文档库 最新最全的文档下载
当前位置:文档库 › 具有部分缺失数据的两个对数正态分布总体参数的估计与检验

具有部分缺失数据的两个对数正态分布总体参数的估计与检验

具有部分缺失数据的两个对数正态分布总体参数的估计与检验
具有部分缺失数据的两个对数正态分布总体参数的估计与检验

第二章 多元正态分布及参数的估计汇总

第二章多元正态分布及参数的估计 在多元统计分析中,多元正态分布占有相当重要的地位.这是因为许多实际问题涉及到的随机向量服从正态分布或近似服从正态分布;当样本量很大时,许多统计量的极限分布往往和正态分布有关;此外,对多元正态分布,理论与实践都比较成熟,已有一整套行之有效的统计推断方法.基于这些理由,我们在介绍多元统计分析的种种具体方法之前,首先介绍多元正态分布的定义、性质及多元正态分布中参 数的估计问题. 目录 §2.1 随机向量 §2.2 多元正态分布的定义与基本性质 §2.3 条件分布和独立性 §2.4 多元正态分布的参数估计 §2.1 随机向量 本课程所讨论的是多变量总体.把p个随机变量放在一起得X=(X1,X2,…,Xp)′为一个p维随机向量,如果同时对p维总体进行一次观测,得一个样品为p维数据.常把n个样品排成一个n×p矩阵,称为样本资料阵.

?? ? ? ?? ??'''= ?????? ??=)()2()1(2 1 2222111211n np n n p p X X X x x x x x x x x x X def =(X 1,X 2,…,X p ) 其中 X(i)( i =1,…,n)是来自p 维总体的一个样品. 在多元统计分析中涉及到的都是随机向量,或是多个随机向量放在一起组成的随机矩阵. 本节有关随机向量的一些概念(联合分布,边缘分布,条件分布,独立性;X 的均值向量,X 的协差阵和相关阵,X 与Y 的协差阵)要求大家自已复习. 三﹑ 均值向量和协方差阵的性质 (1) 设X ,Y 为随机向量,A ,B 为常数阵,则 E(AX )=A·E(X ), E(AXB )=A·E(X )·B D(AX)=A·D(X)·A' COV(AX,BY)=A·COV(X,Y)·B' (2) 若X,Y 相互独立,则COV(X,Y)=O;反之不成立. 若COV(X,Y)=O,我们称X 与Y 不相关.故有: 两随机向量若相互独立,则必不相关;

标准正态分布的密度函数样本

幻灯片1 正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这能够由 以下情形加以说明: ⑴ 正态分布是自然界及工程技术中最常见的分布之一, 大量的随机现象都是服从或近似服从正态分布的.能够证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标一定服从或近似服从正态分布. 这些性质是其它 ⑵ 正态分布有许多良好的性质, 许多分布所不具备的. ⑶ 正态分布能够作为许多分布的近似分布.幻灯片3 -标准正态分布下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数若连续型随机变量X 的密度函数为定义 则称X 服从标准正态分布,

记为标准正态分布是一种特别重要的它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 ( 2) 根据反常积分的运算有能够推出 幻灯片5 标准正态分布的密度函数的性质若随机变量 , X 的密度函数为 则密度函数的性质为: 的图像称为标准正态( 高斯) 曲线幻灯片6 随机变量 由于 由图像可知, 阴影面积为概率值。对同一长度的区间 , 若这区间越靠近 其对应的曲边梯形面积越大。标准正态分布的分布规律时”中间多, 两头少” . 幻灯片7 二、标准正态分布的概率计算 1、分布函数分布函数为幻灯片8 2、标准正态分布表书末附有标准正态分布函数数值表, 有了它, 能够解决标准正态分布的概率计算.表中给的是x > 0时,①(x)的值. 幻灯片9 如果由公式得令则幻灯片10

如何统计分析非正态分布的数据

如何统计分析非正态分布的数据 小飞看了9月23日医咖会微信推送的“降糖药物利拉鲁肽,还能治疗心衰吗?”的研究(FIGHT 研究)后[1],不明白研究方法II中的Wilcoxon秩和检验到底是什么,于是来找小咖讨论。 小飞:Wilcoxon秩和检验到底是个什么鬼? 小咖:这是一种非参数检验方法。 小飞:非参数检验又是个什么鬼啊? 小咖:平时我们常用的t检验、卡方检验、方差分析等方法都要求样本服从特定的分布(比如t检验要求样本服从正态分布),这些方法被称为参数检验方法。但有些数据并不符合参数检验的要求,最常见的情况是数据不符合正态分布,这时可以使用非参数检验的方法。 非参数检验有很多种,Wilcoxon秩和检验就是其中一种。 小飞:不明觉厉...你还是来个栗子呗。

小咖:好吧。某医生为了评价A药对绝经后妇女的骨质疏松症是否有效,将30名绝经后妇女随机分为两组,干预组研究对象15例,给予A药+乳酸钙治疗;对照组15例,仅给予乳酸钙治疗。24周之后观察两组L2-4骨密度的改善率。数据如下图: 两组骨密度改善率(%) 干预组对照组 ID 改善率ID 改善率 1 -0.20 1 -0.83 2 0.21 2 0.26 3 1.86 3 0.48 4 1.97 4 1.03 5 2.31 5 1.06 6 2.80 6 1.19 7 3.30 7 1.27 8 3.60 8 1.71 9 4.31 9 1.75 10 4.40 10 2.33 11 5.29 11 2.66 12 5.87 12 2.80 13 6.06 13 3.22 14 6.08 14 3.34 15 7.00 15 3.34 小飞:嗯,我明白了。对于这种两组平行设计、结局是不符合正态分布的连续变量,就应当使用Wilcoxon秩和检验对吧? 小咖:很聪明,给你满分。接下来给你演示一下用SPSS 22.0怎么操作。 (1)数据录入SPSS

单个正态总体参数的假设检验

16.3 单个正态总体参数的假设检验 设,,,12n X X X 是来自正态总体()2,N μσ的样本,考虑如下三种关于μ的检 验问题 (1) 00:H μμ≤ vs 10:H μμ> 单侧检验 (2) 00:H μμ≥ vs 10:H μμ< 单侧检验 (3) 00: H μμ= vs 10:H μμ≠ 双侧检验 ********************************************************** (1) 00: H μμ≤ vs 10:H μμ> 单侧检验 (3) 00:H μμ= vs 10:H μμ≠ 双侧检验

********************************************************** 下面给出σ已知时,上述三种检验情况的具体实现。 σ已知时的,对于单侧检验问题(1) 00:H μμ≤ vs 10:H μμ>, 2 ~, X N n σμ?? ?? ? ,故选用服从标准正态分布的检验统计量X u =, 通常称此检验为u 检验。 拒绝域选为()()?? ? ???????≥σμ-==c x n u x x W n 01:,, ,c 为临界值,简记为{}c u ≥。若显著性水平要求为α,则可确定α-=1u c 。 同理对 问题(2),00: H μμ≥ vs 10:H μμ<,水平为α的检验的拒绝域为 ()()?? ? ???????≤σμ-==αu x n u x x W n 01:,, 。 问题(3),00: H μμ= vs 10:H μμ≠,水平为α的检验的拒绝域为 ()()?? ? ???? ? ??≤σμ-= =α2-101u x n u x x W n :,, 。 ********************************************************** 例16.3.1 设某工厂生产一种产品,其质量指标服从正态分布()2 2,μN ,μ为 平均质量指标,其值越大则质量越好,10=μ是达到优级的标准。进货商店从一批产品抽取样本,, ,12n X X X ,16=n ,取显著性水平为050.=α,如何检 验这一批产品是否达到优秀。 分析: 根据工厂产品社会声誉可能的不同,分以下两种情况讨论。 情形一,按照过去长时间的记录,商店的检验人员相信该厂的产品质量很好。

非参数分析

非参数统计分析――Nonparametric Tests菜单详解 平时我们使用的统计推断方法大多为参数统计方法,它们都是在已知总体分布的条件下,对相应分布的总体参数进行估计和检验。比如单样本u检验就是假定该样本所在总体服从正态分布,然后推断总体的均数是否和已知的总体均数相同。本节要讨论的统计方法着眼点不是总体参数,而是总体分布情况,即研究目标总体的分布是否与已知理论分布相同,或者各样本所在的分布位置/形状是否相同。由于这一类方法不涉及总体参数,因而称为非参数统计方法。 SPSS的的Nonparametric Tests菜单中一共提供了8种非参数分析方法,它们可以被分为两大类: 1、分布类型检验方法:亦称拟合优度检验方法。即检验样本所在总体是否服从已知的理论分布。具体包括: Chi-square test:用卡方检验来检验二项/多项分类变量的几个取值所占百分比是否和我们期望的比例有没有统计学差异。 Binomial Test:用于检测所给的变量是否符合二项分布,变量可以是两分类的,也可以使连续性变量,然后按你给出的分界点一分为二。 Runs Test:用于检验样本序列随机性。观察某变量的取值是否是围绕着某个数值随机地上下波动,该数值可以是均数、中位数、众数或人为制定。一般来说,如果该检验P值有统计学意义,则提示有其他变量对该变量的取值有影响,或该变量存在自相关。 One-Sample Kolmogorov-Smirnov Test:采用柯尔莫哥诺夫-斯米尔诺夫检验来分析变量是否符合某种分布,可以检验的分布有正态分布、均匀分布、Poission分布和指数分布。 2、分布位置检验方法:用于检验样本所在总体的分布位置/形状是否相同。具体包括: Two-Independent-Samples Tests:即成组设计的两独立样本的秩和检验。 Tests for Several Independent Samples:成组设计的多个独立样本的秩和检验,此处不提供两两比较方法。 Two-Related-Samples Tests:配对设计的两样本秩和检验。 Tests for Several Related Samples:配伍设计的多样本秩和检验,此处同样不提供两两比较。 一、分布位置检验方法

标准正态分布的密度函数

正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算 幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这可以由 以下情形加以说明: ⑴正态分布是自然界及工程技术中最常见的分布 之一, 大量的随机现象都是服从或近似服从正态分布的. 可以证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标 一定服从或近似服从正态分布. 这些性质是其它 ⑵正态分布有许多良好的性质, 许多分布所不具备的. ⑶正态分布可以作为许多分布的近似分布. 幻灯片3 -标准正态分布 下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数 若连续型随机变量X的密度函数为 定义 则称X服从标准正态分布, 记为 标准正态分布是一种特别重要的 它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 (2)根据反常积分的运算有 可以推出 幻灯片5 标准正态分布的密度函数的性质

,X的密度函数为 则密度函数的性质为: 的图像称为标准正态(高斯)曲线。 幻灯片6 随机变量 由于 由图像可知,阴影面积为概率值。 对同一长度的区间 ,若这区间越靠近 其对应的曲边梯形面积越大。 标准正态分布的分布规律时“中间多,两头少”. 幻灯片7 二、标准正态分布的概率计算 1、分布函数 分布函数为 幻灯片8 2、标准正态分布表 书末附有标准正态分布函数数值表,有了它,可以解决标准正态分布的概率计算. 表中给的是x > 0时, Φ(x)的值. 幻灯片9 如果 由公式得 令 则 幻灯片10 例1 解 幻灯片11 由标准正态分布的查表计算可以求得, 当X~N(0,1)时, 这说明,X 的取值几乎全部集中在[-3,3]区间内,超出这个范围的可能性仅占不到0.3%. 幻灯片12 三、一般正态分布的密度函数 如果连续型随机变量X的密度函数为 (其中 为参数) 的正态分布,记为 则随机变量X服从参数为 所确定的曲线叫 作正态(高斯)曲线. 幻灯片13

正态总体参数的假设检验matlab处理

正态总体参数的检验 1 总体标准差已知时的单个正态总体均值的U检验 某切割机正常工作时,切割的金属棒的长度服从正态分布N(100,4)。从该切割机切割的一批金属棒中随机抽取15根,测得长度为: 97 102 105 112 99 103 102 94 100 95 105 98 102 100 103 假设总体的方差不变,试检验该切割机工作是否正常,即检验总体均值是否等于100?,取显著性水平a=0.05。 分析: 这是总体标准差已知时的单个正态总体均值的检验,根据题目要求可写出如下假设: H0:u=u0=100,H1=u /=u0(u不等于u0) H0称为原假设,H1称为被择假设(或对立假设) MATLAB统计工具箱中的ztest函数用来做总体标准差已知时的单个正态总体均值的检验 调用格式ztest [h,p,muci,zval]=ztest(x,mu0,Sigma,Alpha,Tail) x:是输入的观测向量 mu0:假设的均值 Sigma:总体标准差 Alpha:显著性水平,默认0.05

Tail:尾部类型变量,‘both’双侧检验(默认),u不等于uo;‘right’右侧检验,u>u0; ‘left’左侧检验,uAlpha时,接受原假设H0;p<=Alpha 时,拒绝原假设H0. muci:总体均值u的置信水平为1-Alpha的置信区间 zval:检验统计量的观测值 %定义样本观测值向量 x=[97 102 105 112 99 103 102 94 100 95 105 98 102 100 103]; mu0=100; %原假设中的mu0 sigma=2; %总体标准差 Alpha=0.05; %显著性水平 %调用ztest函数做总体均值的双侧检验(默认), %返回变量h,检验的p值,均值的置信区间muci,检验统计量的观测值zval [h,p,muci,zval]=ztest(x,mu0,sigma,Alpha) h = 1 p =

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)生存分析贝叶斯概率公式全概率公式(新)

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X2分布、t分布、F分布 抽样分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution):例子抛硬币 1、重复试验(n个相同试验,每次试验两种结果,每种结果概率恒定———— 伯努利试验) 2、

单个正态总体的假设检验

学院数学与信息科学学院 专业信息与计算科学 年级 2011级 姓名姚瑞娟 论文题目单个正态总体的检验假设 指导教师韩英波职称副教授成绩 2014年3月10日

目录 摘要 (1) 关键词 (1) Abstrac (1) Keywords (1) 前言 (1) 1 假设检验的基本步骤 (2) 1.1 建立假设 (2) 1.2 建立假设选择检验统计量,给出拒绝域形式 (2) 2 单个正态总体均值的检验 (3) 2.1 δ已知时的μ检验 (4) 2.2 δ未知时的t检验 (6) 3 单个正态总体方差的检验 (8) 参考文献 (9)

单个正态总体的假设检验 学生姓名:姚瑞娟学号:20115034036 数学与信息科学学院信息与计算科学专业 指导老师:韩英波职称:副教授 摘要:本文介绍了假设检验的基本步骤,如何建立假设检验,判断假设是否正确.此外,从2δ已知和2δ未知详细的讲述了单个正态总体μ的检验,还有单个正态总体方差的检验,及与它们相关的应用举例. 关键词:正态分布;假设检验;均值;方差;拒绝域;接受域;原假设; Hypothesis test of one normal population Abstract:It introduces the basic steps of hypothesis test in this paper, and how to build hypothesis and correct judgment test. In addition, it detailed introduces the single hypothesis test from variance is known and unknown. There is a single of normal population variance test and the related application. Keywords:normal distribution;price value;hypothesis test;variance;rejected region;receptive regions;the original hypothesis 前言 假设检验是由K.Pearson于20世纪初提出的,之后由费希尔进行了细化,并最终由奈曼和E.Pearson提出了较完整的假设检验理论.统计推断的一个重要内容就是假设检验.然而,正态分布正态分布是最重要的一种概率分布,正态分布概念是由德国的数学家和天文学家Moiré于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大他使正态分布同时有了”高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他.也是出于这一工作,高斯是一个伟大的数学家,重要的贡献不胜枚举.但现今德国10马克的印有高斯头像的钞票,其上还印有正态

利用Excel的NORMSDIST计算正态分布函数表1

利用Excel的NORMSDIST函数建立正态 分布表 董大钧,乔莉 沈阳理工大学应用技术学院、信息与控制分院,辽宁抚顺113122 摘要:利用Excel办公软件特有的NORMSDIST函数可以很准确方便的建立正态分布表、查找某分位数点的正态分布概率值,极大的提高了数理统计的效率。该函数可返回指定平均值和标准偏差的正态分布函数,将其引入到统计及数据分析处理过程中,代替原有的手工查找正态分布表,除具有直观、形象、易用等特点外,更增加了动态功能,极大提高了工作效率及准确性。 关键词:Excel;正态分布;函数;统计 引言 正态分布是应用最广泛的连续概率分布,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,某种产品的张力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。在科学研究及数理统计计算过程中,人们往往要通过某本概率统计教材附录中的正态分布表去查找,非常麻烦。若手头有计算机,并安装有Excel软件,就可以利用Excel的NORMSDIST( x )函数进行计算某分位数点的正态分布概率值,或建立一个正态分布表,准确又方便。 1 正态分布及其应用 正态分布(normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为N(μ,σ2 )。则其概率密度

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.wendangku.net/doc/5e12922733.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

第三节-两正态总体的假设检验

第三节 两个正态总体的假设检验 上一节介绍了单个正态总体的数学期望与方差的检验问题,在实际工作中还常碰到两个正态总体的比较问题. 1.两正态总体数学期望假设检验 (1) 方差已知,关于数学期望的假设检验(Z 检验法) 设X ~N (μ1,σ12),Y ~N (μ2,σ22),且X ,Y 相互独立,σ12与σ22 已知,要检验的是 H 0:μ1=μ2;H 1:μ1≠μ2.(双边检验) 怎样寻找检验用的统计量呢从总体X 与Y 中分别抽取容量为n 1,n 2的样本X 1,X 2,…, 1n X 及Y 1,Y 2,…,2n Y ,由于 2111~,X N n σμ?? ??? ,2222~,Y N n σμ?? ???, E (X -Y )=E (X )-E (Y )=μ1-μ2, D (X -Y )=D (X )+D (Y )= 22 121 2 n n σσ+, 故随机变量X -Y 也服从正态分布,即 X -Y ~N (μ1-μ2, 22 121 2 n n σσ+). 从而 X Y ~N (0,1). 于是我们按如下步骤判断. (a ) 选取统计量 Z X Y , () 当H 0为真时,Z ~N (0,1). (b ) 对于给定的显著性水平α,查标准正态分布表求z α/2使 P {|Z |>z α/2}=α,或P {Z ≤z α/2}=1-α/2. () (c ) 由两个样本观察值计算Z 的观察值z 0: z 0 x y . (d ) 作出判断: 若|z 0|>z α/2,则拒绝假设H 0,接受H 1; 若|z 0|≤z α/2,则与H 0相容,可以接受H 0. 例8.7 A ,B 两台车床加工同一种轴,现在要测量轴的椭圆度.设A 车床加工的轴的椭

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

正态分布及其经典习题和答案

4 3 2 1 -1 -4 -2 2 4 2 1专题:正态分布 例:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 答案:8.5。解析:设两数之积为X , X 2 3 4 5 6 8 10 12 15 20 P 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ(填大于,小于) 答案:<,>。解析:由正态密度曲线图象的特征知。 【课内练习】 1.标准正态分布的均数与标准差分别为( )。 A .0与1 B .1与0 C .0与0 D .1与1 答案:A 。解析:由标准正态分布的定义知。 2.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。 A .μ越大 B .μ越小 C .σ越大 D .σ越小 答案: C 。解析:由正态密度曲线图象的特征知。 3.已在n 个数据n x x x ,,,21 ,那么() ∑=-n i i x x n 1 21是指 A .σ B .μ C .2σ D .2 μ( ) 答案:C 。解析:由方差的统计定义知。 4.设),(~p n B ξ,()12=ξE ,()4D ξ=,则n 的值是 。 答案:4。解析:()12==np E ξ,()(1)4D np p ξ=-= 5.对某个数学题,甲解出的概率为2 3 ,乙解出的概率为34,两人独立解题。记X 为解出该题的人数,则E (X )= 。 答案:1712。解析:11121145(0),(1),3412343412 P X P X ==?===?+?=231 (2)342P X ==?=。

正态分布的概率密度函数的推导

正态分布的概率密度函数的推导 An interesting question was posed in a Statistics assignment which was to show that the standard normal distribution was valid - ie the integral from negative infinity to infinity equated to one and in doing so showed the derivation of the part of the normal pdf. A friend of mine and I decided to try to derive the normal pdf and the thinking went along the lines of the central limit theorem which states that the mean of any probability distribution becomes normal as the number of trials increases. The derivation of this is well known.but we asked ourselves how the normal distribution was first achieved.There is another 'normal' derivation which is the binomial approximation and it is through this direction that we wondered how to derive the normal distribution from the binomial as n gets large. So the general approach we will take is to take a binomial distribution, then increase the number of samples n. (提出一个有趣的问题是在统计分配,这是表明,标准正态分布是有效的- 即从负无穷到正无穷的积分等同于一个,并在这样做表明推导了部分正常的PDF 。 我,我的一个朋友决定尝试推导出正常的PDF和沿中心极限定理指出,任何概率分布的均值作为试验增加的正常思维。 这个推导是众所周知的。但我们问自己如何正态分布首次实现。有另一种“正常”的推导,这是二项式近似和它是通过这个方向,我们想知道如何从二项式正态分布为n变大。 因此,我们将采取的一般方法是一个二项分布,再增加样本N.的数量)

单个正态总体均值和方醚的假设检验

§2 一.已知方差2σ, 检验假设::H μμ=o o (1)提出原假设::H μμ=o o ( μo 是已知数) (2)选择统计量: 2 X U n μσ-= o (3 )求出在假设H o 成立的条件下,确定该统计量服从的概率分布: (0,1)U N : (4)选择检验水平 α,查正态分布表(附表1),得临界值12 u α- ,即 2 12 ( )X P u n α μα σ- ->=o (5) 根据样本值计算统计量的观察值u o ,给出拒绝或接受H 。的判断: 当 12 u u α - >o 时, 则拒绝H 。; 当 12 u u α - ≤o 时, 则接受H 。. 【例1】 某厂生产干电他,根据长期的资料知道,干电他的寿 解:

现取0.05 α=,即 ( 1.96)0.05 5/10 X P>= 因而,拒绝原假设,即这批干电他的平均寿命不是200小时. 【例2】P.191 ――例2.1(0.05 α=,0.01) P.193――例2.2 二.未知方差2σ, 检验假设:: Hμμ = o o : (1)提出原假设:: Hμμ = o o ( μ o是已知数) (2)选择统计量:2 X T S n - =o (3)求出在假设H o成立的条件下,确定该统计量服从的概率分布: (1) T t n- : (4)选择检验水平 α,查自由度为1 n-的t-分布表(附表2),得临界值λ,即 2 () X P S n μ λα - >= o

(5) 根据样本值计算统计量的观察值t o ,且给出拒绝或接受H 。的判断: 当t λ> o 时, 则拒绝H 。; 当 t λ≤o 时, 则接受H 。. 【例2】 某糖厂用自动打包机包装糖,每包重量服从正态分布,其标准重量μo =100斤.某日开工后测得9包重量如下: 99.3, 98.7, 100.5,101.2, 98.3, 99.7, 99.5, 102.1,100.5, 问:这一天打包机的工作是否正常?(检验水平α=5%) 解: (0)计算样本均值与样本均方差: 1.21S = (1)提出原假设::100H μ=o (2)选择统计量: 2 9 X T S = (3)求出在假设H o 成立的条件下,确定该统计量服从的概率分布: (8)T t : (4)检验水平 α=0.05,查自由度为8的t -分布表(附表2),得临界值 2.36λ= ,即

统计图及概率密度与分布函数作图

大连民族学院 数学实验报告 课程:数理统计 实验题目: 统计图及概率密度与分布函数作图 系别:理学院 专业:信息与计算科学 姓名:历红影 班级:信息102班 指导教师:董莹 完成学期:2012 年11月15日

实验方法和步骤: 理论方法:1.直接在MATLAB中输入要完成的命令即可实现 2.在MATLAB中利用输入相关函数实现 步骤:产生随机数:randn() 直方图:hist(y , s) 实验数据和分析: 实验数据: 例1: >> x=-2.9:0.1:2.9; >> y=randn(10000,1); >> hist(y,x) >> h=findobj(gca,'type','patch'); >> set(h,'Facecolor','r','Edgecolor','w'); 例2: >> x=normrnd(0,1,1,50); >> [h,stats]=cdfplot(x);

例3: >> x=normrnd(0,1,1,50); >> y=exprnd(1,1,50); >> normplot(x) >> normplot(y)

例4: >> x1=normrnd(5,1,100,1); >> x2=normrnd(6,1,100,1); >> x=[x1,x2]; >> boxplot(x,1,'g+',1,0) 例5: >> data=normrnd(0,1,10000,1); >> p=capaplot(data,[-2,2]) p =0.9540

例6: >> r=normrnd(0,1,100,1); >> histfit(r) 例7: >> p=normspec([10 Inf],11.5,1.25) p =0.8849 例8: >> x=0:10; >> y=binopdf(x,10,0.5)

附表标准正态分布累积概率函数表

附表:标准正态分布累积概率函数表 当)(0x N x 时≤表 这个表表示了当)(0x N x 时≤的值。使用这张表时可与内插法结合起来使用。例如: )]13.0()12.0([34.0)12.0()1234.0(-----=-N N N N 4509 .0)4483.04522.0(34.04522.0=-?-= x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 -0.0 -0.1 -0.2 -0.3 -0.4 0.5000 0.4602 0.4207 0.3821 0.3446 0.4960 0.4562 0.4168 0.3783 0.3409 0.4920 0.4522 0.4129 0.3745 0.3372 0.4880 0.4483 0.4090 0.3707 0.3336 0.4840 0.4443 0.4052 0.3669 0.3300 0.4801 0.4404 0.4013 0.3632 0.3264 0.4761 0.4364 0.3974 0.3594 0.3228 0.4621 0.4325 0.3936 0.3557 0.3192 0.4681 0.4286 0.3897 0.3520 0.3156 0.4641 0.4247 0.3859 0.3483 0.3121 -0.5 -0.6 -0.7 -0.8 -0.9 0.3085 0.2743 0.2420 0.2119 0.1841 0.3050 0.2709 0.2389 0.2090 0.1814 0.3015 0.2676 0.2358 0.2061 0.1788 0.2981 0.2643 0.2327 0.2033 0.1762 0.2946 0.2611 0.2296 0.2005 0.1736 0.2912 0.2578 0.2266 0.1977 0.1711 0.2877 0.2546 0.2236 0.1949 0.1685 0.2843 0.2514 0.2206 0.1922 0.1660 0.2810 0.2483 0.2177 0.1894 0.1635 0.2776 0.2451 0.2148 0.1867 0.1611 -1.0 -1.1 -1.2 -1.3 -1.4 0.1587 0.1357 0.1151 0.0968 0.0808 0.1562 0.1335 0.1131 0.0951 0.0793 0.1539 0.1314 0.1112 0.0934 0.0778 0.1515 0.1292 0.1093 0.0918 0.0764 0.1492 0.1271 0.1075 0.0901 0.0749 0.1469 0.1251 0.1056 0.0885 0.0735 0.1446 0.1230 0.1038 0.0869 0.0721 0.1423 0.1210 0.1020 0.0853 0.0708 0.1401 0.1190 0.1003 0.0838 0.0694 0.1379 0.1170 0.0985 0.0823 0.0681 -1.5 -1.6 -1.7 -1.8 -1.9 0.0668 0.0548 0.0446 0.0359 0.0287 0.0655 0.0537 0.0436 0.0351 0.0281 0.0643 0.0526 0.0427 0.0344 0.0274 0.0630 0.0516 0.0418 0.0336 0.0268 0.0618 0.0505 0.0409 0.0329 0.0262 0.0606 0.0495 0.0401 0.0322 0.0256 0.0594 0.0485 0.0392 0.0314 0.0250 0.0582 0.0475 0.0384 0.0307 0.0244 0.0571 0.0465 0.0375 0.0301 0.0239 0.0559 0.0455 0.0367 0.0294 0.0233 -2.0 -2.1 -2.2 -2.3 -2.4 0.0228 0.0179 0.0139 0.0107 0.0082 0.0222 0.0174 0.0136 0.0104 0.0080 0.0217 0.0170 0.0132 0.0102 0.0078 0.0212 0.0166 0.0129 0.0099 0.0075 0.0207 0.0162 0.0125 0.0096 0.0073 0.0202 0.0158 0.0122 0.0094 0.0071 0.0197 0.0154 0.0119 0.0091 0.0069 0.0192 0.0150 0.0116 0.0089 0.0068 0.0188 0.0146 0.0113 0.0087 0.0066 0.0183 0.0143 0.0110 0.0084 0.0064 -2.5 -2.6 -2.7 -2.8 -2.9 0.0062 0.0047 0.0035 0.0026 0.0019 0.0060 0.0045 0.0034 0.0025 0.0018 0.0059 0.0044 0.0033 0.0024 0.0018 0.0057 0.0043 0.0032 0.0023 0.0017 0.0055 0.0041 0.0031 0.0023 0.0016 0.0054 0.0040 0.0030 0.0022 0.0016 0.0052 0.0039 0.0029 0.0021 0.0015 0.0051 0.0038 0.0028 0.0021 0.0015 0.0049 0.0037 0.0027 0.0020 0.0014 0.0048 0.0036 0.0026 0.0019 0.0014 -3.0 -3.1 -3.2 -3.3 -3.4 0.0014 0.0010 0.0007 0.0005 0.0003 0.0013 0.0009 0.0007 0.0005 0.0003 0.0013 0.0009 0.0006 0.0005 0.0003 0.0012 0.0009 0.0006 0.0004 0.0003 0.0012 0.0008 0.0006 0.0004 0.0003 0.0011 0.0008 0.0006 0.0004 0.0003 0.0011 0.0008 0.0006 0.0004 0.0003 0.0011 0.0008 0.0005 0.0004 0.0003 0.0010 0.0007 0.0005 0.0004 0.0003 0.0010 0.0007 0.0005 0.0003 0.0002 -3.5 -3.6 -3.7 -3.8 -3.9 -4.0 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 附表:当0≥x 时)(x N 表 这个表表示了当0≥x 时)(x N 的值。使用这张表时可与内插法结合起来使用。例如: )]62.0()63.0([78.0)62.0()6278.0(N N N N -+= 7350 .0)7324.07357.0(78.07324.0=-?+=

相关文档
相关文档 最新文档