文档库 最新最全的文档下载
当前位置:文档库 › 高中数学极化恒等式专题习题含答案(图片版)

高中数学极化恒等式专题习题含答案(图片版)

高中数学极化恒等式专题习题含答案(图片版)
高中数学极化恒等式专题习题含答案(图片版)

2020年高考数学《极化恒等式》

极化恒等式 例1:(2014年高考全国新课标II 卷文(理)科第4(3)题)设向量b a ,满足6,10=-=+b a b a ,则 b a ?等于 ( ) A.1 B. 2 C. 3 例2:(2014江苏)在平行四边形 ABCD 中,已知 , 2,3,5,8=?===BP AP PD CP AD AB 的取值范围是 1111,p 为正方形表面上的动点,当弦MN 最长时,PN PM ?的最大值为 秒杀秘籍:极化恒等式:()( )[] .122 b a b a b a --+= ?

的最小值等 一、求数量积的值 1. (2016年高考江苏卷第13题)如图,在ABC ?中,D 是BC 的中点,F E ,是AD 的两 个三等分点, 1,4-=?=?,则=?CE BE . 则=?AC AB . 2. (2012年高考浙江卷理科第15题)在ABC ?中,M 是BC 的中点,,10,3==BC AM 则=? . 3. (2011年高考上海卷理科第11题)在正ABC ?中,D 是BC 上的点,,1,3==BD AB ,4,3==AD AB P 为矩形ABCD 4. (2015年全国高中数学联赛四川赛区预赛第11题)在矩形ABCD 中,所在平面上一点,满足,21,2==PC PA 则=? . 二、界定数量积的取值范围 5. (2015年郑州市高三第一次质量预测理科第11题)在ABC Rt ?中,N M CB CA ,,3==是斜边AB 上的两个动点,且,2=MN 则CN CM ?的取值 范围为 ( ) A. ?? ????25,2 B. []4,2 C. []6,3 D. []6,4 三、探求数量积的最值 6. (2017年高考全国II 卷理科第12题)已知ABC ?是边长为2的等边三角形,P 为平面内一点,则() +?的最小值是 ( ) A. 2- B. 23- C. 3 4 - D. 1- 7.(2018?天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD=120°,AB=AD=1.若点E 为边CD 上的动点, 则的最小值为( ) A . B . C . D .3

高中数学经典例题错题详解

高中数学经典例题、错 题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性 上题答案应选 C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B 中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称;? 2、满足f(-x) = - f(x)?; 3、关于原点对称的区间上单调性一致;? 4、如果奇函数在x=0上有定义,那么有f(0)=0;? 5、定义域关于原点对称(奇偶函数共有的)

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

极化恒等式【原卷】

极化恒等式 例1:(2014年高考全国新课标II 卷文(理)科第4(3)题)设向量,a b 满足 a b a b +=-=,则a b ?等于 ( ) A.1 B. 2 C. 3 D. 5 例2:.设点P 是边长为2的△ABC 三边上的一动点,则()PA PB PC ?+u u u r u u u r u u u r 的取值范围是 例3:正方形1111ABCD A B C D -的棱长为2,MN 是它的内切球的一条弦(把球面上任意两点之间的 线段称为球的弦),P 为正方形表面上的动点,当弦MN 最长时,PM PN ?u u u u r u u u r 的最大值为

例4:△ABC 中,∠C=90?,AC=4,BC=3,D 是AB 的中点,E,F 分别是边BC ,AC 上的动点,且 EF=1,则DE DF ?u u u r u u u r 的最小值等 一、求数量积的值 1. (2016年高考江苏卷第13题)如图,在ABC ?中,D 是BC 的中点,,E F 是AD 的两个三等分 点,4,1BA CA BF CF ?=?=-u u u r u u u r u u u r u u u r ,则BE CE ?=u u u r u u u r . 2. (2012年高考浙江卷理科第15题)在ABC ?中,M 是BC 的中点,3,10,AM BC ==则 AB AC ?=u u u r u u u r . 3. (2011年高考上海卷理科第11题)在正ABC ?中,D 是BC 上的点,3,1,AB BD ==则 AB AD ?=u u u r u u u r 4. (2015年全国高中数学联赛四川赛区预赛第11题)在矩形ABCD 中,3,4,AB AD ==P 为矩形 ABCD 所在平面上一点,满足2,PA PC ==则PB PD ?=u u u r u u u r .

高中数学参数方程大题(带解答)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: sin cos

∴ y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. ( :(化为普通方程得:+ t=代入到曲线 sin =,)

,﹣ 4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,把 ∴圆心极坐标为; (1+2 , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.

(推荐)高中数学新课标测试题及答案

新课程标准考试数学试题 一、填空题(本大题共10道小题,每小题3分,共30分) 1、数学是研究(空间形式和数量关系)的科学,是刻画自然规 律和社会规律的科学语言和有效工具。 2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。 3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。 4、高中数学课程应注重提高学生的数学(思维)能力。 5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。 6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。 7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。 8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。 9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、

几何与(三角函数)的一种工具。 10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。 二、判断题(本大题共5道小题,每小题2分,共10分) 1、高中数学课程每个模块1学分,每个专题2学分。(错)改:高中数学课程每个模块2学分,每个专题1学分。 2、函数关系和相关关系都是确定性关系。(错) 改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。 3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。(对) 4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。(对) 5、教师应成为学生进行数学探究的领导者。(错) 改:教师应成为学生进行数学探究的组织者、指导者和合作者。 三、简答题(本大题共4道小题,每小题7分,共28分) 1、高中数学课程的总目标是什么? 使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

高中数学必修一 第一章 集合与常用逻辑用语 解答题专题训练 (17)-200807(解析版)

第一章集合与常用逻辑用语解答题专题训练 (17) 1.设A=[?1,1],B=[?2,2],函数f(x)=2x2+mx?1. (1)设不等式f(x)≤0的解集为C,当C?(A∩B)时,求实数m的取值范围; (2)若对任意x∈R,都有f(1?x)=f(1+x)成立,试求x∈B时,函数f(x)的值域; (3)设g(x)=2|x?a|?x2?mx(a∈R),求f(x)+g(x)的最小值. 2.已知数列{a n}满足:a1=1 2,a n+1=n+1 2n a n. (1)求数列{a n}的通项公式; (2)求数列{a n}前n项和S n; (3)若集合A={n|2?S n?n+2 n2+n λ}中含有4个元素,求实数λ的取值范围. 3.设n≥3,n∈N?,在集合{1,2,???,n}的所有元素个数为2的子集中,把每个子集的较大 元素相加,和记为a,较小元素之和记为b. (1)当n=3时,求a,b的值; (2)求证:对任意的n≥3,n∈N?,b a 为定值.

4.定义函数f a(x)=4x?(a+1)·2x+a,其中x为自变量,a为常数. (Ⅰ)若函数f a(x)在区间[0,2]上的最小值为?1,求a的值; (Ⅱ)集合A={x|f3(x)≥f a(0)},B={x|f a(x)+f a(2?x)=f2(2)},且(?R A)?B≠?,求a的取值范围. 5.已知数列{x n}:x1,x2,x3,…,x n,…,对于任意正整数m,n(n≠m,m>1),记满足不等式: x n?x m≥t(n?m)的t构成的集合为T(m). (1)若给定m=2,数列{x n}满足x n=n2,试求出集合T(2); (2)如果T(m)(m∈N?,m>1)均为相同的单元素集合,求证:数列{x n}为等差数列; (3)如果T(m)(m∈N?,m>1)为单元素集合,那么数列{x n}还是等差数列吗?如果是等差数列, 请给出证明;如果不是等差数列,请说明理由. 6.设p:“?x∈R,sinx≤a+2”;q:“f(x)=x2?x?a在区间[?1,1]上有零点”. (1)若p为真命题,求实数a的取值范围;(2)若p∨q为真命题,且p∧q为假命题,求实数a的 取值范围. 7.已知函数f(x)=x2?2ax+a+2, (1)若f(x)≤0的解集A?{x|0≤x≤3},求实数a的取值范围; (2)若g(x)=f(x)+|x2?1|在区间(0,3)内有两个零点x1,x2(x1

向量的极化恒等式与等和线的应用学生版

极化恒等式 ()2 22 2 2 2C C b b a a b a A A +?+=+== (1) () 2 22 2 2 2b b a a b a DB DB +?-=-== (2) (1)(2)两式相加得:?? ? ??+=??? ??+=+22222 2 22C AD AB b a DB A 结论:平行四边形对角线的平方和等于两条邻边平方和的两倍. 思考1:如果将上面(1)(2)两式相减,能得到什么结论呢 b a ?=()() ???? ??--+2241b a b a ————极化恒等式 对于上述恒等式,用向量运算显然容易证明。那么基于上面的引例,你觉得极化恒等式 的几何意义是什么 几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的 4 1. 即:[] 2 24 1DB AC b a -= ?(平行四边形模式) 思考:在图1的三角形ABD 中(M 为BD 的中点),此恒等式如何表示呢 因为AM AC 2=,所以2 2 4 1DB AM b a - =?(三角形模式) 例1.(2012年浙江文15)在ABC ?中,M 是BC 的中点,3,10AM BC ==,则AB AC ?= ____ . 目标检测 目标检测 例3.(2013浙江理7)在ABC ?中,0P 是边AB 上一定点,满足014 P B AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ?≥?。则( ) A . 90ABC ∠= B . 90BA C ∠= C . AB AC = D . AC BC = 例4. (2017全国2理科12)已知ABC ?是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ?+的最小是( ) A.2- B.32- C. 4 3 - D.1- 课后检测 1.在ABC ?中,60BAC ∠=若2AB =,3BC = ,D 在线段AC 上运动,DA DB ?的 A B C M

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

高中数学排列组合专题

排列组合 一.选择题(共5小题) 1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有() A.36种B.42种C.50种D.72种 2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有() A.8种 B.10种C.12种D.32种 3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是() A.72 B.120 C.144 D.168 4.现将甲乙丙丁4个不同的小球放入A、B、C三个盒子中,要求每个盒子至少放1个小球,且小球甲不能放在A盒中,则不同的放法有() A.12种B.24种C.36种D.72种 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有() A.300种B.240种C.144种D.96种 二.填空题(共3小题) 6.某排有10个座位,若4人就坐,每人左右两边都有空位,则不同的坐法有种. 7.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有种(用数字作答). 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的

插法共有种. 三.解答题(共8小题) 9.一批零件有9个合格品,3个不合格品,组装机器时,从中任取一个零件,若取出不合格品不再放回,求在取得合格品前已取出的不合格品数的分布列10.已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. 11.设f(x)=(x2+x﹣1)9(2x+1)6,试求f(x)的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和. 12.求(x2+﹣2)5的展开式中的常数项. 13.求值C n5﹣n+C n+19﹣n. 14.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的种数.(1)选5名同学排成一行; (2)全体站成一排,其中甲只能在中间或两端; (3)全体站成一排,其中甲、乙必须在两端; (4)全体站成一排,其中甲不在最左端,乙不在最右端; (5)全体站成一排,男、女各站在一起; (6)全体站成一排,男生必须排在一起; (7)全体站成一排,男生不能排在一起; (8)全体站成一排,男、女生各不相邻; (9)全体站成一排,甲、乙中间必须有2人; (10)全体站成一排,甲必须在乙的右边; (11)全体站成一排,甲、乙、丙三人自左向右顺序不变; (12)排成前后两排,前排3人,后排4人. 15.用1、2、3、4、5、6共6个数字,按要求组成无重复数字的自然数(用排列数表示).

高一数学专题测试一:集合(含答案)(打印版)

高一数学专题测试一 集合 时间:120分钟 满分:150分 一、选择题。(在每小题的四个选项中选出正确的一项,并在答题卡上将对应的选项用2B 铅笔涂黑,每小题5分,共50分。) 1.若{1,2}?A ?{1,2,3,4,5},则这样的集合A 有( ) A.6个 B.7个 C.8个 D.9个 2.设A={y|y=a2-6a+10,a ∈N*},B={x|x=b2+1,b ∈N*},则( ) A.A ?B B.A ∈B C.A=B D.B ?A 3.设A={x|x=6m+1,m ∈Z },B={y|y=3n+1,n ∈Z },C={z|z=3p-2,p ∈Z },D={a|a=3q2-2,q ∈Z },则四个集合之间的关系正确的是( ) A.D=B=C B.D ?B=C C.D ?A ?B=C D.A ?D ?B=C 4.A={a,a+b,a+2b},B={a,ac,ac2},若A=B ,则c 的值为( ) A.-1 B.-1或-0.5 C.-0.5 D.1 5.映射f:A →A 满足f(x)≠x ,若A={1,2,3},则这样的映射有( ) A.8个 B.18个 C.26个 D.27个 6.(2006·上海)M={x ∈R |(1+k2)x ≤4 k +4},对任意的k ∈R ,总有( ) A.2?M,0?M B.2∈M,0∈M C.2∈M,0?M D.2?M,0∈M 7.(2008·天津)设S={x||x-2|>3},T={x|a-1 8.设全集U={(x,y)|x,y ∈R },集合M={(x,y)| 3 2 y x --=1},N={(x,y)|y ≠x+1},那么(U M)∩ (U N)=( ) A. ? B.{(2,3)} C.(2,3) D.{(x,y)|y=x+1} 9.(2005·全国Ⅰ)设U 为全集,123,,S S S 为U 的三个非空子集且1S ∪2S ∪3S =U ,下列推断正确的是( ) A. U 1S ∩(2S ∪3S )=? B. U 1S ∩ U 2S ∩ U 3S =? C. 1S ?(U 2S ∩ U 3S ) D. 1S ?(U 2S ∪U 3S ) 10.集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A ∩B={-3},则a 的值是( ) A.0 B.-1 C.1 D.2 二、填空题。(将每小题的正确答案填在答题卷的对应位置的横线上,每小题5分,共25分。) 11.M={ 6 5a -∈N |a ∈Z },用列举法表示集合M=______. 12.A={x|x2=1},B={x|ax=1},B A ,则a 的值是______. 13.已知集合P 满足{}{}464P =, ,{}{}81010P =,,并且{}46810P ?,,,,则P=______. 14.某校有17名学生每人至少参加全国数学、物理、化学三科竞赛中的一种,已知其中参加数学竞赛的有11人,参加物理竞赛的有7人,参加化学竞赛的有9人,同时参加数学和物

极化恒等式

活跃在高考中的一个恒等式——极化恒等式 01何谓极化恒等式 ()() 14? ??= +--? ???22a b a b a b 三角形模型: 在 ABC 中,D 为BC 的中点: .?=-=-=-2 2 2 2 2 21 4 AB AC AD BD AD CD AD BC 平行四边形模型 在平行四边形ABCD 中:() ?=-221 4 AB AD AC BD 02极化恒等式应用 例1,(2017全国II ,理12)已知 ABC 是边长为2的等边三角形,P 为平面ABC 内一点, 则() ?+PA PB PC 的最小值是( ) A. 2- B. 32- C. 4 3 - D. 1- 解法1(坐标法): 以BC 所在直线为x 轴,BC 的中垂线y 轴建立平面直角坐标系,()()(1,0,1,0,3C A B -,设(),P x y ,则() 3,x y =-PA ()1,x y =---PB ,()1,x y =--PC ()() ()32,2x y x y ?+=-?--=PA PB PC ∴ 2 222 332+23222x y x y ?????=+-- ?????? ,

当且仅当30,x y ==30,2P ? ?? ,() ?+PA PB PC 取得最小值32-. 解法2(极化恒等式): 设BC 的重点为O ,OC 的中点为M ,连接OP ,PM , () 22?+=?=-=2 212PA PB PC PO PA PM AO ∴33 222 -≥-2PM , 当且仅当M 与P 重合始去等号. 例2在ABC 中,已知90,4,3,C AC BC D ∠===是AB 的中点,E ,F 分别是BC ,AC 上的动 点,且EF = 1,则?DE DF 的最小值为( ) A. 5154 C. 17 4 17 解法1(坐标法) 以AC 所在直线为x 轴,BC 所在直线为y 轴建立平面直角坐标系,则()()34,0,0,3,2,,2A B D ?? ??? 设()()0,,,0,E b F a 则221a b +=,332,,2,22b a ??? ?=--=-- ? ???? ?DE DF ,

专题34 极化恒等式(原卷版)

专题34 极化恒等式 专题知识梳理 1.公式推导 ()( ) ()( ) 2 2222 2222142a b a ab b ab a b a b a b a a b b ? +=++????=+--??????-=-+? r r r r r r r r r r r r r r r r r r 在△ABC 中,D 是边BC 的中点,则22 AB AC AD DB =-u u u r u u u u r u u u r u u u r g . D C B A 如图,由 ()() 22222 2111222AB AC AB AC AB AC AD CB AD DB ?????? =+--=-=- ??????????? u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r g 得证. 类比初中的“完全平方和”与“完全平方差公式”。 2.几何意义 向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的 14 。 考点探究 【例1】如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF → =-1则BE →·CE →的值是____.

【例2】如图,在同一平面内,点A 位于两平行直线m ,n 的同侧,且A 到m ,n 的距离分别为1,3,点B ,C 分别在m ,n 上,|AB →+AC →|=5,则AB →·AC → 的最大值是___.

题组训练 1.如图,在平面四边形ABCD 中,O 为BD 的中点,且OA =3,OC =5,若AB →·AD →=-7,则BC →·DC → 的值是____. 2.在△ABC 中,M 是边BC 的中点AM =3,BC =10,AB →·AC →=__ __. 3.在△ABC 中,点E ,F 分别是线段AB ,AC 的中点,点P 在直线EF 上,若△ABC 的面积为2,则PB →·PC →+BC → 2的最小值是____. 4.在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP →=AB →+λAC →,且BP →·CP → =1,则实数λ的值为__ _ 5.在半径为1的扇形AOB 中,∠AOB =60°,C 为弧上的动点,AB 与OC 交于点P ,则OP →·BP →的最小值是____. 6.已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,8AB =, 6CD =,则MA MB ?u u u r u u u r 的取值范围是 ▲ .

高中数学解析几何解答题专题训练 (1)(有解析)

高中数学解析几何解答题专题训练 (1) 一、解答题(本大题共30小题,共360.0分) 1. 已知椭圆E :x 2 a 2+ y 2b 2 =1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为√ 2 2,斜率为k 的直线 l 过F 1且与椭圆E 相交于A ,B 两点,△ABF 2的周长为8√2. (1)求椭圆E 的标准方程; (2)设线段AB 的中垂线m 交x 轴于N ,在以NA ,NB 为邻边的平行四边形NAMB 中,顶点M 恰好在椭圆E 上,求直线l 的方程. 2. 如图,设抛物线方程为x 2=2py(p >0),M 为直线y =?2p 上任 意一点,过M 引抛物线的切线,切点分别为A ,B . (Ⅰ)设线段AB 的中点为N ; (ⅰ)求证:MN 平行于y 轴; (ⅰ)已知当M 点的坐标为(2,?2p)时,|AB|=4√10,求此时抛物线的方程; (Ⅱ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线x 2=2py(p >0)上,其中,点C 满足OC ????? =OA ????? +OB ?????? (O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由. 3. 已知椭圆C :x 2 a 2+y 2=1(a >1)的左、右焦点分别为F 1,F 2,过点F 1的直线l 的倾斜角为锐角,P 为椭圆的上顶点,且PF 1⊥PF 2. (Ⅰ)求椭圆C 的方程;

(Ⅱ)若直线l与椭圆C交异于点P的两点A,B,且直线PA,PB与直线x+y?2=0分别交于不同两点M、N,当|MN|最小时,求直线l的方程. 4.已知椭圆M:x2 a +y2 b =1(a>b>0)的一个焦点与短轴的两端点组成一个正三角形的三个顶点, 且椭圆经过点N(√2,√2 2 ). (1)求椭圆M的方程; (2)若斜率为?1 2 的直线l1与椭圆M交于P,Q两点(点P,Q不在坐标轴上);证明:直线OP,PQ,OQ的斜率依次成等比数列. (3)设直线l2与椭圆M交于A,B两点,且以线段AB为直径的圆过椭圆的右顶点C,求ABC面积的最大值. 5.如图所示,在平面直角坐标系xOy中,已知椭圆E:x2 a +y2 b =1(a>b>0)的离心率为√3 2 ,A为 椭圆E上位于第一象限上的点,B为椭圆E的上顶点,直线AB与x轴相交于点C,|AB|=|AO|,△BOC的面积为√3. (1)求椭圆E的标准方程; (2)设直线l过椭圆E的右焦点,且与椭圆E相交于M,N两点(M,N在直线OA的同侧),若∠CAM=∠OAN,求直线l的方程.

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

极化恒等式(矩形大法)

极化恒等式与矩形大法 一、 知识清单 1. 极化恒等式:如图,AB AC 2AD += ① A B A C CB -= ②,则: ①2 +②2 得:222 2 42++=AB AD BC AC ;①2-②2 得:22 44-=?AB AD BC AC 推广:222 2 +-=???=AB AB AC cosA AB AC BC AC 速记方法:22()() 4a b a b a b +--?==,22 22()()2 a b a b a b +-+=+= 2. 矩形大法:如图,由极化恒等式可得 222 2 4PD PB 2PO BD ++=①2222 4PA PC 2 PO AC ++= ② 因为BD=AC ,所以2222+=+PD PB PA PC , 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有22 2 2 2 2 BD ()2 AC -+-+=PA PC PD PB 推广2:若P 为平面外一点,上述性质仍成立。 二、 典型例题 1.(2012浙江文15)在ABC ?中,M 是BC 的中点,3AM =,10BC =,则A B A C ?= _________. 解析:由极化恒等式有:22 4AB 164 AM BC AC -= ?=- 2. (2013浙江理7)在ABC ?中,0P 是边AB 上一定点,满足01 4 P B AB =,且对于边AB 上任一点P , 恒有00 PB PC P B PC ?≥?。则( ) A.90ABC ∠= B. 90BAC ∠= C.AB AC = D. AC BC = 解析:D 为BC 中点,由极化恒等式有:22 4PB 4 PD BC PC -?=则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量,,a b e 是平面向量,e 是单位向量. 2,3,0,()1a b a b e a b ===?-++求a b -的范围? 解析:由0,()1a b e a b =?-++得0()()a e b e =-?- 如图,,,OA a OB b OE e === ,构造矩形ACBE ,由矩形大法有 2222OE OC OA OB +=+,则OC = [,]1]a b AB CE OC OE OC OE -==∈-+=

极化恒等式专题(含试题详解)

极化恒等式作业详解 1. 在三角形ABC 中,D 为AB 中点,90,4,3C AC BC ?∠===,E,F 分别为BC,AC 上的动点,且EF=1,则DE DF ?u u u r u u u r 最小值为______ 【答案】154 【解析】 设EF 的中点为M ,连接CM ,则1||2CM = ,即点M 在如图所示的圆弧上, 则222211115||||||||4244 DE DF DM EM DM CD ?=-=---=u u u r u u u r u u u u r u u u u r u u u u r ≧ 2. 设三角形ABC ,P 0是边AB 上的一定点,满足P 0B= 14 AB,且对于边AB 上任一点P ,恒有00PB PC P B PC ?≥?u u u r u u u r u u u r u u u r ,则三角形ABC 形状为_______. 【答案】C 为顶角的等腰三角形. 【解析】 取BC 的中点D ,连接PD,P 0D.00PB PC P B PC ??u u u r u u u r u u u r u u u r Q … 2222011||||||44 PD BC P b BC ∴--u u u r u u u r u u r u u u r r …0||PD P D ∴u u u r r r … 0P D AB ∴⊥,设O 为BC 的中点,OC AB AC BC ∴⊥∴= 即三角形ABC 为以C 为顶角的等腰三角形. 3. 已知ABC ?是边长为2的等边三角形,P 为平面ABC 内一 点,则 ()PA PB PC ?+u u u r u u u r u u u r 的最小值是_____ 【答案】32 - 【解析】设BC 的中点为O ,OC 的中点为M,连接OP,PM, 222133()22||||2||222 PA PB PC PO PA PM AO PM ∴?+=?=-=-≥-u u u r u u u r u u u r u u u r u u u r u u u u r u u u r u u u u r 当且仅当M 与P 重合时取等号 4. 直线0ax by c ++=与圆22 0:16x y +=相交于两 点M,N,若222c a b =+,P 为圆O 上任意一点,则PM PN ?u u u u r u u u r 的取值范围为_______

高中文科数学高考解答题解法总结及专项训练资料

数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.在高考考场上,能否做好解答题,是高考成败的关键,因此,在高考备考中学会怎样解题,是一项重要的内容.从历年高考看这些题型的命制都呈现出显著的特点和解题规律,从阅卷中发现考生“会而得不全分”的大有人在,针对以上情况,本节就具体的题目类型,来谈一谈解答数学解答题的一般思维过程、解题程序和答题格式,即所谓的“答题模板”. “答题模板”就是首先把高考试题纳入某一类型,把数学解题的思维过程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最佳方案,实现答题效率的最优化. 【常见答题模板展示】 模板一 三角函数的图像与性质 试题特点:通过升、降幂等恒等变形,将所给三角函数化为只含一种函数名的三角函数(一般化为,然后再研究三角函数的性质,如单调性、奇偶 性、周期性、对称性、最值等. 求解策略:观察三角函数中函数名称、角与结构上的差异,确定三角化简的方向. 例1【河北省冀州市高三一轮复习检测一】已知向量,,设函数. (Ⅰ)求函数取得最大值时取值的集合; (Ⅱ)设,,为锐角三角形的三个内角.若,,求的值。 思路分析:(Ⅰ)首先运用三角恒等变换(如倍角公式、两角和与差的正弦余弦公式)对其进行化简,然后运用三角函数的图像及其性质即可得出取得最大值所满足的取值的集合;(Ⅱ)由题意可得然后运用已知条件可得出角的大小,再由同角三角函数的基本关系可得,最后由两角和的正弦公式即可得出所求的结果. 解析:(Ⅰ)sin()(0,0)y A x k A ω?ω= ++≠ ≠1 (cos 2cos )2m x x x =-u r 1 cos )2 n x x =-r ()f x =m n u r r g ()f x x A B C ABC 3cos 5B =1 ()4 f C =-sin A ()f x x sin(2)3C π -=C sin B 21 ()cos 2cos )2 f x x x x =+-高中文科数学高考解答题解题方法总结

向量的极化恒等式与等和线的应用学生版

向量的极化恒等式与等和线的应用学生版 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

极化恒等式 ()2 22 2 2 2C C b b a a b a A A +?+=+== (1) () 2 22 2 2 2b b a a b a DB DB +?-=-== (2) (1)(2)两式相加得:?? ? ??+=??? ??+=+22222 2 22C AD AB b a DB A 结论:平行四边形对角线的平方和等于两条邻边平方和的两倍. 思考1:如果将上面(1)(2)两式相减,能得到什么结论呢 b a ?=()() ???? ?? --+2241b a b a ————极化恒等式 对于上述恒等式,用向量运算显然容易证明。那么基于上面的引例,你觉得极化恒等式的几何意义是什么 几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的4 1. 即:[] 2 24 1DB AC b a -= ?(平行四边形模式) 思考:在图1的三角形ABD 中(M 为BD 的中点),此恒等式如何表示呢 因为AM AC 2=,所以2 2 4 1DB AM b a - =?(三角形模式) 例1.(2012年浙江文15)在ABC ?中,M 是BC 的中点,3,10AM BC ==,则 AB AC ?=____ . 目标检测 目标检测 例3.(2013浙江理7)在ABC ?中,0P 是边AB 上一定点,满足01 4 P B AB =,且对于边AB 上任一点P ,恒有00 PB PC P B PC ?≥?。则( ) A . 90ABC ∠= B . 90BAC ∠= C . AB AC = D . AC BC = A B C M

相关文档