文档库 最新最全的文档下载
当前位置:文档库 › 误差理论与数据处理实验报告

误差理论与数据处理实验报告

误差理论与数据处理实验报告
误差理论与数据处理实验报告

误差理论与数据处理

实验报告

姓名:黄大洲

学号:3111002350

班级:11级计测1班

指导老师:陈益民

实验一 误差的基本性质与处理

一、实验目的

了解误差的基本性质以及处理方法

二、实验原理

(1)算术平均值

对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。

1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。

设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值

121...n

i

n i l l l l x n n

=++==∑

算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。

i v = i l -x

i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差)

2、算术平均值的计算校核

算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为:

1

1

n n

i

i

i i v l nx ===-∑∑

当x 为未经凑整的准确数时,则有:1

n

i

i v

==∑0

1)残余误差代数和应符合:

1n i

i l =∑=nx ,求得的x 为非凑整的准确数时,1

n

i

i v =∑为零;

1

n

i

i l =∑>nx ,求得的x 为凑整的非准确数时,1

n

i

i v =∑为正;其大小为求x 时

的余数。 当

1

n i

i l =∑

n

i

i v =∑为负;其大小为求x 时

的亏数。

2)残余误差代数和绝对值应符合: 当n 为偶数时,

1n

i i v =∑≤

2

n A; 当n 为奇数时,

1

n

i

i v =∑≤0.52n A ??- ??? 式中A 为实际求得的算术平均值x 末位数的一个单位。 (2)测量的标准差

测量的标准偏差称为标准差,也可以称之为均方根误差。 1、测量列中单次测量的标准差

2222121

...n

i

n

i n

n

δ

δδδ

σ=+++=

=

式中 n —测量次数(应充分大)

i δ —测得值与被测量值的真值之差

21

1

n

i

i v

n σ==

-∑

2、测量列算术平均值的标准差:x n

σ

σ=

三、实验内容:

1.对某一轴径等精度测量8次,得到下表数据,求测量结果。 序号 i l /mm

i v /mm

22/i v mm

1 2 3 4 5 6 7 8 24.674 24.675 24.673 24.676 24.671 24.678 24.672 24.674

假定该测量列不存在固定的系统误差,则可按下列步骤求测量结果。 1、算术平均值 2、求残余误差

3、校核算术平均值及其残余误差

4、判断系统误差

5、求测量列单次测量的标准差

6、判别粗大误差

7、求算术平均值的标准差 8、求算术平均值的极限误差 9、写出最后测量结果 四、实验数据整理: (一)、求算术平均值、残余误差 1、分析:

(1)算术平均值:121...n

i

n i l l l l x n n

=++=

=∑ (2)残余误差:i v =i l -x

(3)校核算术平均值及其残余误差: 残差和:

1

1

n n

i

i

i i v l nx ===-∑∑

残余误差代数和绝对值应符合:当n 为偶数时,

1n

i i v =∑≤

2

n A 当n 为奇数时,1

n

i

i v

=∑≤0.52n A ??

- ???

(4)测量列中单次测量的标准差:

2222

121...n

i n i n

n

δδδδσ=+++=

=

(5)测量列算术平均值的标准差

x n

σ

σ=

2

1

1

n

i

i v

n σ==

-∑

2、程序:

l=[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674];%已知测量值

x1=mean(l);%用mean 函数求算数平均值 v=l-x1;%求解残余误差 a=sum(v);%求残差和

ah=abs(a);%用abs 函数求解残差和绝对值

bh=ah-(8/2)*0.0001;%校核算术平均值及其残余误差,残差和绝对值小于n/2*A,bh<0,故以上计算正确

xt=sum(v(1:4))-sum(v(5:8));%判断系统误差(算得差值较小,故不存在系统误差)

bz=sqrt((sum(v.^2)/7));%单次测量的标准差

p=sort(l)%用格罗布斯准则判断粗大误差,先将测量值按大小顺序重新排列

g0=2.03;%查表g(8,0.05)的值 g1=(x1-p(1))/bz;

g8=(p(8)-x1)/bz;%将g1与g8与g0值比较,g1和g8都小于g0,故判断

暂不存在粗大误差

sc=bz/(sqrt(8));%算数平均值的标准差t=2.36;%查表t(7,0.05)值

jx=t*sc%算术平均值的极限误差

l1=x1+jx;%写出最后测量结果

l2=x1-jx%写出最后测量结果

3、在matlab中的编译及运行结果

实验二 误差的合成与分配

一、实验目的

通过实验掌握误差合成与分配的基本规律和基本方法。

二、实验原理

(1)误差合成

间接测量是通过直接测量与被测的量之间有一定函数关系的其他量,按照已知的函数关系式计算出被测的量。因此间接测量的量是直接测量所得到的各个测量值的函数,而间接测量误差则是各个直接测得值误差的函数,这种误差为函数误差。研究函数误差的内容实质上就是研究误差的传递问题,而对于这种具有确定关系的误差计算,称为误差合成。 随机误差的合成

随机误差具有随机性,其取值是不可预知的,并用测量的标准差或极限误差来表征其取值的分散程度。 标准差的合成

若有q 个单项随机误差,他们的标准差分别为1σ,2σ,…,q σ,其相应的误差传递系数为1a ,2a ,…,q a 。

根据方和根的运算方法,各个标准差合成后的总标准差为

2

1

1()

2q

q

i i

ij i j i j i i j

a a a σσρσσ=≤<=

+∑∑

一般情况下各个误差互不相关,相关系数ij ρ=0,则有

2

1

()

q

i i

i a σσ==

极限误差的合成

在测量实践中,各个单项随机误差和测量结果的总误差也常以极限误差的形式来表示,因此极限误差的合成也很常见。

若已知个单项极限误差为1δ,2δ,...,q δ,且置信概率相同,则按方和根合成的总极限误差为

2

1

1()

2q

q

i i

ij i j i j i i j

a a a δδρδδ=≤<=±

+∑∑

系统误差的合成

系统误差的大小是评定测量准确度高低的标志,系统误差越大,准确度越低;反之,准确度越高。 已定系统误差的合成

已定系统误差是指误差大小和方向均已确切掌握了的系统误差。在测量过程中,若有r 个单项已定系统误差,其误差值分别为1?,2?,…,r ?,相应的误差传递系数为1a ,2a ,…,r a ,则代数和法进行合成,求得总的已定系统误差为:

1

r

i i i a =?=?∑

未定系统误差的合成 ①标准差的合成:

若测量过程中有s 个单项未定系统误差,它们的标准差分别为12,,,...,s u u u 其相应的误差传递系数为12,,,...,s a a a 则合成后未定系统误差的总标准差为

2

1

1()

2s

s

i i

ij i j i j i i j

u a u a a u u ρ=≤<=

+∑∑

当ij ρ=0,则有

2

1

()

q

i i

i u a u ==

②极限误差的合成

因为各个单项未定系统误差的极限误差为

i i i e t u =± i =1,2,…s

总的未定系统误差的极限误差为 e tu =

则可得

2

1

1()

2s

s

i i

ij i j i j i i j

e t

a u a a u u ρ=≤<=±+∑∑

当各个单项未定系统误差均服从正态分布,且ij ρ=0,则有

2

1

()

s

i i

i e a e ==±

系统误差与随机误差的合成

当测量过程中存在各种不同性质的多项系统误差与随机误差,应将其进行综合,以求得最后测量结果的总误差。 按极限误差合成

若测量过程中有r 个单项已定系统误差,s 个单项未定系统误差,q 个单项随机误差,他们的误差值或极限误差分别为

1?,2?,…,r ? 1e ,2e ,…,s e

1δ,2δ,...,q δ

设各个误差传递系数均为1,则测量结果总的极限误差为

2

2

111q

r

s

i i i i i i i i e t R t t δ===????

?=?±++ ? ?????

∑∑∑

R ——各个误差间协方差之和

当各个误差均服从正态分布,且各个误差间互不相关时,上式可简化为

()()

2

2

1

1

1q

r

s

i i i i i i e δ===?=?±

+∑∑∑

系统误差经修正后,测量结果总的极限误差就是总的未定系统误差与总的随机误差的均方根()()

2

2

1

1

q

s

i i i i e δ==?=±

+∑∑

按标准差合成

用标准差来表示系统误差与随机误差的合成公式,只需考虑未定系统误差与随机误差的合成问题。

若测量过程中有s 个单项未定系统误差,q 个单项随机误差,他们的标准差分别为12,,,...,s u u u 12,,,...,q σσσ

为计算方便,设各个误差传递系数均为1,则测量结果总的标准差为

221

1

q

s i i

i i u R σσ

===

++∑∑

式中R 为各个误差间协方差之和,当合格误差间互不相关时,上式可简化为2

21

1

q

s

i i

i i u σσ

===

+∑∑

对于n 次重复测量,测量结果平均值的总标准差公式则为

2

2

1

11q s

i i i i u n σσ===+∑∑

(2)误差分配

测量过程皆包含多项误差,而测量结果的总误差则由各单项误差的综合影响所确定。给定测量结果总误差的允差,要求确定各单项误差就是误差分配问题。

1、现设各误差因素皆为随机误差,且互不相关,则有

222

222

121121...y f f f x x x σσσσ?????????=+++ ? ? ??????????

=222

222112

2...n n a a a σσσ+++

=2

2

2

12...n D D D +++

i D ——函数的部分误差。

若已给定y σ,需确定i D 或相应i σ,使满足

y σ≥22212...n D D D +++

式中i D 可以是任意值,为不确定解,需按下列步骤求解。 按等作用原则

按可能性调整误差 验算调整后的总误差

三、实验内容

1、弓高弦长法简介测量大直径。直接测得弓高h 、弦长s ,根据h ,s 间的函数关系利用熟悉的语言编程求解出直径D ,以及直径的系统误差、随机误差和所求直径的最后结果。

2

4s D h

h

=+ h =50mm,h ?=-0.1mm, lim h δ=±0.05

s =500mm, s ?=1mm, lim s δ=±0.1

四、实验数据整理 1、实验程序

h=50;%弓高h=50mm

s=500;%弦长s=500mm

s1=1;%弦长的系统误差s1=1mm

h1=-0.1;%弓高的系统误差h1=-0.1mm D0=(s.^2)/(4*h)+h;

%不考虑测得值的系统误差测得直径D0=1300mm %D=f(s,h)

s2=s/(2*h);%s 误差传递系数=5

h2=-(((s.^2)/(4*h.^2))-1);%h 误差传递系数h2=-24 d=(s2*s1)+(h2*h1)%系统误差d=7.4000

Y=D0-d %消除系统误差,测得直径的实际长度Y=1.2926e+03 Y=vpa(Y ,5)%最后结果Y=1292.6

2、matlab中编译及运行结果

实验三 线性参数的最小二乘法处理

一、 实验目的

最小二乘法原理是一种在多学科领域中获得广泛应用的数据处理方法。通过实验要求掌握最小二乘法基本原理、正规方程以及组合测量的最小二乘法处理办法。

二、实验原理

(1)测量结果的最可信赖值应在残余误差平方和为最小的条件下求出,这就是最小二乘法原理。即

222

212...[]n v v v v +++==最小

(2)正规方程

最小二乘法可以将误差方程转化为有确定解的代数方程组(其方程式的数目正好等于未知数的个数),从而可求解出这些未知参数。这个有确定解的代数方程组称为最小二乘法估计的正规方程。 (3)精度估计

为了确定最小二乘估计量12,,...,t x x x 的精度,首先需要给出直接测量所得测量数据的精度。测量数据的精度也以标准差σ来表示。因为无法求得σ的真值,只能依据有限次的测量结果给出σ的估计值,所谓精度估计,实际上是求出估计值。 (4)组合测量是通过直接测量待测参数的各种组合量,然后对这些测量数据进行处理,从而求得待测参数的估计量,并给出其精度估计。

三、实验内容

如下图所示已知直接测量刻线的各种组合量,要求检定刻线A 、B 、C 、D 间距离1x 、2x 、 3x ,测量数据的标准差以及估计量的标准差。

(1)

1x 2x 3x

A B C D

6l

4l

1l 2l 3l 5l

1l =2.018mm 2l =1.986mm 3l =2.020mm 4l = 4.020mm 5l =3.984mm 6l =6.030mm

四、实验总结

程序

.l1=2.018;l2=1.986;l3=2.020;l4=4.020;l5=3.984;l6=6.030; l=[l1;l2;l3;l4;l5;l6];%l=[2.018;1.986;2.020;4.020;3.984;6.030] A=[1 0 0;0 1 0;0 0 1;1 1 0;0 1 1;1 1 1]; B=A';

invC=inv(A'*A);%invC=[0.5,-0.25,0;-0.25,0.5,-0.25;0,-0.25,0.5]

求矩阵的逆

X=invC*A'*l;%X=[2.0290;1.9845;2.0120]

这是刻线间距AB,BC,CD 的最佳估计值

x1=X(1,1);%x1=2.0290 x2=X(2,1);%x2=1.9845 x3=X(3,1);%x3=2.0120

L=[x1;x2;x3;x1+x2;x2+x3;x1+x2+x3];% V=l-L;%

bzc=sqrt((sum(V.^2))./3);%等精度测量

测得数据l1,l2,l3,l4, l5,l6的标准差相同为0.0116mm

%计算估计量的标准差

invC=inv(A'*A)%invC=[d11,d12,d13;d21,d22,d23;d31,d32,d33]

%invC=[0.5,-0.25,0;-0.25,0.5,-0.25;0,-0.25,0.5]

d11=0.5; d22=0.5; d33=0.5;

BZC=bzc*sqrt(d11)%BZC=0.0082mm

故三个可估计量的标准差都为0.0082mm 在matlab中运行结果

小结:

这是刻线间距AB,BC,CD 的最佳估计值分别为:

2.0290 1.9845 2.0120

等精度测量时

测得数据l1,l2,l3,l4, l5,l6的标准差相同为0.0116mm %计算估计量的标准差 invC=inv(A'*A)

=[d11,d12,d13;d21,d22,d23;d31,d32,d33] =[0.5,-0.25,0;-0.25,0.5,-0.25;0,-0.25,0.5] BZC=bzc*sqrt(d11)

=0.0082mm BZC=bzc*sqrt(d22)

=0.0082mm BZC=bzc*sqrt(d33)

=0.0082mm

故三个可估计量的标准差都为0.0082mm

大学物理实验报告数据处理及误差分析

篇一:大学物理实验1误差分析 云南大学软件学院实验报告 课程:大学物理实验学期: - 学年第一学期任课教师: 专业: 学号: 姓名: 成绩: 实验1 误差分析 一、实验目的 1. 测量数据的误差分析及其处理。 二、实验内容 1.推导出满足测量要求的表达式,即 0? (?)的表达式; 0= (( * )/ (2*θ)) 2.选择初速度A,从[10,80]的角度范围内选定十个不同的发射角,测量对应的射程, 记入下表中: 3.根据上表计算出字母A 对应的发射初速,注意数据结果的误差表示。 将上表数据保存为A. ,利用以下程序计算A对应的发射初速度,结果为100.1 a =9.8 _ =0 =[] _ = ("A. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _

+= [ ] 0= _ /10.0 0 4.选择速度B、C、D、重复上述实验。 B C 6.实验小结 (1) 对实验结果进行误差分析。 将B表中的数据保存为B. ,利用以下程序对B组数据进行误差分析,结果为 -2.84217094304 -13 a =9.8 _ =0 1=0 =[] _ = ("B. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _ += [ ] 0= _ /10.0 a (0,10): 1+= [ ]- 0 1/10.0 1 (2) 举例说明“精密度”、“正确度”“精确度”的概念。 1. 精密度 计量精密度指相同条件测量进行反复测量测值间致(符合)程度测量误差角度说精密度所 反映测值随机误差精密度高定确度(见)高说测值随机误差定其系统误差亦。 2. 正确度 计量正确度系指测量测值与其真值接近程度测量误差角度说正确度所反映测值系统误差 正确度高定精密度高说测值系统误差定其随机误差亦。 3. 精确度 计量精确度亦称准确度指测量测值间致程度及与其真值接近程度即精密度确度综合概念 测量误差角度说精确度(准确度)测值随机误差系统误差综合反映。 比如说系统误差就是秤有问题,称一斤的东西少2两。这个一直恒定的存在,谁来都是 这样的。这就是系统的误差。随机的误差就是在使用秤的方法。 篇二:数据处理及误差分析 物理实验课的基本程序

误差理论与数据处理 实验报告

《误差理论与数据处理》实验指导书 姓名 学号 机械工程学院 2016年05月

实验一误差的基本性质与处理 一、实验内容 1.对某一轴径等精度测量8次,得到下表数据,求测量结果。 Matlab程序: l=[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674];%已知测量值 x1=mean(l);%用mean函数求算数平均值 disp(['1.算术平均值为:',num2str(x1)]); v=l-x1;%求解残余误差 disp(['2.残余误差为:',num2str(v)]); a=sum(v);%求残差和 ah=abs(a);%用abs函数求解残差和绝对值 bh=ah-(8/2)*0.001;%校核算术平均值及其残余误差,残差和绝对值小于n/2*A,bh<0,故以上计算正确 if bh<0 disp('3.经校核算术平均值及计算正确'); else disp('算术平均值及误差计算有误'); end xt=sum(v(1:4))-sum(v(5:8));%判断系统误差(算得差值较小,故不存在系统误差) if xt<0.1 disp(['4.用残余误差法校核,差值为:',num2str(x1),'较小,故不存在系统误差']); else disp('存在系统误差'); end bz=sqrt((sum(v.^2)/7));%单次测量的标准差 disp(['5.单次测量的标准差',num2str(bz)]);

p=sort(l);%用格罗布斯准则判断粗大误差,先将测量值按大小顺序重新排列 g0=2.03;%查表g(8,0.05)的值 g1=(x1-p(1))/bz; g8=(p(8)-x1)/bz;%将g1与g8与g0值比较,g1和g8都小于g0,故判断暂不存在粗大误差if g1

误差理论与数据处理实验报告

误差理论与数据处理 实验报告 姓名:小叶9101 学号:小叶9101 班级:小叶9101 指导老师:小叶

目录 实验一误差的基本概念 实验二误差的基本性质与处理 实验三误差的合成与分配 实验四线性参数的最小二乘法处理实验五回归分析 实验心得体会

实验一误差的基本概念 一、实验目的 通过实验了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。 二、实验原理 1、误差的基本概念:所谓误差就是测量值与真实值之间的差,可以用下式表示 误差=测得值-真值 1、绝对误差:某量值的测得值和真值之差为绝对误差,通常简称为误差。 绝对误差=测得值-真值 2、相对误差:绝对误差与被测量的真值之比称为相对误差,因测得值与 真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。 相对误差=绝对误差/真值≈绝对误差/测得值 2、精度 反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。 3、有效数字与数据运算 含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。 数字舍入规则如下: ①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。 ②若舍去部分的数值,小于保留部分的末位的半个单位,则末位加1。 ③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。即当末位为偶数时则末位不变,当末位为奇数时则末位加1。 三、实验内容 1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。 2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进行凑整。 原有数据 3.14159 2.71729 4.51050 3.21551 6.378501 舍入后数据

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

误差理论及数据处理第三章 课后答案

修正值=)(4321l l l l ?+?+?+?- =)1.03.05.07.0(+-+-- =0.4)(m μ 测量误差: l δ=4 3 2 1 lim 2lim 2lim 2lim 2l l l l δδδδ+++± =2222)20.0()20.0()25.0()35.0(+++± =)(51.0m μ± 3-2 为求长方体体积V ,直接测量其各边长为mm a 6.161=, mm 44.5b =,mm c 2.11=,已知测量的系统误差为mm a 2.1=?,mm b 8.0-=?,mm c 5.0=?,测量的极限误差为mm a 8.0±=δ, mm b 5.0±=δ,mm c 5.0±=δ, 试求立方体的体积及其体积的极限误差。 abc V = ),,(c b a f V = 2.115.446.1610??==abc V )(44.805413 mm = 体积V 系统误差V ?为: c ab b ac a bc V ?+?+?=? )(74.2745)(744.274533mm mm ≈= 立方体体积实际大小为:)(70.777953 0mm V V V =?-= 2 22222lim )()()( c b a V c f b f a f δδδδ??+??+??±= 2 22 22 2)()()(c b a ab ac bc δδδ++±= )(11.37293mm ±= 测量体积最后结果表示为:

V V V V lim 0δ+?-=3)11.372970.77795(mm ±= 3—3 长方体的边长分别为α1,α2, α3测量时:①标准差均为σ;②标准差各为σ1、σ2、 σ3 。试求体积的标准差。 解: 长方体的体积计算公式为:321a a a V ??= 体积的标准差应为:2 323 22222121)()()( σσσσa V a V a V V ??+??+??= 现可求出: 321a a a V ?=??;312a a a V ?=??;213 a a a V ?=?? 若:σσσσ===321 则 有 : 23 2221232322222121)()()()()()( a V a V a V a V a V a V V ??+??+??=??+??+??=σσσσσ221231232)()()(a a a a a a ++=σ 若:321σσσ≠≠ 则有:2 32212223121232)()()(σσσσa a a a a a V ++= 3-4 测量某电路的电流mA I 5.22=,电压V U 6.12=,测量的标准差分别为mA I 5.0=σ, V U 1.0=σ,求所耗功率UI P =及其标准差P σ。UI P =5.226.12?=)(5.283mw = ),(I U f P =I U 、 成线性关系 1=∴UI ρ I u I U P I f U f I f U f σσσσσ))((2)()( 2 222????+??+??= I U I U U I I f U f σσσσ+=??+??= 5.06.121.05.22?+?= )(55.8mw = 3-6 已知x 与y 的相关系数1xy ρ=-,试求2 u x ay =+的方差2u σ。 【解】属于函数随机误差合成问题。

机械加工误差分析实验报告

机械加工误差的综合分析 ------统计分析法的应用一、实验目的

运用统计分析法研究一批零件在加工过程中尺寸的变化规律,分析加工误差的性质和产生原因,提出消除或降低加工误差的途径和方法,通过本实验使同学能够掌握综合分析机械加工误差的基本方法。 二、实验用仪器、设备 1.M1040A型无心磨床一台; 2.分辨率为0.001mm的电感测微仪一台; 3.块规一付(尺寸大小根据试件尺寸而定); 4.千分尺一只; 5.试件一批约120件, 6.计算机和数据采集系统一套。 三、实验容 在无心磨床上连续磨削一批试件(120件),按加工顺序在比较仪上测量尺寸,并记录之,然后画尺寸点图和X---R图。并从点图上取尺寸比较稳定(即尽量排除掉变值系统性误差的影响)的一段时间连续加工的零件120件,由此计算出X、σ,并做出尺寸分布图,分析加工过程中产生误差的性质,工序所能达到的加工精度;工艺过程的稳定性和工艺能力;提出消除或降低加工误差的措施。

四、实验步骤 1. 按被磨削工件的基本尺寸选用块规,并用气油擦洗干净后推粘在一起; 2. 用块规调整比较仪,使比较仪的指针指示到零,调整时按大调---微调---水平调整步骤进行(注意大调和水平调整一般都予先调好),调整好后将个锁紧旋钮旋紧,将块规放入盒中。 3. 修正无心磨床的砂轮,注意应事先把金刚头退后离开砂轮。将冷却液喷向砂轮,然后在按操作规程进刀,修整好砂轮后退刀,将冷却液喷头转向工件位置。 4. 检查磨床的挡片,支片位置是否合理(如果调整不好,将会引起较大的形变误差)。对于挡片可通过在机床不运转情况下,用手将工件沿着支片紧贴挡片前后推动,同时调整前后螺钉,直至工件能顺利、光滑推过为宜。 5. 按给定尺寸(Φd-0.02)调整机床,试磨五件工件,使得平均尺寸应保证在公差带中心稍偏下为宜,然后用贯穿法连续磨削一批零件,同时用比较仪,按磨削顺序测量零件尺寸并记录之。 6. 清理机床,收拾所用量具、工具等。 7. 整理实验数据,打印做实验报告。 五、实验结果及数据处理 该实验选用M1040A型无心磨床和块规一付 (1)实验原始数据

误差理论与大数据处理实验报告材料

标准文档 误差理论与数据处理 实验报告 姓名:黄大洲 学号:3111002350 班级:11级计测1班 指导老师:陈益民

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有:1 n i i v ==∑0 1)残余误差代数和应符合:

当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1 n i i v =∑为零; 当 1 n i i l =∑>nx ,求得的x 为凑整的非准确数时,1 n i i v =∑为正;其大小为求x 时 的余数。 当 1 n i i l =∑

成都理工误差实验报告数据处理

实验报告 实验工作者:杜华学号:201206020108 实验日期:2014年3月31号实验名称:实验一:生产过程监控图的编制 实验目的:本实验通过对某化工厂正常生产过程中120次Hgcl2浓度的测定数据。 编制对生产过程中Hgcl2浓度的监控图,以保证最终产品质量。通 过本实验,让同学们一起理解误差的理论与意义,学会编制生产过 程监控图的方法 实验原理:一般情况下,很多工程测量与生产过程的参数值都是服从正态分布的随机变量,例如利用正常电子仪器在相同条件下对同一物理量重复 测量所获得的数据;化工生产过程中正常的浓度、温度值等等。因 此,我们可以依据服从正态分布的随机变量所具有特征,来实现对 这些测量值、或生产过程中的参数值“是否正常”的判断。这就是我 们建立监控图的基本思想。从这个意义上说,已经建立的监控图实际是一把 尺子,我们可以用它来度量每一个测量数据或生产参数是否正常。 根据正态分布理论,正常的测量值或生产过程中的参数值落入平均 值加减一倍,两倍,三倍均方差区间的理论概率值应该分别等于 68.26%,95.44%,99.73%;当我们只进行有限次测量时,获取数据 如果是正常的,超出平均值加减三倍均方差的区间可能性几乎是0。 因此,一旦检测数据超过平均值加减三倍均方差区间,我们就可以 判定,其为不正常数据,预示着生产过程出了问题,需进行调整从 而实现监控目的 实验设备:按有excel软件的电脑 实验步骤: 1.依据5.1.1所测量数据,统计平均值和标准差;

2.按平均值加减一倍,两倍,三倍标准差编制质量监控图; 3.将5.1.2监测数据标绘在所编监控图上: 4.分析6.1-6.11时间段中生产过程是否正常。 按三倍标准差理论,上午有五个数据不正常,它们分别是0.64,0.65,0.94,0.98 ,0.99

一元线性回归分析实验报告

一元线性回归在公司加班制度中的应用 院(系): 专业班级: 学号姓名: 指导老师: 成绩: 完成时间:

一元线性回归在公司加班制度中的应用 一、实验目的 掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境 SPSS21.0 windows10.0 三、实验题目 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经10周时间,收集了每周加班数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加班时间(小时),数据如表所示 y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0 2. x 与y 之间大致呈线性关系? 3. 用最小二乘法估计求出回归方程。 4. 求出回归标准误差σ∧ 。 5. 给出0 β∧与1 β∧ 的置信度95%的区间估计。 6. 计算x 与y 的决定系数。 7. 对回归方程作方差分析。 8. 作回归系数1 β∧ 的显著性检验。 9. 作回归系数的显著性检验。 10.对回归方程做残差图并作相应的分析。

11.该公司预测下一周签发新保单01000 x=张,需要的加班时间是多少? 12.给出0y的置信度为95%的精确预测区间。 13.给出 () E y的置信度为95%的区间估计。 四、实验过程及分析 1.画散点图 如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。 2.最小二乘估计求回归方程

用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下: 0.1180.004y x =+ 3.求回归标准误差σ∧ 由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差: 2= 2SSE n σ∧-,2σ∧=0.48。 4.给出回归系数的置信度为95%的置信区间估计。 由回归系数显著性检验表可以看出,当置信度为95%时:

误差理论实验报告3

《误差理论与数据处理》实验报告实验名称:动态测试数据处理初步一、实验目的 动态数据是动态测试研究的重要容。通过本实验要求学生掌握有关动态数据分析。评价的基本方法,为后续课程做好准备。 二、实验原理 三、实验容和结果 1.程序及流程 1.认识确定性信号及其傅立叶频谱之间的关系 1.用matlab编程画出周期方波信号及其傅立叶频谱,并说明其 傅立叶频谱的特点。 >> fs=30; >> T=1/fs; >> t=0:T:2*pi; >> A=2;P=4; >> y=A*square(P*t); >> subplot(2,1,1),plot(t,y) >> title('方波信号') >> Fy=abs(fft(y,512)); >> f2=fs*(0:256)/512; >> subplot(2,1,2),plot(f2,Fy(1:257)) >> title('频谱图'); >> set(gcf,'unit','normalized','position',[0 0 1 1]); >> set(gca,'xtick',0:0.6:8); >> axis([0,8,0 300]);

2.用matlab边城画出矩形窗信号的宽度分别为T=1和T=5两种 情况下的时域波形图及其频谱,并分析时域与频域的变化关系。 wlp = 0.35*pi; whp = 0.65*pi; wc = [wlp/pi,whp/pi]; window1= boxcar(1); window2=boxcar(5); [h1,w]=freqz(window1,1); [h2,w]=freqz(window2,5); subplot(411); stem(window1); axis([0 60 0 1.2]); title('矩形窗函数(T=1)'); subplot(413); stem(window2); axis([0 60 0 1.2]); grid; xlabel('n'); title('矩形窗函数(T=5)'); subplot(412); plot(w/pi,20*log(abs(h1)/abs(h1(1)))); xlabel('w/pi'); ylabel('幅度(dB)'); title('矩形窗函数的频谱(T=1)'); subplot(414); plot(w/pi,20*log(abs(h2)/abs(h2(5)))); axis([0 1 -350 0]); grid; xlabel('w/pi'); ylabel('幅度(dB)'); title('矩形窗函数的频谱(T=5)'); 2.认识平稳随机过程自相关函数及其功率谱之间的关系 已知某随机过程x(t)的相关函数为:Rx(t)=e?α|τ|cosω0τ,画出下列两种情况下的自相关函数和功率谱函数。 1.取α=1,ω0=2π?10; 2.取α=5,ω0=2π?10; 程序:>> t=0:0.01:1;

安徽工业大学误差实验报告

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)正态分布 设被测量的真值为0L ,一系列测量值为i L ,则测量列中的随机误差i δ为 i δ=i L -0L (2-1) 式中i=1,2,…..n. 正态分布的分布密度()()2 22f δσδ -= (2-2) 正态分布的分布函数()()22 2F e d δδσδδ --∞=(2-3) 式中σ-标准差(或均方根误差); 它的数学期望为 ()0E f d δδδ+∞ -∞==? (2-4) 它的方差为 ()22f d σδδδ+∞ -∞=? (2-5) (2)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义 在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值121...n i n i l l l l x n n =++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。

i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 11n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有 1n i i v ==∑0 1)残余误差代数和应符合: 当1 n i i l =∑=nx ,求得的x 为非凑整的准确数时,1n i i v =∑为零; 当1 n i i l =∑>nx ,求得的x 为凑整的非准确数时,1n i i v =∑为正;其大小为求x 时的余数。 当1n i i l =∑

误差分析及实验心得

误差分析及实验心得 误差分析 1 系统误差:使用台秤、量筒、量取药品时产生误差; 2 随机误差:反应未进行完全,有副反应发生;结晶、纯化及过滤时,有部分产品损失。 1、实验感想: 在实验的准备阶段,我就和搭档通过校园图书馆和电子阅览室查阅到了很多的有关本实验的资料,了解了很多关于阿司匹林的知识,无论是其发展历史、药理、分子结构还是物理化学性质。而从此实验,我们学习并掌握了实验室制备阿司匹林的各个过程细节,但毕竟是我们第一次独立的做实验,导致实验产率较低,误差较大。 在几个实验方案中,我们选取了一个较简单,容易操作的进行实验。我与同学共做了3次实验,第一次由于加错药品而导致实验失败,第二次实验由于抽滤的时候加入酒精的量过多,导致实验产率过低。因此,我们进行了第三次实验,在抽滤时对酒精的用量减少,虽然结果依然不理想,但是我们仍有许多的收获: (1)、培养了严谨求实的精神和顽强的毅力。通过此次的开放性实验,使我们了解到“理论结合实践”的重要性,使我们的动手能力和思考能力得到了锻炼和提高,明白了在实践中我们仍需要克服很多的困难。(2)、增进同学之间的友谊,增强了团队合作精神。这次的开放性实验要求两个或者两个以上的同学一起完成,而且不像以前实验时有已知的实验步骤,这就要求我们自己通力合作,独立思考,查阅资料了解实验并制定方案,再进行实验得到要求中的产物。我们彼此查找资料,积极的发表个人意见,增强了团队之间的协作精神,培养了独立思考问题的能力,同时培养了我们科学严谨的求知精神,敢于追求真理,不怕失败的顽强毅力。当然我们也在实验中得到了很大的乐趣。 九、实验讨论及心得体会 本次实验练习了乙酰水杨酸的制备操作,我制得的乙酰水杨酸的产量为理论上应该是约1.5g。所得产量与理论值存在一定偏差通过分析得到以下可能原因: a、减压过滤操作中有产物损失。 b、将产物转移至表面皿上时有产物残留。 c、结晶时没有结晶完全。 通过以上分析我觉得有些操作导致的损失可以避免所以我在以后的实验中保持严谨的态度。我通过本次实验我学到了乙酸酐和水杨酸在酸催化下制备乙酰水杨酸的操作方法初步了解有机合成中乙酰化反应原理巩固和进一步熟悉了减压过滤、重结晶基本操作的原理和方法了解到乙酰水杨酸中杂质的来源及其鉴别方法通过误差分析可能原因进一步更深理解实验的原理和操作养成严谨的态度。

误差测量实验报告

误差测量与处理课程实验 报告 学生姓名:学号: 学院: 专业年级: 指导教师: 年月

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法。 二、实验原理 (1)正态分布 设被测量的真值为0L ,一系列测量值为i L ,则测量列中的随机误差i δ为 i δ=i L -0L (2-1) 式中i=1,2,…..n. 正态分布的分布密度 ()() 2 2 21 f e δ σδσπ -= (2-2) 正态分布的分布函数 ()()2 2 21 F e d δ δ σδδσπ --∞ =? (2-3) 式中σ-标准差(或均方根误差); 它的数学期望为 ()0 E f d δδδ+∞ -∞ ==? (2-4) 它的方差为 ()22f d σδδδ +∞ -∞ =? (2-5) (2)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义 在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。

设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++= =∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有 1 n i i v ==∑0 1)残余误差代数和应符合: 当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1n i i v =∑为零; 当 1n i i l =∑>nx ,求得的x 为凑整的非准确数时,1n i i v =∑为正;其大小为求x 时的余数。 当 1n i i l =∑

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

《误差理论与数据处理(第6版)费业泰》课后习题答案

《误差理论与数据处理》练习题 第一章 绪论 1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少? 【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。故二等标准活塞压力计测量值的 绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。 相对误差=0.3 100%0.3%100.5-?≈- 1-9 使用凯特摆时,g 由公式g=4π2 (h 1 +h 2 )/T 2 给定。今测出长度(h 1 +h 2 )为(1.04230 ±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。试求g 及其最大相对误差。如果(h 1 +h 2 )测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2 ,T 的测量必须精确到多少? 【解】测得(h 1 +h 2 )的平均值为1.04230(m ),T 的平均值为2.0480(s )。 由2 1224()g h h T π=+,得: 22 2 4 1.042309.81053(/)2.0480 g m s π=?= 当12()h h +有微小变化12()h h ?+、T 有T ?变化时,令12h h h =+ g 的变化量为: 22 12121223122 1212248()()()()42[()()]g g g h h T h h h h T h h T T T T h h h h T T πππ???=?++?=?+-+??+??= ?+-+ 22 23224842()g g g h T h h T h T T T T h h T T πππ???=?+?=?-????=?- g 的最大相对误差为:

误差理论及数据处理答案

《误差理论与数据处理》 第一章 绪论 1-1.研究误差的意义是什么?简述误差理论的主要容。 答: 研究误差的意义为: (1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据; (3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。 误差理论的主要容:误差定义、误差来源及误差分类等。 1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。 系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化); 随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。 1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。 答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。+多少表明大了多少,-多少表示小了多少。 (2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定 1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解: 绝对误差等于: 相对误差等于: 1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm , 试问该被测件的真实长度为多少? 解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm , 测件的真实长度L0=L -△L =50-0.001=49.999(mm ) 1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少? 解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。 故二等标准活塞压力计测量值的误差=测得值-实际值, 即: 100.2-100.5=-0.3( Pa ) 21802000180''=-'''o o %000031.010*********.00648002066018021802≈=' '' '''??''=''=o

精密形位误差的测试与数据处理实验报告讲解

实验一用合像水平仪测量1500?500平板的平面度 一、实验目的 1. 了解合像水平仪的结构和工作原理。 2. 加深对平面度定义的理解。 3. 掌握用水平仪测量平板平面度方法及测量数据处理。 4.掌握平面度的判定标准及数据处理方法。 二、实验内容 用合像水平仪测量平板平面度误差。 三、实验仪器及器材 合像水平仪,标准平面平板、桥板。 四、测量原理 1. 合像水平仪的使用原理 1-底板;2-杠杆;3-支承;4-壳体;5-支承架;6-放大镜; 7-棱镜;8-水准器;9-微分筒;10-测微螺杆;11-放大镜;12-刻线尺 图1-1 合像水平仪 合像水平仪是一种精密测角仪器,用自然水平面为测量基准。合像水平仪的结构见图1-1,它的水准器8是一个密封的玻璃管,管内注入精镏乙醚,并留有一定量的空气,以形成气泡,管的内壁在长度方向具有一定的曲率半径。气泡在管中停住时,气泡的位

置必然垂直于重力方向。就是说,当水平仪倾斜时,气泡本身并不倾斜,而始终保持水平位置。利用这个原理,将水平仪放在桥板上使用,便能测出实际被测直线上相距一个桥板跨距的两点间高度差,如图1-2所示。 I-桥板;Ⅱ-水平仪;Ⅲ-实际被测直线;L-桥板跨距;0,1,2,…,n-测点序号 图1-2用水平仪测量直线度误差时的示意图 在水准器玻璃管管长的中部,从气泡的边缘开始向两端对称地按弧度值(mm/m)刻有若干条等距刻线。水平仪的分度值i用[角]秒和mm/m表示。合像水平仪的分度值为2",该角度相当于在1m长度上,对边高0.01mm的角度,这时分度值也用0.01mm/m 或0.01/1000表示。 测量时,合像水平仪水准器8中的气泡两端经棱镜7反射的两半像从放大镜6观察。当桥板两端相对于自然水平面无高度差时,水准器8处于水平位置。则气泡在水准器8的中央,位于棱镜7两边的对称位置上,因此从放大镜6看到的两半像相合(如图1—3(a)所示)。如果桥板两端相对于自然水平面有高度差,则水平仪倾斜一个角度α,因此,气泡不在水准器8的中央,从放大镜6看到的两半像是错开的(如图1—3(b)所示),产生偏移量△。 (a)相合 (b)错开 图1-3 气泡的两半像 为了确定气泡偏移量A的数值,转动测微螺杆10使水准器8倾斜一个角度α,以使气泡返回到棱镜7两边的对称位置上。从放大镜中观察到气泡的两半像恢复成图1-3(a)所示相合的两半像。偏移量A先从放大镜11由刻线尺12读数,它反映测微螺杆

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

相关文档
相关文档 最新文档