文档库 最新最全的文档下载
当前位置:文档库 › 大跨度卸载对下卧盾构隧道影响的数值分析

大跨度卸载对下卧盾构隧道影响的数值分析

大跨度卸载对下卧盾构隧道影响的数值分析
大跨度卸载对下卧盾构隧道影响的数值分析

收稿日期:2012-11-26

基金项目:国家“十二五”科技支撑计划项目(2012BAK24B01);中央高校青年教师科研启动基金资助项目(N110301003).

作者简介:赵文(1962-),男,辽宁沈阳人,东北大学教授,博士生导师.

第34卷第5期2013年5月东北大学学报(自然科学版)Journal of Northeastern University (Natural Science )Vo l.34,No.5May 2013

大跨度卸载对下卧盾构隧道影响的数值分析

文,关永平,李慎刚,纪新博

(东北大学资源与土木工程学院,辽宁沈阳110819)

摘要:结合哈大客专沈阳站房改造工程研究了大跨度卸载对下卧既有盾构隧道管片及接头的影响.为

准确反映管片环向接头在附加荷载作用下的张开、错位等情况,基于Flac3D 建立三维模型,运用嵌入式梁单元模拟了螺栓接头,

并针对实际工程中坑底堆载保护措施进行了数值计算.结果表明,既有隧道在2倍卸载宽度范围内发生隆起变形,

最大隆起量为15.93mm ,最小纵向曲率半径为28248m ,并且管片环向接头在附加荷载作用下产生的错位量及张开量分别为0.67,1.37mm ,各项控制指标均满足工程要求.表明坑底堆载措施能保证盾构管片及接头在上部基坑施工期间的安全性.关

词:基坑工程;下卧隧道;管片接头;Flac3D ;施工方案

中图分类号:TU 473

文献标志码:A

文章编号:1005-3026(2013)05-0704-04

Numerical Analysis on the Effect of Large-Span Unloading on Underlying Shield Tunnel

ZHAO Wen ,GUAN Yong-ping ,LI Shen-gang ,JI Xin-bo

(School of Resources &Civil Engineering ,Northeastern University ,Shenyang 110819,China.Corresponding author :GUAN Yong-ping ,E-mail :guanyongping@126.com )

Abstract :Based on the pit excavation engineering in Shenyang ,which sits atop the existing tunnels ,the effect of shield tunnel segment joint was studied.In order to accurately reflect the opening of segment joint for additional load ,three-dimensional model was created in Flac3D ,

which simulating segment joint by embedded beam elements.The result indicate that uplift deformation scope of existing tunnel is about 2.0times of the excavation width ,maximum uplift is about 15.93mm ,minimum longitudinal radius of curvature is about 28248m.The opening and dislocation of radial segment joint are 0.67mm ,1.37mm respectively ,all control target meet the engineering requirements.The surcharge of heap loading will guarantee the security of shield segments and joints during in the construction of pit engineering.

Key words :foundation pit engineering ;down tunnel ;segments joint ;Flac3D ;construction scheme

在城市复杂环境中,往往会出现在既有地铁隧道邻近位置或上方进行基坑工程开挖,这种情况下基坑工程设计与施工的主导控制因素已不仅仅是基坑自身支护体系的稳定性,还涉及到对周边地下管线、构筑物等环境的影响.隧道上方的基坑开挖将引起隧道发生不均匀沉降或隆起,严重时会引发隧道管片出现裂缝或局部破坏,甚至会造成地铁隧道纵向变形过大而对隧道支护结构安全和地铁列

车正常运营产生威胁

[1-5]

.因此,有效地评估基坑开挖对周边环境产生的影响显得十分重要.

目前,基坑开挖对下卧隧道的影响研究主要包括数值模拟方法和理论解析法两大类.由于数值计算中都将管片视为各向均匀的弹性材料,未能反映管片接头在外界荷载作用下的协调变形能力及环向接头的错位变形、张开变形等不利情况,无法准确获取隧道在上部卸载作用下的响应.因此数值计算结果往往与实际情况存在较大的差

异,

很难在施工前进行较为准确的预测[6-7]

;同

样,理论解析法对实际问题进行简化,从而无法提

供接近实际的定量值[8-9].本文针对沈阳站房改造工程上部基坑开挖对下卧地铁隧道的影响,为准确反映管片环向接头在附加荷载作用下的张开、错位等情况,基于Flac3D建立三维模型,运用嵌入式梁单元模拟了螺栓接头,并针对坑底堆载施工工况进行了数值计算.

1工程概况

哈大客专沈阳站房改造工程位于沈阳市和平区及铁西区交汇处,由站房和站台雨棚组成.新站房是在既有站房的基础上进行改、扩建.沈阳市地铁一号线兴工北街站—沈阳站站的双线盾构区间近似垂直的穿越整个站场,位于国铁地下通道中部的正下方.地下通道开挖深度约15.0m,开挖面积为80m?60m,隧道衬砌采用C50钢筋混凝土预制管片.为控制既有隧道在基坑开挖期间发生的上抬变形量,在基坑坑底预留了宽31m、高3.6m的土体堆载.基坑卸载范围及土体堆载的横断面示意图如图1所示

图1卸载范围与既有盾构隧道横断面示意图Fig.1The cross section of the tunnel and foundation pit 2Flac3D计算模型及参数的选取

2.1几何模型及计算参数

基于Flac3D建立三维模型对基坑开挖进行数值分析,按照实际工况进行数值计算.模型尺寸为160m?140m?70m.模型沿隧道纵向长度为160m,水平边界南侧距围护桩50m,东侧距基坑外边缘30m.底部边界距基坑坑底35m.三维模型的单元划分全部采用六面体,共划分个662270节点,560640个单元,模型网格如图2所示.模型边界条件中,取地表为自由边界,其他面均为法向约束

图2数值计算模型示意图

Fig.2The FEM model of calculation

由于该工程中没有做高级土工试验,无法得到有效应力和回弹模量等指标,故对土体回弹模量的估计按照经验取值.根据前人经验[10],取土体的回弹模量为变形模量的3倍.各土层的力学参数及围护结构计算参数如表1所示.

表1土层的计算力学参数

Table1Mechanical parameters of soil layer

土质厚度/m黏聚力C/kPa内摩擦角φ/(?)重力密度γ/(kN·m-3)泊松比回弹模量杂填土 1.0051718.30.3221.0粉质黏土 2.003412.718.90.3160.0黏土 3.00 1.733.618.60.2581.0中砂 4.00 2.837.317.70.2381.0粗砂20 2.837.319.60.2381.0砾砂15 1.736.719.90.24145.5

2.2盾构管片环向接头

沈阳地铁盾构管片的外直径6m,内直径5.4m;管片宽度1.2m,厚度0.3m,幅宽为1.2m.衬砌环由1块封顶块,2块邻接块及3块标准块组成.沿管片纵缝与环缝均有止水条,每个纵缝采用2根螺栓,环缝接头共设16个螺栓(即封顶块设1个螺栓,其他管片每块设3个螺栓).数值模型中所采用的嵌入式梁单元环向接头及实体单元管片模型如图3所示.为简化计算,模型中只考虑了管片环向接头.

507

第5期赵文等:大跨度卸载对下卧盾构隧道影响的数值分析

图3管片与螺栓连接模型示意图

Fig.3Finite element model of shield tunnel

3Flac3D计算结果分析

实际工程中,为保证下卧盾构隧道的安全,采取了坑底进行堆载措施.堆载宽度为31m、高度为3.6m.基坑开挖分为4步,第4步开挖至设计深度-15m标高.由于分析模型及荷载的对称性,文中只选取一侧盾构隧道管片作为研究对象进行分析.

3.1盾构隧道纵向变形

图4为基坑卸载结束后盾构管片纵向变形情况.从图4可以看出上部基坑卸载对既有隧道的影响较大.基坑卸载会使盾构周围土层应力释放,引起下卧土层产生明显的隆起变形,使既有隧道产生明显上浮,最大隆起量达到15.93mm.既有地铁隧道纵向变形呈正态曲线分布,隧道最大隆起值出现在基坑中部,并且由中心点向两侧逐渐减小,基坑开挖跨度虽然仅为60m,但其影响范围在盾构隧道纵向长度上达到120m;影响范围为隧道上方卸载跨度的两倍左右.此外,隧道纵向曲率半径最小值出现在基坑中心处横断面上,A 点及B点的曲率半径分别为28248,34856m.同样可以看出,上抬变形曲线在距基坑中心点两侧各30m处,即围护桩位置两侧曲线出现了错动的情况;由于该位置的环向接头两侧管片在较大剪力作用下发生错位变形,导致曲线出现了如图4所示的错动情况.

图5为基坑中心处断面管片上抬变形曲线.由图5可以看出,随着基坑卸载深度的增加,基坑中心处断面隧道拱顶A点的上台变形量也逐渐增加,当基坑完成第四层开挖后隧道中央断面中心的隆起量为15.93mm.基坑中心处断面隧道拱顶A点的上抬变形量在卸载结束后的位移大小15.93mm,而拱底处B点上抬位移仅为12.91mm,A,B两点虽然在同一个断面,但是由于上部卸载引起的土压力差使管片在竖直方向产生了椭圆状变形,从而导致两点位移相差3.02

mm.

图4基坑卸载结束后盾构管片纵向变形情况

Fig.4Tunnel deflection after the unloading

of pit

foundation

图5基坑中心处断面管片上抬变形量Fig.5Tunnel heave of mid-point cross section

3.2附加荷载对管片接头的影响

基坑卸载引起的地层上抬变形使得盾构隧道沿着纵向产生附加弯矩,在基坑中心点位置产生最大负弯矩,导致该点的管片环向接头出现张开变形,见图6.由图6可以看出,基坑中心断面的环向接头在四级卸载作用下逐渐增加至0.67mm,设计要求管片接头张开量要小于2mm,表明在堆载情况下开挖卸载能保证既有盾构隧道的安全性

图6管片环向接头张开量

Fig.6The opening of radial joint of tunnel segment

由附加荷载产生的沿隧道纵向分布的剪力不可避免将引起环向接头处两侧管片发生错开变

607东北大学学报(自然科学版)第34卷

形,面临隧道发生渗水漏水等不利情况的风险.由

图7可以看出,随着基坑卸载的进行,Y =50m 断面(即基坑围护桩位置)处环向接头两侧管片在

附加剪力作用下产生错位变形,并且随着开挖逐渐增大至1.37mm.说明卸载作用引起的附加剪力对接头的影响不容忽视,应当防止管片在环向接头处出现渗水、漏水从而影响隧道的正常使用及耐久性要求

图7Y =50m 断面管片环向接头错位量

Fig.7Misalignment of radial joint of tunnel segment

4结论

1)盾构隧道受到上部基坑卸载作用,使管片所受竖向荷载小于侧向土压力,导致隧道除了整体向上隆起外,每一个断面也产生竖鸭蛋形状的平面变形.通过对基坑中心断面的数据分析,管片拱底隆起约为拱顶隆起的81.04,水平收敛为1.15mm.

2)基坑卸载引起的附加荷载将导致盾构管片的环向接头发生张开、错位等不利情况,其大小分别为0.67,

1.37mm ;隧道最大隆起量为15.93mm ,纵向变形曲率半径28248m ,表明坑底堆载保护措施能保证下卧隧道在基坑开挖期间的安全性.参考文献:

[1]张治国,黄茂松,王卫东.邻近开挖对既有软土隧道的影响

[J ].岩土力学2009,30(5):1373-1380.

(Zhang Zhi-guo ,Huang

Mao-song ,Wang

Wei-dong.

Responses of existing tunnels induced by adjacent excavation in soft soils [J ].Rock and Soil Mechanics ,2009,30(5):1373-1380.)

[2]Huang A J ,Wang D Y ,Wang Z X.Rebound effects of running

tunnels underneath and excavation [J ].Tunneling and Underground Space Technology ,2006,21(3):399-405.

[3]Vorster T E B ,Klar A ,Soga K ,et al .Estimating the effects

of tunneling

on

existing

pipelines [J ].Journal

of

Geotechnical and Geoenvironmental Engineering ,2005,131(11):1399-1410.

[4]Marat D.Tunnel complex unloaded by a deep excavation [J ].

Computers and Geotechnics ,2001,28(6/7):469-493.

[5]Liu H L ,Li P ,Liu J Y.Numerical investigation of underlying

tunnel heave during a new tunnel construction [J ].Tunneling and Underground Space Technology ,2011,26(3):276-283.

[6]Liu H Y ,Small J C ,Carter J P.Full 3D modeling for effects

of tunneling on existing support systems in the Sydney region [J ].Tunneling and Underground Space Technology ,2008,23(4):399-420.

[7]Chen B ,Hsiung B S.A case study on the behaviour of a deep

excavation in sand [J ].Computers and Geotechnics ,2009,36(4):665-675.

[8]吉茂杰,刘国彬.开挖卸荷引起地铁隧道位移的预测方法

[J ].同济大学学报,2001,29(5):531-535.

(Ji Mao-jie ,Liu Guo-bin.Prediction method of displacement of subway tunnel due to excavation [J ].Journal of Tongji University ,2001,29(5):531-535.)

[9]黄宏伟,黄栩,

Helmut S F.基坑开挖对下卧运营盾构隧道影响的数值模拟研究[J ].土木工程学报,2012,45(3):182-189.

(Huang Hong-wei ,Huang Xu ,Helmut S F.Numerical analysis of the influence of deep excavation onunderneath existing road tunnel [J ].China Civil Engineering Journal ,2012,45(3):182-189.)

[10]李德宁,楼晓明,杨敏.基坑回弹变形计算方法研究及应用

[J ].岩石力学与工程学报,2012,31(9):1921-1927.(Li De-ning ,Lou Xiao-ming ,Yang Min.Research and application of calculation methods for rebound deformation of foundation pits [J ].Chinese Journal of Rock Mechanics and Engineering ,2012,31(9):1921-1927.)

7

07第5期赵文等:大跨度卸载对下卧盾构隧道影响的数值分析

%

盾构下穿建筑物专项施工方案

盾构隧道下穿建筑物专项方案 一、编制依据 1、珠江三角洲城际快速轨道交通广州至佛山段工程18标南洲站?沥滘站区 间平纵断面及洞门设计布置图; 2、珠江三角洲城际快速轨道交通广州至佛山段18 标工程南洲站?中间风井建筑物调查报告; 3、珠江三角洲城际快速轨道交通广州至佛山段18 标工程南洲站?中间风井区间盾构推进监测方案; 4、《地下铁道工程施工及验收规范》 (GB 50299-1 999)(2003 年版); 5、《盾构法隧道施工与验收规范》 (GB 50446-2008) 6、《建筑地基基础设计规范》 (GB 50007-2011) 二、工程概况 2.1 工程简介珠江三角洲城际快速轨道交通广州至佛山段南洲站?沥滘站区间(简称“南沥区间”)位于广州市海珠区。本次设计起点为南洲站,终点为沥滘站。 根据广东广佛轨道交通有限公司穗铁广佛建会【2012】68 号会议纪要,盾构从南洲站始发,中间风井吊出;再根据拆迁情况而实施从沥滘站始发,中间风井吊出。起点为南洲客运站、向东南方延伸,途经南环立交、沥滘水道,进入沥滘村。区间沿线地形平坦,地面高程为7.87?10.32m,沥滘村沿线密布建筑物群。 盾构区间上方主要有南环高速公路等构筑物;沿线两边主要有南洲大酒店 (A7)、大量居民房等建筑物。 工程由两台①6250海瑞克复合式土压平衡盾构机进行施工。先后施工上行线和下行线隧道,盾构从南洲站东端头下井始发,掘进至中间风井吊出。 本区间隧道由上、下行线两条隧道构成,区间最大覆土厚约32.2 米,最小覆土9.5 米。区间最小曲线半径为350 米,线间距约12.5 米。线路纵坡设计为双向坡,最大坡度为29%°。 本区间穿越海珠区南洲街三滘经济社、南洲二手车市场,穿越土层主要为<3-1> 冲洪积层—砂层、<3-2>冲洪积层—砂层、<4-1 >冲洪积层—粉质粘土、<4-2> 河湖相沉积层一淤泥质土、<5-1>可塑状残积层一粉质粘土、<5-2>硬塑状残积层—粉质粘土、<6

隧道工程施工监理细则

隧道工程施工监理实施细则 1、工程概况 1.1全线设置枫香溪隧道(K8+460~K8+820)1座/360米,为单洞短隧道,该隧道为短隧道,隧道起讫桩号为K8+460~K8+820,全长360m,最大埋深约48m。隧道平面线形位于直线上,隧道建筑限界尺寸为:2×0.75米(人行道)+2×0.25米(侧向宽度)+2×3.5米(行车道),净宽9米。隧道纵坡坡度为-2.3%下坡。进口端隧道轴线与等高线坡面斜交,出口位于一凹槽中,受线形控制,边仰坡较高,进、出口洞门均采用端墙式洞门。 2、监理依据 2.1设计文件、设计施工图、岩土工程勘察报告等 2.2《锚杆喷射混凝土支护技术规范》(GB50086-2001) 2.3《建筑边坡工程技术规范》(GB50330-2002) 2.4《地下工程防水技术规范》(GB50108-2008) 2.5《公路隧道施工技术规范》(JTG F60-2009) 2.6《钢筋焊接及验收规范》(JGJ 18-96) 2.7《混凝土质量控制标准》(GB50164-92) 2.8《混凝土强度检验评定标准》(GBJ107-87) 2.9《混凝土结构工程施工质量验收标准》(GB 5024-2002) 2.10《公路工程地质勘查规范》(JTJ 064-98) 2.11《公路隧道施工技术规范》(JTG F60-2009) 2.12《混凝土外加剂应用技术规范》(GB 50119-2003) 2.13《公路隧道施工技术细则》(JTG F60-2009) 2.14《公路工程岩石试验规范》(JTG E41-2005)

2.15《公路工程地质勘察规范》(JTJ 064-98)2.16《建设工程施工合同》、《建设工程委托监理合同》3、隧道工程质量控制程序 3.1仰坡、边坡质量监理工作流程如图3-1所示

盾构隧道穿越既有建筑物施工应对技术

盾构隧道穿越既有建筑物施工应对技术 文章摘要: 盾构隧道穿越既有建筑物施工应对技术摘要:随着近几年地下工程建设的不断发展,盾构施工技术已越来越成熟,特别是在城市轨道交通建设中更显示出其优越性。但是,对于盾构施工过程中穿越障碍物或近距离通过既有建(构)筑物的施工还缺少相应的工程实例,经验相对也较少。近年来,我国城市轨道交通建设发展迅速,但是面临着越来越复杂的周边环境和施工条件,因此研究和制定相应的施工技术和应对措施十分必要。文章针对盾构施工穿越城市内河、下穿既有隧道以及湖底施工、下穿古城墙等工程实例进行分析研究,提出了针对类似情况的应对技术措施。 1 引言 随着国民经济的发展和城镇化建设的加速,国内城市轨道交通建设发展也越来越迅速。在轨道交通建设中,盾构工法由于其优越性在国内的应用越来越多。为了使轨道交通尽快形成网络达到预期的规模效应,轨道交通的建设也在加速。随着初期单条线的建成,后续线路建设的难度会越来越大。同时,伴随城市规划建设,特别是通常伴随地铁建设的沿线开发的增多,工程建设所面临的是越来越复杂的周边环境,穿越障碍物或近距离通过既有建(构)筑物的情况也越来越多。工程施工时既需要对既有建(构)筑物进行保护,又要确保工程本身的安全性和进展顺利,因此对不同的情况采用相应的应对技术十分必要。本文以南京地铁施工中已成功完成的盾构施工穿越障碍物的几个实例为基础,研究分析相应的应对技术。 2 下穿既有河流 2.1 工程实例 金川河宽10.4m,河堤深4m, 水深1.3m,为污水河。盾构隧道与 该河近正交下穿通过,盾构机与 河床底净间距6.2m。该段 地质情况自上而下分别是:② -1d3-4粉细砂(3.5m)、②-2c2-3 粉土(约6.0m)、②-2b4淤泥质粉 质粘土(约3m)、③-2-1b2粉质粘 土(4m)、③-3-1(a+b)1-2粉质粘 土(约 4.7m)。隧道主要在② -2c2-3粉土、②-2b4淤泥质粉质 粘土(上部)和③-2-1b2粉质粘土 (下部)地层中穿过(图1)。 该工程盾构机于2002年5月 9日~2002年5月10日和2002年 12月28日~2002年12月29日分 别在下行线和上行线顺利通过金 川河,沉降监测结果良好,没有采 用应急预案。但是在下行线掘进

公路隧道工程监理实施细则

第一章总则 为实现宜巴公路秭归郭家坝隧道及接线工程的建设总目标,有效地控制工程质量、安全、进度和费用,规范合同与信息管理,提高项目投资效益和工程管理水平。使本项目施工监理工作做到标准化、规范化、程序化,达到任务明确、标准统一、程序合理的目的,根据交通部《公路工程施工监理规范》(JTG G10-2006)、《建设工程质量管理条例》(2000年1月30日发)、《公路工程质量检验评定标准》(JTG F80/1—2004 2005-01—01实施)和FIDIC条款,以及施工、监理招标文件的要求,结合本项目的实际情况,特制定本实施细则. 1、在质量上实行“质量终身责任制”,实行“政府监督、法人管理、社会监理、企业自检”的质量管理体系,建立完整的企业自检、监理抽检、法人管理、社会监督的质量控制体系。 2、工程监理的依据是: ①业主和监理单位签订的监理服务合同文件; ②业主和承包商签订的施工合同文件; ③经政府主管部门批准的工程项目建设文件; ④国家和地方有关工程建设监理的法律、法规、条例和规定; ⑤国家和地方有关工程建设的质量标准、施工规范和试验检测规范; ⑥监理、施工合同实施过程中形成的有关会议记录、函电、指令和其它文件; ⑦总监办根据施工、监理合同文件签发的所有施工图纸和指令等。 3、监理工作范围:路基、桥涵结构物、隧道、路面、沿线设施(不含房建)、交通安全设施(含机电、消防)、绿化、环保、水保等工程及施工安全监理的全部监理工作。

①工程施工的全过程及缺陷责任修复过程中的监理。 ②质量控制、进度控制、费用控制、安全监理、环保监理、合同管理、信息管理及协调工作等。 4、工程监理本着“严格监理,热情服务,秉公办事,一丝不苟”的原则对整个工程实行质量、进度、费用的监控及合同与信息管理。业主、监理和施工单位应严格履行各自的职责,互相协调,密切配合,共同搞好本项目的建设。 第二章监理机构和职责 第一节监理机构 根据本项目实际情况,采用一级监理模式,宜昌市虹源公路工程咨询监理有限责任公司设立秭归郭家坝隧道工程总监办, 设总监一人,专业监理工程师两人,合同监理工程师一人,监理员两人,下设工地试验室,试验室主任一人,试验检测工程师一人,试验员两人.组织机构图如下:

TBM盾构隧道成型隧道管片错台控制(合并版)

标准化创建说明 TBM 管片拼装错台控制工艺标准 一、标准名称 TBM 管片拼装错台控制工艺标准 二、编号及分类 第××号:实体工程类××号 三、适用范围 适用于TBM隧道成型隧道管片错台控制。 四、创建时间 初创:2017年10月17日定性:2017年11月20日评定:2017年11月9日 五、创建单位 中铁隧道局集团有限公司青岛地铁1号线土建一标项目部01工区 中铁十八局集团有限公司青岛地铁1号线二标项目部二工区 六、问题梳理与分析 问题梳理:管片安装错台质量控制是隧道混凝土结构施工质量控制的关键,但是受设备及人为因素较大,成型管片错台的质量一直未能得到很好的控制,且由错台引起的管片破裂、隧道漏水等问题对施工和运营的影响日益突显。。 问题分析: (1)TBM机械设备调试阶段辅推油缸出现泄压,导致管片未能顶紧,脱出盾尾后不同程度出现错台。 (2)TBM先期施工管片操作司机对管片拼装操作不够熟练,造成管片拼装错台较大及椭圆度偏差较大。 (3)TBM进洞前20-30环,豆砾石填充饱满,但因无法进行水泥浆回填,无法保证管片与开挖岩面完全固结,TBM换步后导致管片不同程度发生位移,螺栓发生形变,引起错台。 (4)隧道处于2.5%长距离下坡盾尾泥浆汇入,无法完全清理干净,导致盾尾间隙偏小管片

错台。 方法对策: (1)采用管片对管片拼装手进行业务培训,增强操作技能,减少管片拼装错台。 (2)对TBM掘进司机及质检工程师进行业务培训,严格控制TBM掘进姿态,合理并有预见性的选择管片类型。防止管片脱出盾尾造成管片破损。 (3)及时与中船沟通,解决相关设备问题,以保证施工质量。 (4)对管片进行二次复紧,有意识的将管片拼装的紧凑一些。并在封顶块两侧的橡胶垫在拼装前涂抹润滑剂,封顶块、邻接块纵缝弹性密封垫内需增设尼龙绳,以限制插入时橡胶条的延伸。 (5)进洞10环后开始进行双液浆固结;保质保量进行水泥浆填充,避免管片再出现质量问题。 (6)拼装管片前用沙袋将头一环管片底部封堵,以防泥浆、渣土继续汇入,并及时清理盾尾,以保证盾尾底部间隙。 七、创建历程及人员分工 7.1 创建历程 经项目部和作业班组反复研究与实践,通过严格控制现场施工等措施解决了管片安装错台偏大的问题。 7.2 人员分工 创建人员:孙郕(提议)、江春明(立项)、周泽民(审核)、王小明(编写)、姚军、孟亚彬(现场组织实施) 试用单位:中铁隧道局集团有限公司青岛地铁1号线土建一标项目部01工区 八、工艺流程 8.1施工工艺流程图

隧道工程安全监理细则(2021版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 隧道工程安全监理细则(2021版)

隧道工程安全监理细则(2021版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 一、总则 1.安全生产是党和国家的一贯方针和基本国策,是保护劳动者的安全和健康、促进社会生产力发展的基本保证,也是保证社会经济发展的基本条件。为保障从事公路工程施工生产人员的安全,预防事故发生,促进公路交通事业的发展,特制定隧道施工安全监理细则。 2.承包单位在施工中应贯彻执行“安全第一,预防为主”和坚持“管生产必须管安全”的原则,根据本单位隧道施工实际情况,制定各项规章制度。 3.承包单位各级领导干部、工程技术人员和生产管理人员,必须熟悉和遵守安全技术规程的各项规定,做到生产与安全工作同时计划、布置、检查、总结和评比。 4.监理工程师一定要熟悉和掌握隧道施工安全技术规程,跟踪现场勤检查,发现安全问题,及时向承包单位及相关部门提出,迅速整改,预防安全事故发生。

盾构下穿建筑物技术交底

布吉站~百鸽笼站区间 盾构下穿建筑物施工技术交底 一、工程概况 布?百区间隧道下穿越金鑫实业有限公司厂房、布吉永盛钟表厂、华年华美工业区集体宿舍等9栋建筑物。 区间过建筑物里程、对应环号及洞身地质情况详见下表 、掘进参数选择

、盾构施工下穿建筑注意事项 1、掘进过程中适当加大同步注浆压力及注浆量,每一环管片注浆量在6?8斥,1、4#注浆压力1.5?2.5Bar , 2、3#注浆压力2?3Bar,根据实际情况调整同步注浆浆液配合比,提高浆液的和易性和可泵性,缩短浆液凝固时间,及时有效地填满管片与围攻岩间的建筑空隙,防止地表下沉。注浆系统发生故障、注浆管发生堵塞时应停止掘进,待维修正常后方可继续掘进。盾构机停止掘进时严禁进行同步注浆,避免建筑物隆起。 2、在盾构掘进过程中要严格控制出土量,做到进尺与出土量保持均衡,并填写好 出土控制表,如发现一环出土量超过65m3或掘进过程中进尺与出土量保持不均衡,且初步估计是因刀盘位置土体塌方所致,应立即停止出土,继续往前掘进(此时总推力根据实际情况可调整至1000t,但各个控制按钮必须均匀增加)至顶部压力表显示为1.2bar 以上后停止掘进,并及时通知工程部及其它相关部门和领导,工程部立即派人到掌子 面里程对应的地表巡查,同时现场土木值班人员对渣样进行取样和分析,并取好渣样到地面供相关领导和部门分析。领导和相关部门结合渣样分析、设计院提供地质情况、地表建筑物沉降情况最后决定是否继续往前掘进,盾构操作手或机长不得擅自作主。 3、推进过程应保持盾构机有良好的姿态,严禁姿态的急剧起伏,水平和高程偏差 控制在土50mm以内。减小盾构机上下千斤顶压力差,上下千斤顶压力差控制在60Bar 以内。 4、根据地表监控量测数值,如发现管片在脱出盾尾后,地表沉降幅度较大(10mm v 沉降值v 20mm时对管片进行二次补注浆,以控制地表继续沉降,二次注浆采用双液浆。

隧道施工监理实施细则

隧道施工监理实施细则 The document was finally revised on 2021

隧道施工监理实施细则 为确保S331 L8合同段黄土岭隧道、白河隧道、刁崖隧道的施工质量及安全,按照合同工期圆满完成任务,高标准、严要求、创优质,必须加大监理力度、严格监理程序。在施工的各个阶段,按照规范及设计要求,对工程的质量、进度、费用、安全各方面进行严格的监督检查。现分阶段制定实施性监理细则; 一、施工准备阶段的监理 1、审批承包人的工场进度计划(含施工组织计划)。 2、审批承包人的质量安全保证体系。 3、检验承包人的进场材料、审批承包人的标准试验。 4、审查承包人机械进场情况。 5、检查、复核、认定平面控制测量、水准测量精度、 闭合情况。 6、现场监督、检查、复核承包人的施工放样。 7、检查承包人的工程场地占用情况 8、检查、复核、测量承包人测定的地面线。 二、洞口施工阶段的监理 在洞口施工阶段要经常性的现场监督、检查承包人下列各项工作: 1、洞口施工是否按施工组织设计的顺序安排,按照图纸及 规范的要求组织施工。洞口各项工程应通盘考

虑,妥善安排,尽快完成,为洞口安全及洞身 施工创造有利条件。 2、排水系统:洞外排水系统包括边坡、仰坡外的截水沟、 排水沟、洞口排水沟涵管组。所开挖和铺砌除 按图纸要求施工外,还应符合砌体工程的各项 要求。 (1)边坡、仰坡外截水沟、排水沟应在洞口土石开挖前完成。截水沟、排水沟的上游进水口 应与原地面衔接紧密,下游出水口应妥善的引人路堑 边沟。 (2)边坡、仰坡以外的土方,不能存在坑洼积水,并不得用土填筑,以免流失堵塞排水系统, 影响洞口安全。 3、洞口土石方开挖 (1)洞口土石方开挖应按设计放样的边坡线自上而下逐段开挖,不许掏底开挖或上下重叠开挖,边、仰坡不能采用深眼大爆破,以免引起滑坡、崩塌。 (2)应清除洞口上方有可能滑塌的表土、危石等,消除不安全因素。开挖中要随时检查,如发现有开裂等现象应及时适当放缓坡度。确保边、仰坡的稳定性和施工安全。 (3)洞口端墙处的土石方开挖,应视地质情况、地层稳定情况、洞口施工季节、隧道施工方法,选择合适的时

地铁盾构隧道下穿建筑物沉降规律分析

地铁盾构隧道下穿建筑物沉降规律分析 摘要:通过对成都地铁盾构隧道穿越建筑物引起的地表沉降进行动态监测与分析,得出了盾构地铁隧道在穿越建筑物时沉降发生时间及影响范围,并初步制定了用于指导施工的监测数据库,以便为今后类似工程提供参考。 关键词:成都地铁2 号线; 盾构隧道; 穿越; 地面建筑物; 沉降监测 1 .引言 随着国家、城市的经济发展,地铁成为交通繁忙、人口密集城市的重要交通工具。在地铁盾构隧道施工期间,不可避免地要近距离地下穿地面建筑物,在穿越期间,由于地层受扰动、超挖引起的地层损失及应力改变等原因都可能造成地面建筑物出现沉降、位移,从而引起建筑物出现裂缝、倾斜甚至倒塌,给人民的财产、安全带来威胁。为掌握盾构施工过程中地面建筑物的状态,在实施加固、保护等施工措施的同时,必须对地面建筑物进行监测,并将监测数据及时反馈到施工中,确保施工安全。本文对成都地铁盾构隧道某栋建筑物的监测成果进行研究分析,以便为今后类似工程提供参考。 2 .工程及地质概况 本工程为成都地铁线2 号线羊西二环路站~白果林站,在里程YCK26 + 332 ~YCK26 + 832 段穿越密集居民建筑群。盾构隧道埋深约14 米,地面建筑物为金琴路南段二巷2 号楼,主体上部为砖混7 层,下部为预制桩基础,基底约2.5m 中砂。 该隧道地处川西平原岷江I 级阶地,为侵蚀~堆积阶地地貌,地形平坦。隧道穿越地层主要为砂卵石层,局部夹中砂。第四系孔隙水是段内地下水的主要存在形式,主要赋存于各个时期沉积的卵石土及砂层中,土体透水性强、渗透系数大,水量丰富。场地内地质构造条件简单,未发现有断裂通过,无不良地质作用,在VII度地震作用下,不具备产生滑坡、崩塌、陷落等地震地质灾害的条件,环境工程地质条件较简单。综合判定,本工程场地稳定。 3 .监测方案设计 尽管盾构法施工隧道具有对周围环境影响小、掘进速度快、机械化程度高、施工安全等特点,但仍不可避免地引起地表以及地表建筑物沉降。因此在研究盾构隧道对建筑物沉降的影响,布设了建筑物沉降监测点,用以观测建筑物下沉量,判定建筑物的安全性,以便采取相应的保护措施。 3 .1 测点布置 建筑物沉降监测点位布设在建( 构) 筑物四角的结构柱、建筑物基础分界点( 基础沉降缝) 布设沉降观测点10 个监测点位,见图1。

盾构隧道管片拼装施工选型与排版总结[优秀工程范文]

盾构隧道管片拼装施工选型与排版总结 区间盾构结构为预制钢筋混凝土环形管片,外径6200米米,内径5500米米,厚度 350米米,宽度 1200米米.在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合. 国内一般采用第③种,项目隧道采用该衬砌环. 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量. 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型.由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度 . 2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环.即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄. 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度 ;③标准环数与楔形环数之比u值.还有一个可供参考的因素:楔形量管模的使用地域.楔形量理论公式如下: △=D(米+n)B/nR ①

(D-管片外径,米:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面.按最小水平曲线半径R=300米计算,楔形量△=37.2米米,楔形角β=0.334°. 值得注意的是转弯环设计时,环宽最大和最小处是固定的 ,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求. 2、圆曲线预排版 设需拟合圆曲线半径为450米(南门路到团结桥区间曲线半径值),拟合轴线弧长270米,需用总楔形量计算如下: β=L/R=0.6 ② △总=(R+D/2)β-(R-D/2)β=3720米米③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为: u=n2:n1=5:4 ⑥ 即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1.

隧道监控量测监理实施细则

渝万铁路客运专线 隧道监控量测监理实施细则 北京铁研建设监理有限责任公司渝万铁路3标监理项目部

渝万铁路客运专线 隧道监控量测监理实施细则 编制: 审核: 批准: 日期:2013年01月18日 北京铁研建设监理有限责任公司渝万铁路3标监理项目部

目录 一、工程特点及技术、质量标准 (1) (一)工程概况及工程特点 (1) (二)控制及重点工程 (2) (三)主要技术标准 (3) (四)编制依据 (3) 二、监理工作范围及重点 (4) (一)监理工作的范围 (4) (二)监理工作的重点 (4) 三、监理工作流程 (4) 四、监理工作控制要点、目标及手段 (5) (一)监理监控要点 (5) (二)监控目标 (5) (三)监控手段 (5) 五、监理工作方法及措施 (5) (一)监控量测的项目 (6) (二)监控量测必测项目 (6) (三)监控量测断面及测点布置原则 (6) (四)监控量测频率 (7) (五)监控量测方法 (8) (六)监控量测数据分析及信息反馈 (10) (七)监控量测验收资料 (11)

六、见证具体部位和工序 (11) 隧道监控量测监理实施细则 一、工程特点及技术、质量标准 (一)工程概况及工程特点 新建重庆至万州铁路位于重庆市境内,自重庆铁路枢纽的重庆北站引出,沿正在建设中的渝利铁路向东北经江北、渝北并行至长寿,尔后经垫江、梁平至万州北。该铁路连接重庆主城区和渝东北中心城市万州,是成渝地区铁路网主骨架线路,也是郑州至重庆快速铁路通道的重要组成部分。渝万铁路正线全长247.257km。其中桥梁235座117.073km;隧道55座,58.157km;桥隧总长175.230km,占线路长度的70.87%。 全线设重庆北、复盛、长寿北、长寿湖、垫江、云龙(预留)、梁平南、三正北(预留)、万州北共9个车站。最小站间距为长寿北至长寿湖,为17.175km;最大站间距为长寿湖至垫江,为43.067km;平均站间距为30.907km。 新建重庆至万州铁路YWJL-3标段起乞里程DK166+178~DK249+861,全长83.68Km,全标段设梁平南、三正北(预留)、万州北共3个车站。 主要工程数量:全标段共计桥梁86座,合计长度32683.961m,占线路长度39.06%;隧道32座,合计长度34061m,占线路长度40.70%;框架涵63座合计201.5m,占线路长度0. 24%;路基长度16733.539m,占线路长度20.0%。 标段内双线特大桥24座,合计长度18073.29m,双线大桥45座,合计长度12380.852m,双线中桥7座,合计长度566.269m,四线特大桥1座, 633.40m,四线大桥2座,合计长度709m,七线大桥1

如何进行盾构法施工隧道管片选型排版

进一步减小。通常我们以各组油缸行程的差值的大小来判断是否应该拼装转弯环,在两个相反的方向上的行程差值超过40mm时,就应该拼装转弯环进行纠偏,拼装一环转弯环对油缸行程的调整量见表1,也就是拼装1环10点左转弯环,可以使左、右两组的油缸行程差缩小38mm。 德国海瑞克公司的土压平衡式盾构机,如图3所示,10对推进油缸分为A、B、C、D四组,分别代表上、右、下、左四个方向。油缸行程可以通过位移传感器反映在显示屏上,通过计算各组油缸之间的差值,就能进行正确的管片选型。下面举例说明: 现有一组油缸行程的数据如下: B组(右):1980mm C组(下):1964mm D组(左):1934mm A组(上):1943mm 左右行程差为:D-B=1934-1980=-46mm 上下行程差为:A-C=1943-1964=-21mm 图油缸分区图 由上可以看出,盾构机的轴线相对于管片平面向左上方倾斜。在对这环管片进行选型的时候,就应选择一环左转弯环且还要有向上的偏移量。对照表1后得出,此环应选择左转弯环在1点拼装。拼装完管片后掘进之前油缸行程的初始数据理论为:A组(上):454mm B组(右):465mm C组(下):453m D组(左):450mm。这样左右与上下的油缸行程差值基本控制在20mm之内,有利于盾构掘进及保护管片不受破坏。(如果上述数据在左转弯曲线上,下一环管片仍安装一环左转弯环管片,那么盾构姿态基本调整过来)。 4、盾构间隙与油缸行程之间的关系 在进行管片选型的时候,既要考虑盾尾间隙,又要考虑油缸行程的差值。而油缸行程的差值更能反映盾构机与管片平面的空间关系,通常情况下应把油缸行程的差值作为管片选型的主要依据,只有在盾尾间隙接近于警戒值(25mm)时,才根据盾尾间隙进行管片选型。 3、影响管片选型的其他因素 3.1 铰接油缸行程的差值 目前地铁盾构工程中大多采用的是铰接式盾构机,即盾构机不是一个整体,而是在盾构机中体与盾尾之间采用铰接油缸进行连接,铰接油缸可以收放,这样就更加有利于盾构机在曲线段的掘进及盾构机的纠偏。铰接油缸利用位移传感器将上、下、左、右四个方向的行程显示在显示屏上,当铰接油缸的上下或左右的行程差值较大时,盾构机中体与盾尾之间产生一个角度,这将影响到油缸行程差的准确性。这时应当将上下或左右的行程差值减去上下或左右的铰接油缸行程的差值,最后的结果作为管片选型的依据。(海瑞克盾构铰接油缸有三种模式,锁、收和自由放开,当盾构在直线上,盾构姿态很好,可以使用锁定模式,当

瓦斯隧道监理控制要点

瓦斯隧道监理控制要点 瓦斯隧道在施工前,重点审核审实施性施工组织设计,主要内容包括施工方案、通风检测、预防瓦斯突出、喷出的措施和揭煤方法。 第一节《钻爆作业监理控制要点》 1、瓦斯工区钻孔作业应符合下列规定: (1)开挖工作面附近20m风流中瓦斯浓度必须小于1.5%; (2)必须采用湿式钻孔; (3)炮眼深度不应小于0.6m; 2、瓦斯工区装药与爆破作业应符合下列规定: (1)爆破地点20m内,风流中瓦斯浓度必须小于1%; (2)爆破地点20m内,矿车、碎石、煤碴等物体阻塞开挖断面不得大于1/3; (3)通风应风量足,风向稳,局扇无循环风; (4)炮眼内煤、岩粉应清除干净; (5)炮眼封泥不足或不严不应进行爆破。 3、瓦斯工区的爆破作业必须采用煤矿许用炸药,有突出地段安全等级不低于三级的煤矿许用的含水炸药。 4、瓦斯工区必须采用电力起爆,并使用煤矿许用电雷管。严禁使用秒或半秒级电雷管。使用煤矿许用毫秒延期电雷管时,最后一段的延期时间不得大于130 ms。 5、瓦斯工区采用电雷管起爆时,严禁反向装药。采用正向连续装药结构时,雷管以外不得装药卷。 在岩层内爆破,炮眼深度不足0.9m时,装药长度不得大于炮眼深度的1/2;炮眼深度为0.9m以上时,装药长度不得大于炮眼深度的2/3。在煤层中爆破,装药长度不得大于炮眼深度的1/2。 所有炮眼的剩余部分应用炮泥封堵。炮泥应用水炮泥和黏土泡泥。水炮泥外剩余的炮眼部分应用黏土炮泥填满封实。严禁用煤粉、块状材料或其他可燃性材料作炮泥。 6、爆破网路和连线,必须符合下列要求:

(1)必须采用串联连接方式。线路所有连结接头应相互扭紧,明线部分应包覆绝缘层并悬空。 (2)母线与电缆、电线、信号线应分别挂在巷道的两侧,若必须在同一侧时,母线必须挂在电缆下方,并应保持0.3m以上间距。 (3)母线应采用具有良好绝缘性和柔软性的铜芯电缆,并随用随挂,严禁将其固定。母线的长度必须大于规定的爆破安全距离。 (4)必须采用绝缘母线单回路爆破。 (5)严禁将瞬发电雷管与毫秒电雷管在同一串联网路中使用。 7、电力起爆必须使用防爆型起爆器作为起爆电源,一个开挖工作面不得同时使用两台及以上起爆器起爆。 8、在低瓦斯工区和高瓦斯工区进行爆破作业时,爆破15 min后应巡视爆破地点,检查通风、瓦斯、煤尘、瞎炮、残炮等情况,遇有危险必须立即处理。在瓦斯浓度小于1%,二氧化碳浓度小于1.5%,解除警戒后,工作人员方可进入开挖工作面工作。瓦斯突出工区爆破作业应在揭煤爆破15min,应由救护队员配戴防毒面具或自救器到开挖工作面对爆破效果、瓦斯浓度等进行检查,确认安全后通知送电、开动局部通风机。通风30min后,由瓦检人员检测开挖工作面、回风道瓦斯浓度,并开挖工作面瓦斯浓度小于1.0%,二氧化碳浓度小于1.5%时,方可通知工地负责人允许施工人员进洞。 9、洞内开挖作业严格执行“一炮三检”制,即上孔后、装药后、起爆后、进行瓦斯检测,瓦斯日报,即每日瓦斯检测后,由驻地监理工程师签字确认。 第二节《揭煤防突控制要点》 1、煤层超前探测 (1)接近突出煤层前,必须对设计标示的各突出煤层位置进行超前探测,标定中突出煤层准确位置,掌握其赋存情况及瓦斯状况; (2)在距初探煤层位置10m(垂距)处的开挖工作面上打3个超前探孔,并取岩(煤)芯,分别探测开挖工作面前方上部及左右部位煤层位置; (3)按各孔见煤、出煤点计算煤层厚度、倾角、走向及与隧道的关系,并分析煤层顶、底板岩性; (4)掌握并收集探孔施工过程中的瓦斯动力现象;

地铁盾构隧道下穿建筑物的安全性分析

地铁盾构隧道下穿建筑物的安全性分析 李茂文,胡辉 (南昌城市规划设计研究总院,江西南昌330038) 摘要:本文以深圳地铁5号线翻身 灵芝盾构区间隧道下穿碧海花园小区建筑物施工为工程依托,运用有限差分程序FLAC3D模拟盾构隧道开挖的全过程,对施工产生的管片内力变化、地表沉降以及桩基的变形进行了预测分析。计算结果表明,只要能够正确合理的施工,采用土压平衡盾构施工,安全顺利地穿越建筑物是可行的。 关键词:盾构隧道下穿建筑物地表沉降桩基沉降数值模拟 有限差分法由于具有能够适应复杂边界、非均质、非线性本构模型,分析结果全面详细等优点,被广泛用来模拟盾构隧道施工对环境的影响的分析。本文以深圳地铁5号线翻身 灵芝盾构区间隧道下穿碧海花园小区施工掘进为工程依托,运用有限差分程序FLAC3D模拟盾构隧道开挖过程,对施工产生的管片内力变化、地表沉降以及桥梁桩基变形进行预测分析。1工程概况 深圳地铁5号线翻身至灵芝盾构区间隧道管片设计外径为6m,内径为5.4m,管片厚度为30cm。地铁右线隧道穿越碧海花园2层和8层的砼框架楼房。碧海花园桩基采用柱下独立基础,承台下桩基采用Φ480沉管灌注桩,有效桩长17m。该建筑物桩基与隧道拱顶最近距离为1.14m,断面埋深20.5m,地下水位埋深为3.2m,隧道位于砾质粘性土、全风化花岗岩及强风化花岗岩三种不同硬度的地层中,局部有硬岩突起,突起硬岩裂隙发育,地质条件复杂。 2盾构掘进数值模拟分析 2.1材料特性 (1)土体材料 目前,在土工计算中广泛采用的各向同性模型有两大类,一类是弹性非线性模型,另一类是弹塑性模型,两者都反映了土的非线性应力—应变关系特性。本文土体采用弹塑性本构关系,屈服准则为直线性Mohr-Coulomb准则。 (2)注浆材料和管片衬砌材料 注浆材料和衬砌单元在模拟过程中也采用适合混凝土材料的弹塑性模型。注浆材料的强度会随着时间的推移而增加,此时取其长期固化注浆材料,其弹性模量取400Mpa[4],管片衬砌采用C50钢筋混凝土,弹性模量为35GPa。 2.2实体模型建立 计算采用有限差分程序FLAC3D建立三维模型,横向取40m,向上取至地表,向下取隧道中心以下15m,沿隧道长度方向取40m。左、右、前、后边界施加水平方向约束,底面限制垂直位移,顶面为自由面。初始应力只考虑自重应力场的影响。地层、管片、注浆浆液均视为理想弹塑性材料,服从Mohr—Coulomb屈服准则;管片和同步注浆浆液均采用壳单元;地层和桩基则采用实体单元模拟。计算模型如图2,模型共有148192个单元,154755个节点。盾构机长7.5m,盾构外径6.25m,管片宽l.5m,厚300mm,盾尾间隙厚75mm。盾构隧道与桥梁桩基的位置关系如图2所示 。 图1 三维计算模型图 图2盾构隧道与建筑桩基的位置关系图 根据地质勘察资料,该段地质分层从上而下分别为:3m的素填土、6m的砾砂、10.5m的砾质粘性土、2.5m的全风化花岗岩及16m的强风化花岗岩。各土层的物理力学参数见表1。3数值模拟计算结果分析 3.1应力分布分析 盾构推进15m、30m和40m时最大主应力云图如图3、4和5所示。从图中可以看出,随着盾构的不断推进,已开挖的隧道衬砌的最大主应力增大,当隧道开挖到40m时,拱腰靠底部位置的最大值主应力值达到2.3MPa,最小值出现在隧道拱顶的位置,最小主应力在拱顶的位置,其值达到-6.7MPa,均远远小于盾构管片的设计强度,因此,盾构管片所受到的内力不足以使管片结果产生破坏,管片结构仍有较大的安全富余量。 · 402 · 2012年第6期(总第123期)江西建材交通工程

盾构隧道转弯环管片在曲线上的排版

盾构隧道转弯环管片在曲线上的排版【东莞地铁R2线盾构前言】:盾构施工在缓和曲线上的管片选型排版直接关系 到在圆曲线上盾构机的姿态控制,现以某区间缓和曲线段管片的选型排版为例,对管片在缓和区线段的选型排版方法进行总结介绍,以便在今后盾构施工进行借鉴和指导。一般排版设计的管环宽是1.5米就考虑1.502米-1.503米我考虑的是1.503米排版情况很好。 一、引言 目前盾构工程在地下铁路施工中应用越来越多,由于曲线的存在就要用标准环与转弯环配合使用,以适应线路的走势。曲线是由一条圆曲线和两条缓和曲线组成。对于圆曲线的管片排版已有了相对较为成熟的理论。而缓和曲线上的管片排版以往通常是根据盾构机VMT来选择,没有成型的理论支持,为此,结合测量理论和弯环管片的实际探索出在缓和曲线上准确选择弯环管片理论排版的方法,介绍给大家,供参考和借鉴。 二、缓和曲线理论 按线路的前进方向,直线与缓和曲线的连接点称为直缓点,依次类推其余各点分别为缓圆点、圆缓点、缓直点,分别记为ZH、HY、YH、HZ。其相对关系见图1及图2。 图1 曲线要素示意图

图2 缓和曲线图 由可得 β――为缓和曲线上任一点P处的切线角; ――任一点P所对应的切线长 L S =L时,即可得出β=L/2R (rad) 。 当L S 2.1.弯环管片偏转角计算 依照曲线的圆心角与转弯环产生的偏转角关系可知: 图3 标准环、转弯环关系图 θ=2γ=2arctgδ/D 式中: θ—转弯环的偏转角δ—转弯环的最大楔形量的一半D—管片直径 将数据代入得出θ=0.3629o

三、缓和曲线上转弯环管片用量计算 在缓和曲线段内,缓和曲线切线角β与一环转弯环的偏转角θ的比值即为曲线上所需管片的数量。现以某区间右线JD8为例进行计算。 某区间管片技术参数如下: 管片长度:1500mm;管片内径:5400mm; 管片厚度:300mm;管片外径:6000mm; 转弯环楔形量:38mm; N=β/θ=10.53(环) N——单条缓和曲线需加设的弯环管片用量 由此可以看出在JD8的单条缓和曲线上需放10.53环转弯环管片,但是管片都要成环拼装,0.5环就要和圆曲线组合综合考虑了,整条曲线的弯环数按取整数进行取舍,如果有不足一环的管片存在,就可以多拼出一个转弯环,而不能少拼,即拼11环。 四、缓和曲线上转弯环管片位置确定 考虑切线角β累计超过转弯环偏转角θ的一半时即应该放置一个转弯环管片,可以计算出当β=0.5θ、1.5θ、2.5θ、3.5θ……时所对应曲线长,即将每一个弯环所对应的曲线长度逐个计算出来。再通过曲线位置计算出转弯环在线路上的具体里程。从表中可以清楚的看出每个转弯环管片准确的位置。

隧道工程监理实施细则

隧道工程监理实施 细则

西柞高速公路 (第四驻地监理部) 隧道工程监理实施细则 安徽省高等级公路工程监理有限公司 二00四年二月 隧道工程监理实施细则

隧道工程包括隧道及明洞的洞门工程、洞身工程、洞内附属构筑物及运营通风设施,防排水,辅助坑道等。 (一)工程监理工作流程 隧道工程监理工作流程见图:隧道工程监理工作流程图 (二)隧道工程监理工作要点 1.监理工程师熟悉图纸后,会同承包人进行现场复查核对,发现影响大的问题,由承包人提出资料,监理工程师签认后及时报告业主。一般复查核正确内容是: 1)隧道洞口测量控制点、施工测量用的基准点及水准点的数据必须准确无误; 2)洞门位置、式样及衬砌类型,洞口排水系统设计及与桥梁、路基衔接工程是否符合现场实际,若设计与实际不符,须及时提出,以便处理; 3)图纸采用的施工方法和有关技术措施是否符合实际条件; 4)隧道开工前应督促承包人提前处理好与洞及洞身施工有干扰的有关工程; 5)隧道弃碴方案是否符合施工布置及环境保护的有关要求。 2.要求承包人将下列施工基础资料报监理工程师审查。 1)隧道工程所需水泥、砂、石集料的产地、产量和质量; 2)隧道施工场地布置(含各种工程材料、砂、石料堆放场地,卸碴场,加工厂,机械停放,炸药库等); 3)隧道施工运输便道方案;

4)隧道实施性施工组织设计。 3.开工前承包人必须提交砂浆、混凝土的配合比,水源和水质化验报告及强度试验资料报监理工程师。 4.检查进场的砂、石、水泥、钢筋等有关材料的质量及规格是否符合图纸及规范的要求。 5.复合式衬砌应做好监控量测计划和仪器准备。 6.隧道中线及高程,贯通误差,隧道建筑限界,允许超挖及各类衬砌的允许偏差等按规范有关规定予以控制。 7.监理工程师要督促、检查承包人根据图纸和规范要求组织施工,认真填写监理日记、抽检记录、并签认各种检验报表。 (三)隧道各工程组成内容的监理工作程序和要点 1.洞门工程 (1)洞门工程施工监理工作流程 洞门工程监理工作流程见图:隧道洞口工程监理工作流程图 (2)洞门工程监理要点 1)洞门施工前承包人应将山前危岩、浮石及滑塌表土清除干净,尔后自上而下逐段开挖。 2)洞口如有桥、涵,下挡结构等工程,为确保洞口结构及基础稳定,要求合理安排施工程序,按顺序进行,做到互不干扰。 3)洞门应尽早施工,在冬季、雨季前完工,以增强洞口稳定。 4)洞门基础完成开挖,经验收合格后,方可同意砌筑或灌混

隧道工程各施工阶段质量控制要点

隧道工程各施工阶段质量控制要点施工质量控制要以设计为依据、以施工技术指南为规范、以验收标准为目标,将质量控制贯穿于施工全过程。 施工阶段是施工质量控制的关键。 施工过程中,工序质量直接影响工程项目的整体质量。 质量控制程序: 1.制定质量控制计划 2.选择质量控制点 3.确定控制点的质量要求 4.对控制点进行检测 5.产生质量问题的原因分析及控制措施 质量控制的一般做法: 每道工序完成后,施工单位先进行自检,自检合格后报请监理工程师检查,经监理工程师检查确认合格后,方可进入下道工序。 一、洞口工程施工质量控制 (一)质量控制目标 隧道洞口边、仰坡土石方开挖及防护工程施工应符合设计要求和环境保护、 水利保持有关规定。 (二)施工控制要点: 1.边、仰坡应自上往下分层开挖,不得采用洞室爆破,开挖后要及时进行 防护。 2.边、仰坡地质条件不良时开挖前要采取稳定加固措施。 3.边、仰坡周围的排水沟、截水沟应在边、仰坡开挖前修建完成。 4.洞口施工前,应先检查边、仰坡以后的山坡稳定情况,清除悬石、处理 危石。施工期间实施不间断监测和防护。 5.隧道洞门及洞口段衬砌应尽早施工以保证洞口边、仰坡稳定。 6.隧道洞门和缓冲结构的基础必须置于稳固的地基上。 7.隧道洞门两侧的混凝土浇筑与背后回填应对称进行,不得对拱、墙衬砌 产生偏压。 二、洞身开挖质量控制 (一)质量控制目标 不欠挖,少超挖,表面平顺,无明显凹凸现象。 允许超挖值(mm): 隧道允许欠挖值: 隧道开挖应严格控制欠挖,当围岩完整、石质坚硬时,允许岩石个别突出

部分侵入衬砌。 (二)超欠挖控制要点 1.开挖方法的选择 2.开挖轮廓线的定位 3.钻爆设计及优化 4.钻爆作业 5.光面爆破效果控制 钻爆设计: 1)合理确定炮眼(掏槽眼、辅助眼、周边眼)的间距、深度、斜率和 数目,钻爆器材、装药量和装药结构,起爆方法和爆破顺序,钻 眼机具和钻眼要求。 2)有效的控制超、欠挖,应从钻孔精度、爆破参数的选择及对地质 变化的适应性、爆破器材和装药结构的选择等方面不断改进,采 取一炮一分析制度,根据爆破效果,不断优化钻爆设计,把钻爆 设计与地址变化有机结合在一起。 钻爆作业控制: 1)钻爆作业必须按照钻爆设计进行钻眼、装药、网路接线和起爆。 2)炮眼的深度和斜率应符合钻爆设计: 掏槽眼眼口间距误差不大于3cm,眼底深度误差不得大于5cm;辅助眼眼口排距、行距误差均不得大于5cm;周边眼眼口 误差不得大于3cm,眼底不得超出开挖断面轮廓线3~5cm。 当采用凿岩机钻眼时,掏槽眼眼口间距误差和眼底深度误差不得大于5cm;辅助眼眼口排距、行距误差均不得大于10cm; 周边眼眼口位置误差不得大于5cm,眼底不得超出开挖断面轮廓 线15cm。 3)周边炮眼与辅助炮眼的眼底应在同一垂直面上,掏槽炮眼应加深 10~20cm,以保证掏槽效果和掌子面的平整。 4)每次开挖后均要用激光限界检测仪对开挖面尺寸进行检测,及时 检查出欠挖面并进行处理,保证隧道开挖断面不侵限。 光爆效果控制: 1)要合理确定周边眼间距与抵抗线的相对距离,通过减小周边眼间 距和抵抗线,提高光面爆破效果。 2)控制周边眼装药集中度和装药结构,集中度太大易造成超挖,太 小会造成欠挖;炮孔装药应均匀分布,眼底适当加强。 3)严格控制开挖轮廓线和炮眼布设精度。 (三)塌方产生的原因及控制措施 1.塌方主要原因: 1)地质条件的复杂多变,原有支护措施不当。 2)支护的不及时、暴露时间过长,导致围岩风化严重、变形失稳。 3)通过断层,突然遇到较高水压富水洞段,地下水向洞室内漏出, 淘空了断层构造带中破碎岩体和填充物。 4)由于岩层产状不利或因岩爆等诸多地质原因。 5)一般情况下造成塌方的主要原因是人为的因素。 2.控制掌子面塌方的措施

相关文档
相关文档 最新文档