圈和

板坯连铸机粘接漏钢事故分析.doc

YJ0701-板坯连铸机粘接漏钢事故分析 案例简要说明:依据国家职业标准和冶金技术专业教学要求,归纳提炼出所包含的知识和技能点,弱化与教学目标无关的内容,使之与课程学习目标、学习内容一致,成为一个承载了教学目标所要求知识和技能的教学案例。该案例是连续铸钢事故分析与处理案例,体现了连续铸钢等岗位工艺参数、凝固理论知识点和具体岗位操作步骤,与本专业连续铸钢等课程事故预防与处理单元的教学目标相对应。

板坯连铸机粘接漏钢事故分析 1 背景介绍 某中型转炉炼钢厂,采用喷吹颗粒镁预脱硫,拥有三座100t的转炉, 采用CAS-OB、LF炉、RH精炼装置,四台不同断面的大型厚板坯连铸机,连铸机采用双排热电偶漏钢预报装置。 该厂主要生产管线、船板等中厚板。 2 主要内容 2.1 事故经过 2012年12月26日,某铸机浇注浇次1212B26(断面2000mm×250mm,钢种45-1)第21炉2Q08199浇注4:46时发生结晶器外弧粘连漏钢,至当日22:00处理完毕,共造成铸机非计划停浇17小时14分,构成粘连漏钢事故。 2.1.1 精炼处理 2Q08199炉次是3#LF炉处理,使用12#钢包,包龄44次。钢水到站后热修包报12#钢包为正常周转包,但在处理过程中升温速度慢,温降异常。铸机要点4:20,要温1538℃。2Q08199炉次在3#LF炉处理61min,加热40min,软吹4min。具体处理过程如下: 3:15到站,到站温度1514℃,3:17进加热位并加入一批渣料。 3:20第一次升温,3:33停止 (升温13min),测温1506℃,取钢样。 3:35第二次升温,3:45钢样成分回来后,调硅铁133kg、锰铁61kg、碳粉60kg,3:54升温结束。进行钙处理,取钢样,并进行软吹。因钢包包况不好,钢水温降大,4:05测温1516℃。温度低向工长室反馈,并与热修包核实钢包状况。经再次核实,12包为小修2次包(12#钢包,小修1次,0:30出钢,进站后因无氩气倒14#包,未在LF炉处理)。 4:05第三次升温,加热10min,其间在4:11测温(1529℃、1527℃),4:14

相关文档