文档库 最新最全的文档下载
当前位置:文档库 › 吴忠仪表HLC小口径单座调节阀教程

吴忠仪表HLC小口径单座调节阀教程

调节阀口径计算

1、调节阀流量系数C V定义:阀处于全开状态,两端压差为1磅/英寸2(0.07kg/cm2)的条件下,60℉(15.6℃)的清水,每分钟通过阀的美加仑数. 2、压差:调节阀两端压差与整个系统压损失之比(Pr)是评定调节阀性能好坏的标准.如果流量波动幅度较大,这个压降比(Pr)数值也应大些,同样,波动幅度较小时, Pr也应小些.一般来说, Pr大小最好限制在15~30%之内. 3、调节阀径计算公式 液体(英制) CV=Q/(P1-P2) =Q 式中 Q=最大流量 gpm(美加仑) G=比重(水=1) P1=进口压力 psi P1=出口压力 psi =p1-p2 (p1和p2为最大流量时的压力) 说明:cv=1.17kv是我国调节阀流量系数的符号。 4、流量 选取调节阀口径所采用最大流量应比工艺流程的最在流量大25%~60%,这是一个必可缺少的安全系数,这样可避免调节阀在全开位置上运行。然而,当最大流量已包括了这个安全系数,则可以不予考虑。 5、气体 1、<p1/2时 如果标准状态即760mmHg(14.7psia)和15.6℃条件下最大流量,下列公式不需经过修正,可直接计算.

CV=Q/963 CV=Q/287 2、 >p1/2时 CV=Q CV=Q 6、水蒸气 1、<p1/2时 CV=WK/2.12 CV=WK/13.67 2、 >p1/2时 CV=WK/1.84P1 CV=WK/11.9P1 W=最大流量LB/H W=最大流量KG/H 7、其他蒸气 CV=W/89.6 CV=W/1210 <p1/2时应用P1/2代替V2要用P1/2时相对应的值 W=最大流量LB/H W=最大流量KG/H

(完整版)调节阀试题

调节阀题库 判断 1.执行器除了能够控制压力.温度.流量外,还能够在装置的安全方面起着重要作用。(√) 2.执行器按照调节形式可分为调节型.切断型.调节切断型。(√) 3.当信号增加时调节阀的推杆向下动作的执行机构为反作用时。(×) 正确答案:执行机构为正作用时,当信号增加调节阀的推杆向下动作。 4.控制机构是执行器的调节部分,它直接与被测介质接触,调节流体的流量。(√) 5.阀门定位器和转换器的作用都是利用反馈的原理来改善执行器的性能,使执行器能调节器调节信号,实现准确定位。(×) 正确答案:阀门定们器的作用都是利用反馈的原理来改善执行器的性能,使执行器能调节器的调节信号,实现准确定位。 6.简单控制系统投运时调节阀投运有两种含义,一种是先人工操作旁路阀,然后过渡到调节 再手动到自动。另一种是直接操作调节阀的手动-自动。(√) 7.涡街流量计的安装遇有调节阀.半开阀门时,涡街流量计应安装在他们的下游。(×)正确答案:涡街流量计应装在他们的上游。 8.蝶阀对于流体方向没有要求。(√) 9.三通合流阀无论开度如何,出口流量不变。(√) 10.不论单芯阀,还是双芯阀,流体都是下进上出。(√) 11.同规格调节阀,在开度相同,其它条件相同的情况下,直流流量特性的对比数流量特性的通过量大。(√) 12.控制阀在检修后进行调校,首先应检查定位器安装位置或定位器反馈杆连接螺栓位置,保证零位置与定位器反馈杆处于水平。(×) 13. 调节阀应垂直、正立安装在水平管道上,DN > 50mm 的阀,应设有永久性支架。(√) 14.调节阀安装在节流装置前后均不影响流量测量准确度。(×) 15.直通单座阀调节阀适用于小口径.低压差.泄露量要求小的场合(√) 16.直通双座阀调节阀适用于大口径.高压差.泄露量要求不高的场合(√) 17.角形调节阀用于侧近底出时,容易发生震荡(×) 正确答案:角形调节阀用于侧近底出时,在小开度下容易发生震荡 18.调节阀的流量特性不能通过改变阀门定位器的反馈凸轮的几何形状来改变(×)

调节阀选型计算

?调节阀计算与选型指导(一) ?2010-12-09来源:互联网作者:未知点击数:588 ?热门关键词:行业资讯 【全球调节阀网】 人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。自动控制系统一切先进的控制理论、巧秒的控制思想、复杂的控制策略都是通过执行器对被控对象进行作用的。调节阀是生产过程自动化控制系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。 正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。 二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。 (8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近

调节阀的流量计算

调节阀的流量计算 调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流 判别式:△P<FL(P1-FFPV) 计算公式:Kv=10QL 式中: FL-压力恢复系数,见附表 FF-流体临界压力比系数,FF=- PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPa PC-流体热力学临界压力(绝对压力),kPa QL-液体流量m/h ρ-液体密度g/cm P1-阀前压力(绝对压力)kPa P2-阀后压力(绝对压力)kPa b.阻塞流 判别式:△P≥FL(P1-FFPV) 计算公式:Kv=10QL 式中:各字符含义及单位同前 2.气体的Kv值计算 a.一般气体 当P2>时

当P2≤时 式中: Qg-标准状态下气体流量Nm/h Pm-(P1+P2)/2(P1、P2为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN>10MPa) 当P2>时 当P2≤时 式中:Z-气体压缩系数,可查GB/T 2624-81《流量测量节流装置的设计安装和使用》 3.低雷诺数修正(高粘度液体KV值的计算) 液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在Rev<2300时流体处于低速层流,这样按原来公式计算出的KV值,误差较大,必须进行修正。此时计算公式应为: 式中:Φ―粘度修正系数,由Rev查FR-Rev曲线求得;QL-液体流量 m/h 对于单座阀、套筒阀、角阀等只有一个流路的阀 对于双座阀、蝶阀等具有二个平行流路的阀 式中:Kv′―不考虑粘度修正时计算的流量系 ν ―流体运动粘度mm/s FR -Rev关系曲线 FR-Rev关系图 4.水蒸气的Kv值的计算

调节阀Cv值计算及口径选择word精品

提供一点调节阀选型设计时有关CV值的基础知识,大家共同分享。 阀门Cv值与开度是两个概念问题,国外喜欢叫Cv,国内习惯叫Kv, Kv表示的是阀门的流通能力,它的定义是:当调节阀全开,阀两端的压差AP 为lOOKPa,流体重度r为1gf/cm3 (即常温水)时,每小时流经调节阀的流量数,以m3/h或t/h计。(例如一台Kv=50的调节阀,则表示当阀两 端压差为1OOKPa时,每小时的水量为50m3/h o) 阀门开度是指阀门在调节的时候,阀芯(或阀板)改变流道节流面积时阀芯(或阀板)运动的位置,一般用百分比表示,关闭状态为0%全开为1 00% 对于蝶阀由时候厂家会提供Cv—开度曲线,这时候的Cv表示的是在不同开度时对应的阀门流通能力。 阀门上的流量数据Cv值 液流: Q= Cv* sqr(△ P/s) or △ P=s*(Q/Cv)A2 在此:Q =液流量(每分钟加仑数) △ P =通过阀门的压降(psi) S =介质的具体重这个方程式适用于湍流和粘性接近于水的液体。 (Cv是指介质温度为60 o F的水,通过阀门产生 1.0 psi压降时的每分钟流量。)(这时水的具体重力是 1 o ) 警告此表所包含的流体流量系数是计算值。 因此,它们是近似值, 不能用于非常重要的流量和压降计算中。 对于要求非常精确的流量测量和检测,必须对本样本中所提到的任何阀门具体操作。 当阀门开启小于45 ° 时,建议不要采用球阀充当节流功能。 Cv值 Cv : 20° C的水通过阀体的压力降为1bar时的流量 Cv = 6.6Q ? SG/VA P ........................ .( 1 ) Q流量 公升/分 SG水密度1

调节阀口径计算

调节阀口径计算 1、口径计算原理 在不同的自控系统中,流量、介质、压力、温度等参数千差万别,而调节阀的流量系数又是在100KPa 压差下,介质为常温水时测试的,怎样结合实际工作情况决定阀的口径呢?显然,不能以实际流量与阀流量系数比较(因为压差、介质等条件不同),而必须进行K V值计算。把各种实际参数代入相应的K V值计算公式中,算出Kv值,即把在不同的工作条件下所需要的流量转化为该条件下所需要的K V值,于是根据计算出的Kv值与阀具有的Kv值比较,从而决定阀的口径,最后还应进行有关验算,进一步验证所选阀是否能满足工作要求。 2 、口径计算步骤 从工艺提供有关参数数据到最后口径确定,一般需要以下几个步骤: (1)计算流量的确定。根据现有的生产能力、设备负荷及介质的状况,决定计算的最大工作流量Qmax 和最小工作流量Qmin。 (2)计算压差的决定。根据系统特点选定S值,然后决定计算压差。 (3)Kv值计算。根据已决定的计算流量、计算压差及其它有关参数,求出最大工作流量时的Kvmax。 (4)初步决定调节阀口径,根据已计算的Kvmax,在所选用的产品型式系列中,选取大于Kv-max并与其接近的一档Kv值,得出口径。 (5)开度验算。 (6)实际可调比验算。一般要求实际可调比应大于10。 (7)压差校核(仅从开度、可调比上验算还不行,这样可能造成阀关不死,启不动,故我们增加此项)。 (8)上述验算合格,所选阀口径合格。若不合格,需重定口径(及Kv值),或另选其它阀,再验算至合格。 3 、口径计算步骤中有关问题说明 1)最大工作流量的决定 为使调节阀满足调节的需要,计算时应考虑工艺生产能力、对象负荷变化、预期扩大生产等因素,但必须防止过多地考虑余量,使阀口径选大;否则,不仅会造成经济损失、系统能耗大,而且阀处小开度工作,使可调比减小,调节性能变坏,严重时还会引起振荡,使阀的寿命缩短,特别是高压调节阀,更要注意这一点。现实中,绝大部分口径选大都是此因素造成的。 2)计算压差的决定——口径计算的最关键因素

调节阀的口径计算

调节阀口径计算 1 口径计算原理 在不同的自控系统中,流量、介质、压力、温度等参数千差万别,而调节阀的流量系数又是在100KPa压差下,介质为常温水时测试的,怎样结合实际工作情况决定阀的口径呢?显然,不能以实际流量与阀流量系数比较(因为压差、介质等条件不同),而必须进行Kv值计算。把各种实际参数代入相应的Kv值计算公式中,算出Kv值,即把在不同的工作条件下所需要的流量转化为该条件下所需要的Kv值,于是根据计算出的Kv值与阀具有的Kv值比较,从而决定阀的口径,最后还应进行有关验算,进一步验证所选阀是否能满足工作要求。 2 口径计算步骤 从工艺提供有关参数数据到最后口径确定,一般需要以下几个步骤: (1)计算流量的确定。根据现有的生产能力、设备负荷及介质的状况,决定计算的最大工作流量Qmax和最小工作流量Qmin。 (2)计算压差的决定。根据系统特点选定S值,然后决定计算压差。 (3)Kv值计算。根据已决定的计算流量、计算压差及其它有关参数,求出最大工作流量时的Kvmax。 (4)初步决定调节阀口径,根据已计算的Kvmax,在所选用的产品型式系列中,选取大于Kv-max并与其接近的一档Kv值,得出口径。

(5)开度验算。 (6)实际可调比验算。一般要求实际可调比应大于10。 (7)压差校核(仅从开度、可调比上验算还不行,这样可能造成阀关不死,启不动,故我们增加此项)。 (8)上述验算合格,所选阀口径合格。若不合格,需重定口径(及Kv值),或另选其它阀,再验算至合格。 3 口径计算步骤中有关问题说明 1)最大工作流量的决定 为使调节阀满足调节的需要,计算时应考虑工艺生产能力、对象负荷变化、预期扩大生产等因素,但必须防止过多地考虑余量,使阀口径选大;否则,不仅会造成经济损失、系统能耗大,而且阀处小开度工作,使可调比减小,调节性能变坏,严重时还会引起振荡,使阀的寿命缩短,特别是高压调节阀,更要注意这一点。现实中,绝大部分口径选大都是此因素造成的。 2)计算压差的决定——口径计算的最关键因素 压差的确定是调节阀计算中的关键。在阀工作特性讨论中知道:S值越大,越接近理想特性,调节性能越好;S值越小,畸变越厉害,因而可调比减小,调节性能变坏。但从装置的经济性考虑时,S小,调节阀上压降变小,系统压降相应变小,这样可选较小行程的泵,即从经济性和节约能耗上考虑S值越小越好。综合的结果,一般取S=0.1~0.3(不是原来的0.3~0.6)。对高压系统应取小值,可小至S

空调冷冻水系统压差调节阀的选择计算

空调冷冻水系统压差调节阀的选择计算在中央空调管路中,对于冷水机组来说冷冻水流量的减小是相当危险的。在蒸发器设计中,通常一个恒定的水流量(或较小范围的波动)对于保证蒸发器管内水流速的均匀是重要的,如果流量减小,必然造成水流速不均匀,尤其是在一些转变(如封头)处更容易使流速减慢甚至殂成不流动的“死水”由于蒸发温度极低在蒸发器不断制冷的过程中,低流速水或“死水”极容易产生冻结的情况,从而对冷水机组造成破坏。因此,冷水机能的流量我们要求基本恒定的。但从另一方面,从末端设备的使用要求来看,用户则要求水系统作变化量运行以改变供冷(热)量的多少。这两者构成了一对矛盾,解决此矛盾最常用的方法是在供回水管上设置压差旁通阀,压差旁通阀工作原理是:在系统处于设计状态下,所有设备都满负荷运行时,压差旁通阀开度为零(无旁通水流量),这时压差控制器两端接口处的压力差(又称用户侧供,回水压差)P0即是控制器的设定压差值。当末端负荷变小后,末端的两通阀关小,供回水压差P0将会提高而超过设定值,在压差控制器的作用下,压差旁通阀将自动打开,由于压差旁通阀与用户侧水系统并联,它的开度加大将使供回水压差P0减小直至达到P0时才停止,部分水从旁通阀流过而直接进入回水管,与用户侧回水混合后进入水泵和冷水机组,这样通过冷水机组的水量是不变化的。水泵的运行有个高工作效率点,流量的变化使电机在高效率点处左右移动,但最终的结果,只要管路特性不变化,水泵会自动调节到高效率工作点,我们可以通过调节管路特性去改变水泵的工作效率点,这样也就是说,在流量的变化的时候,水泵要不断的改变自己的运行状态,这导致了电流不段的变化(变大或者变小),这对电机的运行都是有害的,变频泵的电机容易烧毁也就是这个结果,因此,在一般的情况下,最好能使水泵在一个稳定的状态运行,这就要求我们用旁通,无论上面的负荷怎样变化,水泵都能在稳定的流量下运行,而不会导致电机的电流不段变化,使电机的寿命降低! 为保证空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工程中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通管,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为将来的运行管理带来了不必要的麻烦,本文就压差调节阀的选择计算方法并结合实际工程作一简要分析。 一、压差调节装置的工作原理 压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过测压管对空调系统的供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。 二、选择调节阀应考虑的因素

最新调节阀流量系数计算公式和选择数据

1、流量系数计算公式 表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。 C-工程单位制(MKS制)的流量系数,在国内长期使用。其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。 Cv-英制单位的流量系数,其定义为:温度60℃F(15.6℃)的水,在IIb/in(7kpa)压降下,每分钟流过调节阀的美加仑数。 Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。 注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。 (1)Kv值计算公式(选自《调节阀口径计算指南》) ①不可压缩流体(液体)(表1-1) Kv值计算公式与判别式(液体) 低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用

雷诺数修正系数修正,修正后的流量系数为: 在求得雷诺数Rev值后可查曲线图得FR值。 计算调节阀雷诺数Rev公式如下: 对于只有一个流路的调节阀,如单座阀、 套筒阀,球阀等: 对于有五个平行流路调节阀,如双座阀、 蝶阀、偏心施转阀等 文字符号说明: P1--阀入口取压点测得的绝对压力,MPa; P2--阀出口取压点测得的绝对压力,MPa; △P--阀入口和出口间的压差,即(P1-P2),MPa; Pv--阀入口温度饱和蒸汽压(绝压),MPa;

Pc--热力学临界压力(绝压),MPa; F F--液体临界压力比系 数, F R--雷诺数系数,根据ReV值可计算出;F L--液体压力恢复系数 QL--液体体积流量,m3/h P L--液体密度,Kg/cm3 ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h, ②可压缩流体(气体、蒸汽)(表1-2) Kv值计算公式与判别式(气体、蒸气)表1-2 文字符号说明: X-压差与入口绝对压力之比(△P/P1);X T-压差比系数; K-比热比;Qg-体积流量,Nm3/h Wg-质量流量,Kg/h;P1-密度(P1,T1条件), Kg/m3

调节阀选型方法总结

调节阀选型 自动控制系统是通过执行器对被控对象进行作用的。调节阀是生产过程自动化控制系统中最常见的一种执行器。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程对于自动控制系统的稳定性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,使得自动控制系统产生震荡甚至不能正常运行。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑的重要环节。 1调节阀结构形式的选择 常用的调节阀结构形式有直通单座阀、直通双座阀、套筒阀、偏心旋转阀、蝶阀、全功能超轻型调节阀、球阀,应当根据不同的使用情况,结合不同结构形式阀门各自的特点,从调节性能、适用温度、适用口径、耐压、适用介质条件、切断差压、泄流量、压力损失、重量、外观、成本等方面对调节阀的结构形式进行选择。

对调节阀进行结构的选择时,要根据相应的管路及介质条件,按照如下优选顺序进行选择 ①全功能超轻型调节阀→②蝶阀→③套筒阀→④单座阀→⑤双座阀→⑥偏心旋转阀→⑦球阀,只有当前一优选级别的阀门再某一方面不合适时,才考虑选择下一级类型的阀门。 2 调节阀执行机构的选择 调节阀执行机构的分类 1、执行机构按所使用能源的不同,可分为气动、电动和液动三类: 气动类执行机构具有价格低、结构简单、性能稳定、维护方便和本质安全性等特点,因此在需要考虑防爆处理的场合应用应用十分广泛。 电动类执行机构可直接连接电动仪表或计算机,不需要电气转换环节,但价格昂贵、结构复杂,应用时需考虑防爆等问题,一般在无可燃气体,不需要考虑防爆处理的场合下使用。 液动类执行机构具有推力(或推力矩)大的优点,但装置的体积大,流路复杂,通常采用电液组合的方式应用于要求大推力(力矩)的应用场合。 2、按执行机构输出位移的类型,执行机构分为直行程执行机构、角行程执行机构和多转式执行机构直行程执行机构输出直线位移。角行程执行机构输出角位移,角位移小于360°例如,转动角度为90°或60°蝶阀的执行机构。多转式执行机构与角行程执行机构类似,但转动的

调节阀的流通能力计算

调节阀的流通能力计算 调节阀的流通能力Kv值,是调节阀的重要参数,它反映流体通过调节阀的能力,也就是调节阀的容量。根据调节阀流通能力Kv值的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的尺寸,必须准确计算调节阀的额定流量系数Kv值。调节阀额定流量系数的定义是:在规定条件下,即阀的两端压差为105Pa,流体的密度为1g/cm3,额定行程时流经调节阀以m3/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流式中:FL—压力恢复系数,查表1。FF—液体临界压力比系数, F=0.96-0.28Pv—阀入口温度下,液体的饱和蒸汽压(绝对压力),查表4~表10。Pc—物质热力学临界压力,查表2和表3。QL—液体流量m3/h。ρ—液体密度g/cm3 P1—阀前压力(绝对压力)KPa. P2—阀后压力(绝对压力) KPa. b.阻塞流式中:各字母含义及单位同前。 2.低雷诺数修正(高粘度液体Kv值的计算) 液体粘度过高时,由于雷诺数下降,改变了流体的流动状态,在Re<2300时流体处于低速层流,这样按原来公式计算出的Kv值,误差较大,必须进行修正。此时计算公式为:

式中:φ—粘度修正系数,由Re查图求得。对于单座阀、套筒阀、角阀等只有一个流路的阀: Re=70000对于双座阀、蝶阀等具有二个平行流路的 阀:Re=49600式中:K'v—不考虑粘度修正时计算的流通能力。γ—流体运动粘度mm2/s。 雷诺数Re粘度修正曲线 3.气体的Kv值的计算: a.一般气体当P2>0.5P1时当P2≤0.5P1时 式中:Qg—标准状态下气体流量m3/h,Pm—(P1、P2为绝对压力)KPa, △P=P1-P2 G—气体比重(空气G=1),t—气体温度℃ b.高压气体(PN>10MPa)当P2>0.5P1时,当P2≤0.5P1时, 式中:Z—气体压缩系数,可查GB2624-81《流量测量节流装置的设计安装和使用》。 4.蒸汽的Kv值的计算

调节阀的流通能力Kv值计算

调节阀的流通能力Kv值,是调节阀的重要参数,它反映流体通过调节阀的能力,也就是调节阀的容量。根据调节阀流通能力Kv值的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的尺寸,必须准确计算调节阀的额定流量系数Kv值。 调节阀额定流量系数的定义是:在规定条件下,即控制阀的两端压差为105Pa,流体的密度为1g/cm3,额定行程时流经调节阀以m3/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流 式中:FL—压力恢复系数,查表1。 FF—液体临界压力比系数,F=0.96-0.28 Pv—调节阀入口温度下,液体的饱和蒸汽压(绝对压力),查表4~表10。 Pc—物质热力学临界压力,查表2和表3。 QL—液体流量m3/h。 ρ—液体密度g/cm3 P1—阀前压力(绝对压力)KPa. P2—阀后压力(绝对压力)KPa. b.阻塞流

式中:各字母含义及单位同前。 2.低雷诺数修正(高粘度液体Kv值的计算) 液体粘度过高时,由于雷诺数下降,改变了流体的流动状态,在Re<2300时流体处于低速层流,这样按原来公式计算出的Kv值,误差较大,必须进行修正。此时计算公式为: 式中:φ—粘度修正系数,由Re查图求得。 对于单座调节阀、套筒调节阀、角形阀等只有一个流路的调节阀: Re=70000 对于双座调节阀、蝶阀等具有二个平行流路的阀门: Re=49600 式中:K''v—不考虑粘度修正时计算的流通能力。 γ—流体运动粘度mm2/s。 雷诺数Re 粘度修正曲线 3.气体的Kv值的计算: a.一般气体 当P2>0.5P1时 当P2≤0.5P1时

式中:Qg—标准状态下气体流量m3/h, Pm—(P1、P2为绝对压力)KPa, △P=P1-P2 G—气体比重(空气G=1), t—气体温度℃ b.高压气体(PN>10MPa) 当P2>0.5P1时, 当P2≤0.5P1时, 式中:Z—气体压缩系数,可查GB2624-81《流量测量节流装置的设计安装和使用》。 4.蒸汽的Kv值的计算 a.饱和蒸汽 当P2>0.5P1时, 当P2≤0.5P1时 式中:Gs—蒸汽流量Kg/h P1、P2含义及单位同前 K—蒸汽修正系数 部分蒸汽的K值如下:

调节阀的口径计算

控制阀的口径计算 一、 引言 控制阀(调节阀)在工业生产过程自控系统中的作用犹如“手足”,其重要性是不言而喻的。如何使用户获得满意的产品,除了制造上的精工细作外,还取决于正确的口径计算,产品选型,材料选用等,而其前提是要准确掌握介质、流量、压力、温度、比重等工艺参数和技术要求。这是供需双方务必充分注意的。 本手册编制参考了国内外有关专业文献,也结合了我厂长期来产品选型计算中的实际经验。 二、术语定义 1、调节阀的流量系数 流量系数Kv值的定义:当调节阀全开,阀两端压差为1×102Kpa(1.03巴)时,流体比重为1g/cm3的5℃~40℃水,每小时流过调节阀的立方米数或吨数。 Kv是无量纲,仅采用m3/h或T/h的数值。 Cv值则是当阀全开,阀前后压差1PSi,室温水每分钟流过阀门的美加仑数。Cv=1.167 Kv。 确定调节阀口径的依据是流量系数Kv值或Cv值。所以正确计算Kv(Cv)值就关系到能否保证调节品质和工程的经济性。若口径选得过大,不仅不经济,而且调节阀经常工作在小开度,会影响控制质量,易引起振荡和噪音,密封面易冲蚀,缩短阀的使用寿命。若口径选得过小,会使调节阀工作开度过大,超负荷运行,甚至不能满足最大流量要求,调节特性差,容易出现事故。所以口径的选择必须合理,其要求是保证最大流量Qmax时阀的最大开度Kmax≤90%,实际工作开度在40—80%为宜,最小流量Qmin时的开度Kmin≥10%。如兼顾生产发展,Kmax可选在70—80%,但必须满足Kmin≮10%。对高压阀、双座阀、蝶阀等小开度冲刷厉害或稳定性差的阀则应大于20%~30%。 2、压差 压差是介质流动的必要条件,调节阀的压差为介质流经阀时的前后压力之差,即ΔP=P1-P2。在亚临界流状态下,压差的大小直接影响流量的大小。 调节阀全开压差是有控制的,其与整个系统压降之比(称S)是评定调节阀调节性能好坏的依据,如果流量波动较大时,S值应大些;波动小,也应小些。S值小可节能,但太小,工作流量特性畸变厉害,降低调节品质;S值大,虽能提高调节品质,但能耗太大,所以S最好限制在0.15~0.3。 3、流量 根据生产能力,设备负荷和介质状况由工艺设计、确定最大流量Qmax、正常流量(工艺流程最大流量)Qnor和最小流量Qmin。为确保安全,避免调节阀在全开位置上运行。应使Qmax=1.25~1.6Qnor。 4、闪蒸、临界压差 液体流经调节阀时,由于节流处流速增大,压力降低,当压力降至饱和蒸汽压时,部分液体就会气化并以汽泡的形式存在,若在下游压力等于或低于入口温度的饱和蒸汽压时,汽泡未破裂,而夹在液体中成二相流流出调节阀,此过程称为“闪蒸”。闪蒸一般不会破坏节流元件,但会产生阻塞流,使调节阀流量减小,此时流量Q基本上不随压差△P的增加而增加。阻塞流动会产生噪音和振动。产生阻塞流的

调节阀选型指南

调节阀选型指南之—弹簧范围的选择 一、“标准弹簧范围”的错误说法应予纠正 弹簧是气动调节阀的主要零件。弹簧范围是指一台调节阀在静态启动时的膜室压力到走完全行程时的膜室压力,字母用Pr表示。如Pr为20~100KPa,表示这台调节阀静态启动时膜室压力是20KPa,关闭时的膜室压力是100KPa。常用的弹簧范围有20~100KPa、20~60KPa、60~100KPa、60~180KPa、40~200KPa…由于气动仪表的标准信号是20~100KPa,因此传统的调节阀理论把与气动仪表标准信号一致的弹簧范围(20~100KPa)定义成标准弹簧范围。调节阀厂家按20~100KPa作为标准来出厂,这是十分错误的。 为了保证调节阀正常关闭和启动,就必须用执行机构的输出力克服压差对阀芯产生的不平衡力,我们知道对气闭阀膜室信号压力首先保证阀的关闭到位,然后再继续增加的这部分力,才把阀芯压紧在阀座上克服压差把阀芯顶开。我们又知道,不带定位器调节阀的最大信号压力是100KPa,它所对应的20~100KPa的弹簧范围只能保证阀芯走到位,再也没有一个克服压差的力量,阀门工作时必然关不严造成内漏。为此,就必须调整或改变弹簧范围,但是,把它说成“标准弹簧范围”就出问题了,因为是标准就不能改动。如果我们坚持标准,按“标准弹簧范围”来调整,那么,它又怎么能投用呢?在现实中,却有许多使用厂家和安装公司;都坚持按“标准弹簧范围”20~100KPa来调整和验收调节阀,又确实发生阀门关不严的问题。错误的根源就在此。 正确的提法应该是“设计弹簧范围”,是我们设计生产弹簧的零件参数。工作时根据气开气闭还要作出相应的调整,我们称为工作弹簧范围。仍以上述为例,设计弹范围20~100KPa,对气闭阀我们可以将工作弹簧范围调到10~90KPa,这样就有10KPa,作用在膜室的有效面积Ae 上;又如气开阀,有气打开,无气时阀关闭,此时克服压差靠的是弹簧的预紧力。为了克服更大的压差,需调紧预紧力,还需带定位器,若定位器气源为140KPa,我们可以将设计弹簧范围20~100KPa调紧到50~130KPa,此时输出力为50Kpa×Ae。如果把20~100KPa作为标准弹簧固定的话,就只有20Kpa×Ae,带定位器也失去作用。由此可见,气开阀带定位器也必须调高弹簧范围的起点压力才能提高执行机构的输出力。 对不带定位器的场合,气闭阀我们还可以设计20~80KPa,这样不带定位器仍有20KPa.Ae的输出力。所以弹簧范围应根据气开气闭、带定

阀门口径选择

A Winging Team for Success 卓越的技术支持与服务团队与您携手 Automation Control System 共步成功! 龙创自控 Please Visit Our Website https://www.wendangku.net/doc/5e12770522.html, 阀门口径的选择 阳 杰 一般,系统上,设计院会有空调机管径值,我们选择阀门时一般缩小一级口径,以利于控制。 但如果需要我们自己来选择,就需要一通计算,因为缩小一级口径并不是完全准确,实际上口径小了流通能力也小了。 首先必须了解 流量系数 的概念,对于阀门,流量系数的选择与口径的选择是相对应的,流量系数为流量计算时使用之系数,现在使用的符号很杂,其实美、日多用Cv 这个符号和概念,欧洲多用Kvs 这个符号和概念,英国用fp,国际单位应该是Kv ,Kv 也是我国调节阀传统用流量系数代号。在国际标准中,Kv 值是这样定义的:指压力降 为1Bar 时流过调节阀的每小时立方米,流量系数的计算有如下的公式: 式中:Q —最大流量m3/h G —比重(一般用1) P1—进口压力bar P2—出口压力bar △P=P1-P2 bar 而且Cv 与Kv 的关系如下: Cv=1.17Kv ,实际上准确点说Cv=1.167Kv ,而Kv 和Kvs 是相当的。 理论上讲,在不同的空调回路中,ΔP 值是不同的,是一个动态变化的值,对Cv/Kv 计算影响还是比较大的。当阀门公斤级不变时,ΔP 选择的越大,相应的口径就却小,对介质的可控制能力就越大,但流通能力却越小,口径过小的阀门一方面达不到系统的容量要求,另一方面阀门将需要通过系统提供较大的压差以维持足够的流量,加重泵的负荷,阀门易受损害;阀门口径过大会使控制性能变差,易使系统受冲击和振荡,而且投资也会增加。阀门过大过小都会带来控制阀寿命缩短和维护不便的后果。 所以我们选择阀门压力降时,尽可能选得大一些,而且压力降的大小在系统运行中最好能恒定,这样也能保证阀门的流量特性恒定,能够保证PI调节有好的效果,当压力降的大小占总供回水压力降的比重越大时,压力的波动对于压力降的大小影响越小时。但压力降不能太大,要考虑到最大允许压力降和允许的泵压等。因此,有经验指出,一般应该这样来选择:使阀门全开时的压力降等于或接近供回水之间总压力降的50%。一般供回水系统的压差在2-4Bar。这样空调阀门上的压力降一般选择为1-2Bar。

控制阀的口径计算

控制阀的口径计算 一、引言 控制阀(调节阀)在工业生产过程自控系统中的作用犹如“手足”,其重要性是不言而喻的。如何使用户获得满意的产品,除了制造上的精工细作外,还取决于正确的口径计算,产品选型,材料选用等,而其前提是要准确掌握介质、流量、压力、温度、比重等工艺参数和技术要求。这是供需双方务必充分注意的。 本手册编制参考了国内外有关专业文献,也结合了我厂长期来产品选型计算中的实际经验。 二、术语定义 1、调节阀的流量系数 流量系数Kv值的定义:当调节阀全开,阀两端压差为1X102Kpa(1.03巴)时, 流体比重为1g/cm3的5°C?40°C水,每小时流过调节阀的立方米数或吨数。 Kv是无量纲,仅采用m3/h或T/h的数值。 Cv值则是当阀全开,阀前后压差1PSi,室温水每分钟流过阀门的美加仑数。Cv=1.167 Kv。 确定调节阀口径的依据是流量系数Kv值或Cv值。所以正确计算Kv (Cv)值就关系到能否保证调节品质和工程的经济性。若口径选得过大,不仅不经济,而且调节阀经常工作在小开度,会影响控制质量,易引起振荡和噪音,密封面易冲蚀,缩短阀的使用寿命。若口径选得过小,会使调节阀工作开度过大,超负荷运行,甚至不能满足最大流量要求,调节特性差,容易出现事故。所以口径的选择必须合理, 其要求是保证最大流量Qmax时阀的最大开度Kmax W90%,实际工作开度在40一80%为宜,最小流量Qmin时的开度Kmin N10%。如兼顾生产发展,Kmax可选在70—80%,但必须满足Kmin<10%o对高压阀、双座阀、蝶阀等小开度冲刷厉害或稳定性差的阀则应大于20%?30%。 2、压差 压差是介质流动的必要条件,调节阀的压差为介质流经阀时的前后压力之差,即A P=P1-P2o在亚临界流状态下,压差的大小直接影响流量的大小。 调节阀全开压差是有控制的,其与整个系统压降之比(称S)是评定调节阀调节性能好坏的依据,如果流量波动较大时,S值应大些;波动小,也应小些。S值小可节能,但太小,工作流量特性畸变厉害,降低调节品质;S值大,虽能提高调节品质,但能耗太大,所以S最好限制在0.15?0.3。 3、流量 根据生产能力,设备负荷和介质状况由工艺设计、确定最大流量Qmax、正常流量(工艺流程最大流量)Qnor和最小流量Qmin。为确保安全,避免调节阀在全开位置上运行。应使Qmax=1.25?1.6Qnor。 4、闪蒸、临界压差 液体流经调节阀时,由于节流处流速增大,压力降低,当压力降至饱和蒸汽压时,部分液体就会气化并以汽泡的形式存在,若在下游压力等于或低于入口温度的饱和蒸汽压时,汽泡未破裂,而夹在液体中成二相流流出调节阀,此过程称为“闪蒸”。闪蒸一般不会破坏节流元件,但会产生阻塞流,使调节阀流量减小,此时流量Q基本上不随压差3P的增加而增加。阻塞流动会产生噪音和振动。产生阻塞流的压差称为临

调节阀Cv值计算及口径选择

提供一点调节阀选型设计时有关 CV值的基础知识,大家共同分享。 阀门Cv值与开度是两个概念问题,国外喜欢叫Cv,国内习惯叫Kv, Kv表示的是阀门的流通能力,它的定义是:当调节阀全开,阀两端的压差AP 为lOOKPa,流体重度r为1gf/cm3 (即常温水)时,每小时流经调节阀的流量数,以m3/h或t/h计。(例如一台Kv=50的调节阀,则表示当阀两 端压差为1OOKPa时,每小时的水量为50m3/h o) 阀门开度是指阀门在调节的时候,阀芯(或阀板)改变流道节流面积时阀芯(或阀板)运动的位置,一般用百分比表示,关闭状态为0%全开为1 00% 对于蝶阀由时候厂家会提供Cv—开度曲线,这时候的Cv表示的是在不同开度时对应的阀门流通能力。 阀门上的流量数据 Cv值 液流: Q= Cv* sqr(△ P/s) or △ P=s*(Q/Cv)A2 在此:Q =液流量(每分钟加仑数) △ P =通过阀门的压降(psi) S =介质的具体重这个方程式适用于湍流和粘性接近于水的液体。 (Cv是指介质温度为60 o F的水,通过阀门产生 1.0 psi压降时的每分钟流量。)(这时水的具体重力是 1 o ) 警告此表所包含的流体流量系数是计算值。 因此,它们是近似值, 不能用于非常重要的流量和压降计算中。 对于要求非常精确的流量测量和检测,必须对本样本中所提到的任何阀门具体操作。 当阀门开启小于 45 ° 时,建议不要采用球阀充当节流功能。 Cv值 Cv : 20° C的水通过阀体的压力降为1bar时的流量 Cv = 6.6Q ? SG/VA P ......................... .( 1 ) Q流量 公升/分 SG水密度1

调节阀如何选型

1、调节阀的选用 概述 下面具体地论述了所有的阀门类型,如球形阀、球阀、蝶阀、偏心旋转阀、隔膜阀及用于控制的其他类型的阀门。这份资料使用户知道每种类型阀门的操作条件范围和口径大小,以及随着环境和使用场合的不同,一种类型阀门的性能与另一种阀门性能的差别。一种类型阀门的性能实际上是与价格和质量有关系的。控制质量与不同稳定度下的粗略的、适度的或精确的流量控制、可调范围(调节比)和阀内件寿命有关。正确的阀门必须和合适的仪表一起使用,使其在控制系统的动态特性中起适当的作用。考虑到选择调节阀包括许许多多的变量,这里只能给出一般性的指导原则。下面给出的表格指了调节阀口径的典型颁布情况。调节阀口径在加工工厂中的典型颁布情况 口径累积的百分数 等于或小于1?英寸调节阀总数的65% 等于或小于2英寸调节阀总数的83% 等于或小于3英寸调节阀总数的91% 等于或小于4英寸调节阀总数的96% 阀门的选用 一般考虑采用下述的操作变量来选择阀门的类型,它能够用来处理已规定的操作条件: 1)管线压力(阀门压力等级)。 2)流量(在流动状态下的Cv值,与阀门的口径有关)。 3)压差(在节流稳定、低噪音、防气蚀及较小磨损下的许用△P)。 4)操作温度范围(与结构及使用的材料有关)。 5)腐蚀率(与具体的阀门类型中经济地使用材料有关)。 评价的因素对于具体的应用场合,用哪种阀门最好、这取决于下述因素的相对重要性: 1)噪音级——小于90分贝(A)和(或)达到声带的阻塞流量。(随着下游压力的降低,限制了流量的增加)。 2)气蚀——大于起始值(较小的)在气蚀状态下的阻塞流量。 3)闪蒸——阀门的口径是按阻塞流量计算的,阀体材料能够耐较大的磨蚀。 4)磨蚀——用结构和硬化的阀内件来减小或补偿。 5)节流稳定性——满足工艺流量和压力变化的需要。 6)价格总的价格包括:采购、安装、操作动力及维修。 7)口径大小——适合于可以使用的空间。考虑配管强度、地震力、管道的大小头与管线尺寸的关系及阀体与缩小流通面积阀内件的关系。 主要阀门制造厂和大的工业使用部门正在开发电子计算机程序以进行这种评价,而把

调节阀计算公式

1.Cv 值的定义 Cv 值定义:阀处于全开状态,两端压差为1磅/英寸2(0.07kgf/cm2)的条件下,60F (15.6 摄氏度)的清水,每分钟通过阀的美加仑数。 2. 液体的Cv 值计算公式 液体的CV 值计算公式是根据流体流过简单孔场合的理论流速(R P g V ?=2,其中 V :孔部分的理论流速;R :流体的比重;P ?:流体的压差)而推导出适合Cv 值定义的计算公式。 2117.1P P G Q Cv -= 公式:(1-1) Q :最大流量 m3/hr G :比重(水=1) P1:进口压力 kgf/cm2 A P2:出口压力 kgf/cm2 A 注:P1和P2为最大流量时的压力。适合雷诺数较大的场合。当雷诺数很小时,介质流向接近层流时需要进行修正。 3. 气体的Cv 值计算公式 1)21P P < ?时 )21()273(287 P P P T G Q Cv +?+= 2)21 P P >?时 1249) 273(P T G Q Cv += 注: Q :标准状态下最大流量 Nm3/h G :比重(空气=1) T :流体温度(℃) P1:绝对进口压力 P2:绝对出口压力 4. 水蒸汽的Cv 值计算公式 1)21P P < ?时 )21(67 .13P P P WK Cv +?= 2)21P P > ?时 1 9.11P WK Cv = 注:W :最大流量(kg/h ) K=1+(0.0013*过热温度)

5. 其他蒸汽的Cv 值计算 P V V W Cv ?+=211210 注: V1=进口压力下蒸汽比容 cm3/g V2=出口压力下蒸汽比容 cm3/g

相关文档