文档库 最新最全的文档下载
当前位置:文档库 › 多摩川旋转编码器与旋转变压器选型手册

多摩川旋转编码器与旋转变压器选型手册

多摩川旋转编码器与旋转变压器选型手册
多摩川旋转编码器与旋转变压器选型手册

油浸电力变压器设计手册-沈阳变压器(1999) 6负载损耗计算

目录 1 概述SB-007.6 第 1 页 2 绕组导线电阻损耗(P R)计算SB-007.6 第 1 页 3 绕组附加损耗(P f)计算SB-007.6 第1页3.1 层式绕组的附加损耗系数(K f %)SB-007.6 第 1 页3.2 饼式绕组的附加损耗系数(K f %)SB-007.6 第 2 页3.3 导线中涡流损耗系数(K w %)计算SB-007.6 第 2 页 3.3.1 双绕组运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 2 页3.3.2 降压三绕组变压器联合运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 3 页 SB-007.6 第3 页3.3.3 升压三绕组(或高-低-高双绕组)变压器联合运行方式的最大纵向漏 磁通密度(B m)计算 3.3.4 双绕组运行方式的涡流损耗系数(K w %)简便计算SB-007.6 第4 页3.4 环流损耗系数(K C %)计算SB-007.6 第 4 页3. 4.1 连续式绕组的环流损耗系数(K C %)计算SB-007.6 第4 页3.4.2 载流单螺旋―242‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第5 页 SB-007.6 第5 页3.4.3 非载流(处在漏磁场中间)单螺旋―242‖换位的绕组环流损耗系数 (K C2 %)计算 3.4.4 载流双螺旋―交叉‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第6 页 SB-007.6 第7 页3.4.5 非载流(处在漏磁场中间)双螺旋―交叉‖ 换位的绕组环流损耗 系数(K C2 %)计算 4引线损耗(P y)计算SB-007.6 第7 页5杂散损耗(P ZS)计算SB-007.6 第8 页5.1小型变压器的杂散损耗(P Z S)计算SB-007.6 第8 页5.2中大型变压器的杂散损耗(P Z S)计算SB-007.6 第9 页5.3 特大型变压器的杂散损耗(P Z S)计算SB-007.6 第10 页

旋转变压器基础知识

旋转变压器是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输 出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成 线性关系。它主要用于坐标变换、三角运算和角度数据传输,也可以作为两相移相器用在角度 --数字转换装 置中。 按输出电压与转子转角间的函数关系 ,我所目前主要生产以下三大类旋转变压器: 1. 正--余弦旋转变压器(XZ )----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2. 线性旋转变压器(XX )、( XDX ----其输出电压与转子转角成线性函数关系。 线性旋转变压器按转子结构又分成隐极式和凸极式两种, 前者(XX )实际上也是正--余弦旋转变压器, 不同的是采用了特定的变比和接线方式。后者( XDX 称单绕组线性旋转变压器。 变化的交变电压信号。 应电势的幅值,便可间接地得到转子相对于定子的位置,即 角的大小。 以上是两极绕组式旋转变压器的基本工作原理, 在实际应用中,考虑到使用的方便性和检测精度等因素, 常采用四极绕组式旋转变压器。这种结构形式的旋转变压器可分为鉴相式和鉴幅式两种工作方式。 1. 鉴相式工作方式 鉴相式工作方式是一种根据旋转变压器转子绕组中感应电势的相位来确定被测位移大小的检测方式。如 图4-4所示,定子绕组和转子绕组均由两个匝数相等互相垂直的绕组组成。 图中SS 2为定子主绕组,K 1K 2 为定子辅助绕组。当 S 1S 2 和 K 1K 2中分别通以交变激磁电压时 V s = V m Cos t (4 3);V = V sin t (4—4)4) t (4 3);V s =V m Sin t (4 4) 根据线性叠加原理,可在转子绕组 感应电势 V BS 和V BK 之和,即 比例式旋转变压器(XL ) ----其输出电压与转角成比例关系。 二、旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子 当激磁电压加到定子绕组时,通过电磁耦合, 3. 原理图。图中Z 为阻抗。设加在定子绕组 (旋转一周)之间空气间隙内磁通分布符合正弦规律, 因此, 转子绕组便产生感应电势。图 4-3为两极旋转变压器电气工作 的激磁电压为 V S 《sin t 图4-3两极旋转变压器 根据电磁学原理,转子绕组 B 1B 2 V B KV s sin KV m sin sin t 式中K ――旋转变压器的变化; (4 — 1) 中的感应电势则为 4— 2) (4— 2) V m — V s 的幅值; ――转子的转角,当转子和定子的磁轴垂直时, 安装在机床丝杠上,定子安装在机床底座上,则 的角度,它间接反映了机床工作台的位移。 =0。如果转子 角代表的是丝杠转过 由式(4 — 2)可知,转子绕组中的感应电势 V B 为以角速度3随时间 t 其幅值 KV m sin 随转子和定子的相对角位移 以正弦函数变化。因此,只要测量出转子绕组中的感 (4— 4) Bl B 2 中得到感应电 势 V s 和 V k 在 Bl B 2 中产生

旋转变压器基础知识

旋转变压器是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。它主要用于坐标变换、三角运算和角度数据传输,也可以作为两相移相器用在角度--数字转换装置中。 按输出电压与转子转角间的函数关系,我所目前主要生产以下三大类旋转变压器: 1. 正--余弦旋转变压器(XZ )----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2. 线性旋转变压器(XX )、(XDX )----其输出电压与转子转角成线性函数关系。 线性旋转变压器按转子结构又分成隐极式和凸极式两种,前者(XX )实际上也是正--余弦旋转变压器,不同的是采用了特定的变比和接线方式。后者(XDX )称单绕组线性旋转变压器。 3. 比例式旋转变压器(XL )----其输出电压与转角成比例关系。 二、 旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子(旋转一周)之间空气间隙内磁通分布符合正弦规律,因此,当激磁电压加到定子绕组时,通过电磁耦合,转子绕组便产生感应电势。图4-3为两极旋转变压器电气工作原理图。图中Z 为阻抗。设加在定子绕组的激磁电压为 sin ω=- S m V V t (4—1) 图 4-3 两极旋转变压器 根据电磁学原理,转子绕组12B B 中的感应电势则为 sin sin sin θθω== (4-2)B s m V KV KV t (4—2) 式中K ——旋转变压器的变化;—的幅值m s V V ; θ——转子的转角,当转子和定子的磁轴垂直时,θ=0。如果转子 安装在机床丝杠上,定子安装在机床底座上,则θ角代表的是丝杠转过 的角度,它间接反映了机床工作台的位移。 由式(4-2)可知,转子绕组中的感应电势 B V 为以角速度ω随时间t 变化的交变电压信号。 其幅值 sin θm KV 随转子和定子的相对角位移θ以正弦函数变化。因此,只要测量出转子绕组中的感 应电势的幅值,便可间接地得到转子相对于定子的位置,即θ角的大小。 以上是两极绕组式旋转变压器的基本工作原理,在实际应用中,考虑到使用的方便性和检测精度等因素,常采用四极绕组式旋转变压器。这种结构形式的旋转变压器可分为鉴相式和鉴幅式两种工作方式。 1.鉴相式工作方式 鉴相式工作方式是一种根据旋转变压器转子绕组中感应电势的相位来确定被测位移大小的检测方式。如 图4-4所示,定子绕组和转子绕组均由两个匝数相等互相垂直的绕组组成。图中12S S 为定子主绕组,12 K K 为定子辅助绕组。当12S S 和12K K 中分别通以交变激磁电压时 s m V V cos (43);V V sin (44)ωω--= = t t (4—3) s m (43);V V sin (44)ω-- = t t (4—4) 根据线性叠加原理,可在转子绕组12B B 中得到感应电势B V ,其值为激磁电压s V 和k V 在12B B 中产生 感应电势BS V 和BK V 之和,即

旋转变压器与编码器的区别

从原理上讲,旋转变压器是采用电磁感应原理工作,随着旋转变压器的转子和定子角位置不同,输出信号可以实现对输入正弦载波信号的相位变换和幅值调制,最终由专用的信号处理电路或者某些具备一定功能接口的DSP和单片机,根据输出信号的幅值和相位与正弦载波信号的关系,解析出转子和定子间的角位置关系。 旋转变压器有单对极和多对极之分,n对极的又被习惯地称为n倍速。在一个极对的角度范围内(单对极就是一整圈),旋转变压器信号经处理后的结果一般都具有反映绝对位置的特性,即可反映当前角位置是处于0~360度(电角度)中的多少度上。目前商用分辨率可以做到2的12次方以上,直至2的16次方,再高就比较困难了。 典型的旋转变压器本体由硅钢片和漆包线构成,不包含任何电子元件,因而抗震能力和温度特性极佳,因而其抗恶劣环境的工作能力远胜于普通旋转编码器,在军工产品中具有广泛应用。 典型的旋转编码器采用光栅原理,用光电方法进行角位置检测,又可分为增量式和绝对式等类型. 旋转变压器 简称旋变,是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。 按励磁方式分,多摩川旋转变压器分BRT和BRX两种,BRT是单相励磁两相输出;BRX是双相励磁单相输出。用户往往选择BRT型的旋变,因为它易于解码。 有增量型和绝对型 增量型只是测角位移(间接为角速度)增量,以前一时刻为基点.而绝对型测从开始工作后角位移量. 增量型测小角度准,大角度有累积误差 绝对型测小角度相对不准,但大角度无累积误差 说简单点的编码器更精确采用的是脉冲计数旋转变压器就不是脉冲技术而是模拟量反馈 据我所知区别如下:1、编码器多是方波输出的,旋变是正余弦的,通过芯片解算出相位差。2、旋变的转速比较高,可以达到上万转,编码器就没那么高了。 3、旋变的应用环境温度是-55到+155,编码器是-10到+70。 4、旋变一般是增量的。根本区别在于:数字信号和模拟正弦或余弦信号的的区别。resolver 有2组信号,可以分别处理成增量信号和绝对值型号。今后会越来越多地得到推广使用。

2013.7-多摩川编码器总结

2013.7 多摩川编码器总结 一、摘要 基于CPLD 和DSP 实现CPLD 与多摩川编码器的通讯,通过对编码器发送请求,得到编码器发回的数据并进行解码,得到绝对位置值。 二、学习步骤: 1、熟悉工作环境,掌握Modelsim 以及Quartus 的使用。 2、阅读多摩川编码器的通讯协议。 3、根据协议编写testbench ,并在Modelsim 上进行仿真调试。 4、仿真通过后,通过Quartus 编译后下载到CPLD 上并与编码器通讯,实际情况下运行。 5、完成各项要求的功能。 6、对代码进行优化,尽可能减少资源占用。 7、验收。 三、总体结构 双绞线,差分式,串行 地址/数据总线接口 RO,DI,DIR逻辑信号 结构分三部分:多摩川编码器,CPLD ,DSP 。 1、编码器跟CPLD 之间通过MAX485电平转换进行连接。 2、CPLD 与DSP 则通过总线进行连接(这一部分结构编写学长已经完成并且提供了端口连接) 3、主要工作是CPLD 的解码部分。 四、通讯协议 1、TS5668的技术指标:(物理层) 精度:单圈精度: 17位(131 072) 多圈精度: 16位(65 536) 最高转速/ ( r ·min - 1 ): 6 000】 输出:差分NRZ 编码二进制 传输速度/Mbp s : 2. 5 发送、接收电路:差分形式 通信方式:主从模式 接口:3FG ,4sig+ ,5sig -,7VCC ,8DGND 。4和5为差分信号接口。 2、通信步骤如下图:(逻辑链路层) 1)CPLD 向编码器发送一个控制字CF 2)3us 后编码器返回数据包。 3)CPLD 对数据包进行解码,并将得到的数据放在总线上,等待DSP 获取。 具体流程如下图:

曳引机使用说明书

曳引机使用说明书 安全可靠人性创新 永磁同步无齿轮曳引机 MTA50000AB

序言 感谢您使用该系列永磁同步无齿轮曳引机产品! 永磁同步电机技术作为一种电动机新技术应用于电梯曳引机领域开始于二十世纪九十年代,它带来了一次电梯公司形式上的革命。该系列永磁同步无齿轮曳引机采用盘式制动器、内转子型式。 本公司研发的永磁同步无齿轮曳引机的各项指标设计均符合国家相关规定,每台曳引机出厂前都经过严格的质量检验,对制动力、绝缘耐压、振动、噪音等各项指标进行了全面的检测,从而保证产品的质量和性能符合标准规定。 此手册为产品的一部分,旨在为用户正确使用无齿轮曳引机并提供曳引机安装、保养方面的指导,请务必妥善保管于安全的地方,以方便服务人员使用。在对机器进行安装、调试、使用、维修前,请务必阅读并理解此手册的内容。对不按此手册或不按我公司工程人员指导进行违规操作所产生的所有后果,我公司有权不予承担。 我公司拥有对本手册及其所包含信息的所有权,并有权对手册内容进行版本更新,而不另行通知。 严禁任何单位和个人,不经本公司同意复制部分或全部内容,用于同行业产品的说明和介绍。

目录 序言 一安全 ........................................................................................................ - 1 -二产品说明 ................................................................................................ - 1 -2.1曳引机介绍 (1) 2.2曳引机工作条件 (1) 2.3防护等级 (1) 2.4产品型号 (2) 2.5外形安装尺寸 (2) 2.6备件 (3) 三运输、仓储及吊装 ................................................................................. - 3 -四安装 ........................................................................................................ - 4 -4.1使用前检查 (4) 4.2安装注意事项 (4) 4.3远程松闸手动装置的安装及使用说明 (4) 4.3.1 安装 ................................................................................................ - 4 - 4.3.2 使用说明 ........................................................................................ - 5 -

多摩川产品资料说明

陀螺仪: 可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。 1、体积小、重量轻。适合于对安装空间和重量要求苛刻的场合,例如弹载测量等。 2、低成本。 3、高可靠性。内部无转动部件,全固态装置,抗大过载冲击,工作寿命长。 4、低功耗。 5、大量程。适于高转速大g值的场合。 6、易于数字化、智能化。可数字输出,温度补偿,零位校正等。 测速发电机: 输出电动势与转速成比例的微特电机。测速发电机的绕组和磁路经精确设计,其输出电动势 E 和转速 n 成线性关系,即 E=Kn,K 是常数。改变旋转方向时输出电动势的极性即相应改变。在被测机构与测速发电机同轴联接时,只要检测出输出电动势,就能获得被测机构的转速,故又称速度传感器。 测速发电机广泛用于各种速度或位置控制系统。在自动控制系统中作为检测速度的元件,以调节电动机转速或通过反馈来提高系统稳定性和精度;在解算装置中可作为微分、积分元件,也可作为加速或延迟信号用或用来测量各种运动机械在摆动或转动以及直线运动时的速度。 电子凸轮: 利用角度位置传感器来模拟机械凸轮各控制点的角度范围,并能独立输出各自的控制信号,此种设备称为电子凸轮,包含“机械凸轮+微动开关”的基本功能。 ?可以输出多路控制开关量(ON/OFF),且每路都可以独立预设起始、终止角度。 ?可以动态检测和显示实际运行角度,对设备运行和再调整实时检测。 ?可以随时修改预设角度,且每一路均有 LED 状态指示,“开态”点亮,“关态”熄灭。 ?各路输出信号在电气上相互隔离,抗干扰能力强,可靠性高。 ?动作精度可达到1°typical 轨迹球: 外型尺寸:1、1.4、2、3英寸 输出方式:PS2、USB、方波、脉冲输出

旋转变压器与编码器的区别

旋转变压器与编码器的区 别 The Standardization Office was revised on the afternoon of December 13, 2020

从原理上讲,旋转变压器是采用电磁感应原理工作,随着旋转变压器的转子和 定子角位置不同,输出信号可以实现对输入正弦载波信号的相位变换和幅值调 制,最终由专用的信号处理电路或者某些具备一定功能接口的DSP和单片机, 根据输出信号的幅值和相位与正弦载波信号的关系,解析出转子和定子间的角 位置关系。 旋转变压器有单对极和多对极之分,n对极的又被习惯地称为n倍速。在一个 极对的角度范围内(单对极就是一整圈),旋转变压器信号经处理后的结果一 般都具有反映绝对位置的特性,即可反映当前角位置是处于0~360度(电角 度)中的多少度上。目前商用分辨率可以做到2的12次方以上,直至2的16 次方,再高就比较困难了。 典型的旋转变压器本体由硅钢片和漆包线构成,不包含任何电子元件,因而抗 震能力和温度特性极佳,因而其抗恶劣环境的工作能力远胜于普通旋转编码 器,在军工产品中具有广泛应用。 典型的旋转编码器采用光栅原理,用光电方法进行角位置检测,又可分为增量 式和绝对式等类型. 旋转变压器 简称旋变,是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。 按励磁方式分,多摩川旋转变压器分BRT和BRX两种,BRT是单相励磁两相输出;BRX是双相励磁单相输出。用户往往选择BRT型的旋变,因为它易于解码。 有增量型和绝对型 增量型只是测角位移(间接为角速度)增量,以前一时刻为基点.而绝对型测从开始工作后角位移量. 增量型测小角度准,大角度有累积误差

电力变压器手册.doc

变压器是一种通过改变电压而传输交流电能的静止感应电器。它有一个共同的铁心和与其交链的几个绕组,且它们之间的空间位置不变。当某一个绕组从电源接受交流电能时,通过电感生磁、磁感生电的电磁感应原理改变电压(电流),在其余绕组上以同一频率、不同电压传输出交流电能。因此,变压器的主要结构就是铁心和绕组。 铁心和绕组组装了绝缘和引线之后组成了变压器的器身。器身一般装在油箱或外壳之中,再配置调压、冷却、保护、测温和出线装置,就成为变压器的结构整体。 变压器分为电力变压器和特种变压器。电力变压器又分为油浸式和干式两种。目前,油浸式变压器用作升压变压器、降压变压器、联络变压器和配电变压器,干式变压器只在部分配电变压器中采用。 电力变压器可以按绕组耦合方式、相数、冷却方式、绕组数、绕组导线材质和调压方式分类。如称为单相变压器、双绕组变压器等。但是这样的分类包含不了变压器的全部特征,所以在变压器型号中往往要把所有的特征表达出来,并标记以额定容量和高压绕组额定电压等级。 图示是电力变压器产品型号的表示方法。 □□□□□□□□-□/□□-防护代号(一般不标,TH-湿热,TA-干热) 高压绕组额定电压等级(KV) 额定容量(KV A) 设计序号(1、2、3…;半铜半铝加b) 调压方式(无励磁调压不标,Z-载调压) 导线材质(铜线不标,L-铝线) 绕组数(双绕组不标,S-绕组,F-分裂绕组) 循环方式(自然循环不标,P-强迫循环) 冷却方式(J-油浸自冷,亦可不标;G-干式空气 自冷,C-干式浇注绝缘,F-油浸风冷, S-油浸水冷) 相数(D-单相,S-三相) 绕组耦合方式(一般不标,O-自耦)(1)相数和额定频率 变压器分单相和三相两种。一般均制成三相变压器以直接满足输配电的要求,小型变压器有制成单相的,特大型变压器做成单相后组成三相变压器组,以满足运输的要求。 (2)额定电压、额定电压组合和额定电压比 a.、额定电压变压器的一个作用就是改变电压,因此额定电压是重要数据之一。 变压器的额定应与所连接的输变电线路电压相符合,我国输变电线路电压等级(KV)为0.38、3、6、10、15(20)、35、63、110、220、330、500 输变电线路电压等级就是线路终端的电压值,因此连接线路终端变压器一侧的额定电压与上列数值相同。线路始端(电源端)电压考虑了线路的压降将比等级电压为高。 35KV以下电压等级的始端电压比电压等级要高5%,而35KV.及以上的要高10%,因此变压器的额定电压也相应提高。线路始端电压值(KV)为 0.4、3.15、6.3、10.5、15.75、38.5、69、121、242、363、550 由此可知,高压额定电压等于线路始端电压的变压器为升压变压器,等于线路终端电压(电压等级)的变压器为降压变压器。 变压器产品系列是以高压的电压等级而分的,现在电力变压器的系列分为 10KV及以下系列、35KV系列、63KV系列、110KV系列和220KV系列等。

油浸电力变压器温升计算设计手册

设计手册 油浸电力变压器温升计算

目 录 1 概述 第 1 页 热的传导过程 第 1 页 温升限值 第 2 页 1.2.1 连续额定容量下的正常温升限值 第 2 页 1.2.2 在特殊使用条件下对温升修正的要求 第 2 页 1.2.2.1 正常使用条件 第 2 页 1.2.2.2 安装场所的特殊环境温度下对温升的修正 第 2 页 1.2.2.3 安装场所为高海拔时对温升的修正 第 3 页 2 层式绕组的温差计算 第 3 页 层式绕组的散热面(S q c )计算 第 3 页 层式绕组的热负载(q q c )计算 第 3 页 层式绕组的温差(τq c )计算 第 4 页 层式绕组的温升(θqc )计算 第 4 页 3 饼式绕组的温升计算 第 4 页 饼式绕组的散热面(S q b )计算 第 4 页 3.1.1 饼式绕组的轴向散热面(S q bz )计算 第 4 页 3.1.2 饼式绕组的横向散热面(S q b h )计算 第 5 页 饼式绕组的热负载(q q b )计算 第 5 页 饼式绕组的温差(τq b )计算 第 5 页 3.3.1 高功能饼式绕组的温差(τq g )计算 第 5 页 3.3.2 普通饼式绕组的温差(τq b )计算 第 6 页 饼式绕组的温升(θq b )计算 第 7 页 4 油温升计算 第 8 页 箱壁几何面积(S b )计算 第 8 页 箱盖几何面积(S g )计算 第 9 页 版 次 日 期 签 字 旧底图总号 底图总号 日期 签字 油 浸 电 力 变 压 器 温 升 计 算 共 页 第 页 02 01

油箱有效散热面(S yx )计算 第 9 页 4.3.1 平滑油箱有效散热面(S yx )计算 第 9 页 4.3.2 管式油箱有效散热面(S yx )计算 第10 页 4.3.3 管式散热器油箱有效散热面(S yx )计算 第12 页 4.3.4 片式散热器油箱有效散热面(S yx )计算 第14 页 目 录 油平均温升计算 第19 页 4.4.1 油箱的热负载(q yx )计算 第19 页 4.4.2 油平均温升(θy )计算 第19 页 顶层油温升计算 第19 页 5 强油冷却饼式绕组的温升计算 第21 页 强油导向冷却方式的特点 第21 页 5.1.1 线饼温度分布 第21 页 5.1.2 横向油道高度的影响 第21 页 5.1.3 纵向油道宽度的影响 第21 页 5.1.4 线饼数的影响 第21 页 5.1.5 挡油隔板漏油的影响 第21 页 5.1.6 流量的影响 第21 页 强油冷却饼式绕组的热负载(q q p )计算 第22 页 强油冷却饼式绕组的温差(τq p )计算 第23 页 强油冷却饼式绕组的温升(θq p )计算 第23 页 强油风冷变压器本体的油阻力(ΔH T )计算 第23 页 5.5.1 油管路的油阻力(ΔH g )计算 第23 页 5.5.1.1 油管路的摩擦油阻力(ΔH M )计算 第23 页 5.5.1.2 油管路特殊部位的形状油阻力(ΔH X )计算 第24 页 5.5.1.3 油管路的油阻力(ΔH g )计算 第25 页 5.5.2 线圈内部的油阻力(ΔH q )确定 第26 页 5.5.2.1 线圈内部的摩擦油阻力(ΔH q m )计算 第26 页 5.5.2.2 线圈内部特殊部位的形状油阻力(ΔH qT )计算 第27 页 油 浸 电 力 变 压 器 温 升 计 算 共 页 第 页 02 02

旋转变压器分类及接口电路

摘要:本文简要介绍编码器、旋转变压器应用特点和接口方法,其中重点介绍产品通信协议和硬件接口电路以及专用的接收芯片AU5561应用方法。 编码器发展历史 早期的编码器主要是旋转变压器,旋转变压器IP值高,能在一些比较恶劣的环境条件下工作,虽然因为对电磁干扰敏感以及解码复杂等缺点而逐渐退出,但是时至今日,仍然有其特有的价值,比如作为混合动力汽车的速度反馈,几乎是不可代替的,此外在环境恶劣的钢铁行业、水利水电行业,旋转变压器因为其防护等级高同样获得了广泛的应用。随着半导体技术的发展,后来便有霍尔传感器和光电编码器,霍尔传感器精度不高但价格便宜,而且不能耐高温,只适合用在一些低端场合,光电编码器正是由于克服了前面两种编码器的缺点而产生,它精度高,抗干扰能力强,接口简单使用方便因而获得了最广泛的应用。 编码器的生产厂家很多,这里以多摩川的产品为例进行介绍。 下面以旋转变压器、增量式编码器、绝对式编码器为例逐一进行介绍。 旋转变压器 简称旋变是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。 按励磁方式分,多摩川旋转变压器分BRT和BRX两种,BRT是单相励磁两相输出;BRX是双相励磁单相输出。用户往往选择BRT型的旋变,因为它易于解码。 旋转变压器解码 图4旋转变压器电气示意图。 旋变的输入输出电压之间的具体函数关系如下所示: 设转子转动角度为θ,初级线圈电压(即励磁电压):ER1-R2=E*Sin2πft f:励磁频率,E:信号幅度 那么输出电压ES1-S3=K*E*Sin2πft*Cosθ; ES2-S4=K*E*Sin2πft*Sinθ K:传输比, θ:转子偏离原点的角度 令θ=ωt,即转子做匀速运动,那么其输出信号的函数曲线可表示为图5所示, 图中信号频率为f,即励磁信号频率,最大幅度为E,包络信号为Sinωt和Cosωt,解码器就是通过检测这两组输出信号获取旋变位置信息的。 不难看出,励磁频率越高,旋变解码精度也就越高,而励磁电压幅度则对解码没有很明显的影响。只需达到一定的电压数值即可,一般来讲3V~1.2倍额定电压都可满足解码需求。 多摩川为自己的旋变开发了专门的解码芯片AU6802N1,并且艾而特公司有现成的解码板可供使用,解码板支持10KHZ励磁频率,0.5的传输比,可以同时提供增量式和绝对式信号输出,增量式输出

多摩川编码器

ROTARY ENCODERS FA-CODER ? OIH35

ROTARY ENCODERS to high resolution are available to meet all of the requirements. High performance encoders supported by these high disk pro- ducing techniques are available. FA-CODER ?

Super-precision angle index device HISTORY OF ENCODER DEVELOPMENT AT TAMAGAWA SEIKI SPECIFICATION LIST (INCREMENTAL) SPECIFICATION LIST (ABSOLUTE) INDIVIDUAL SPECIFICATION (INCREMENTAL) INDIVIDUAL SPECIFICATION (ABSOLUTE) NOTICE IN TRANSMITTING TRANSMITTING DISTANCE HOW TO USE ENCODER CONTROL SIGNAL CONVERSION TIME NOTICE IN HANDLING MOUNTING WAY DEFINITIONS COUPLING SPECIFICATION MOUNTING PLATE ANGLE CONVERSION LIST I N D E X 2

1970 S45 1975 S50 1980 S55 1985 S60 3 100 3,600C/T 12bit 17bit HISTORY OF ENCODER DEV (for steel) TS5146 5,000C/T TS5410 Series 90k 480k C/T 19bit

电力变压器继电保护设计

课程设计报告书 题目:电力变压器继电保护设计 院(系)电气工程学院_______ 专业电气工程及其自动化____ 学生姓名冉金周__________ 学生学号 2014511057_______ 指导教师张祥军蔡琴______ 课程名称电力系统继电保护课程设计 课程学分 2____________ 起始日期 2017.6.12-2017.6.23__

课程设计任务书 一、目的任务 电力系统继电保护课程设计是一个实践教学环节,也是学生接受专业训练的重要环节,是对学生的知识、能力和素质的一次培养训练和检验。通过课程设计,使学生进一步巩固所学理论知识,并利用所学知识解决设计中的一些基本问题,培养和提高学生设计、计算,识图、绘图,以及查阅、使用有关技术资料的能力。本次课程设计主要以中型企业变电所主变压器为对象,主要完成继电保护概述、主变压器继电保护方案确定、短路电流计算、继电保护装置整定计算、各种继电器选择、绘图等设计和计算任务。为以后深入学习相关专业课、进行毕业设计和从事实际工作奠定基础。 二、设计内容 1、主要内容 (1)熟悉设计任务书,相关设计规程,分析原始资料,借阅参考资料。 (2)继电保护概述,主变压器继电保护方案确定。 (3)各继电保护原理图设计,短路电流计算。 (4)继电保护装置整定计算。 (5)各种继电器选择。 (6)撰写设计报告,绘图等。

2、原始数据 某变电所电气主接线如图1所示,已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数如下:S N =31.5MVA ;电压为110±4×2.5%/38.5±2×2.5%/11 kV ;接线为Y N /y/d 11(Y 0/y/Δ-12-11);短路电压U HM (%)=10.5,U HL (%)=17,U ML (%)=6。两台变压器同时运行,110kV 侧的中性点只有一台接地,若只有一台运行,则运行变压器中性点必须接地,其余参数如图1。 3、设计任务 结合系统主接线图,要考虑两条6.5km 长的110kV 高压线路既可以并联运行也可以单独运行。针对某一主变压器的继电保护进行设计,即变压器主保护按一台变压器单独运行为保护的计算方式。变压器的后备保护(定时限过电流电流)

电力变压器技术规格书

一.概述 朔黄铁路线路全长约585.8km,西起神朔线神池南站,向东经过山西省、河北省终至黄骅港站。设计为国家I级干线、双线电气化铁路,重载路基,正线总长592公里,共计34个车站33个区间。其中,隧道总长约66.367公里,共77个隧道。 二.引用标准 GB 1094 《电力变压器》; GB/T 7328《变压器和电抗器的声级测定》; GB/T7449《电力变压器和电抗器的雷击冲击和操作冲击试验导则》; GB/T 10237 《电力变压器绝缘水平和绝缘试验外绝缘的空气间隙》; GB/T 5273 《变压器、高压电器和套管的接线端子》; GB/T 13499 《电力变压器应用导则》; GB/T 15164 《油浸式电力变压器负载导则》; GB311.1-1997 《高压输变电设备的绝缘配合》 GB50150 《电气装置安装工程电气设备交接试验标准》 GB/T16927.l-1997 《高电压试验技术第一部分:一般试验要求》 GB/T16927.2-1997 《高电压试验技术第二部分:测量系统》 GB/T6451-2008 《三相油浸式电力变压器技术参数和要求》 JB/T 3837-1996 《变压器类产品型号编制方法》 三.使用环境条件 1. 系统标称电压:10kV。 2. 电源系统接地形式:不接地。 3.安装场所:户外。 4. 海拔高度:≤1000m。 5. 运行环境温度:户外-25℃~+45℃ 6. 运行环境湿度:日平均相对湿度不大于95%,月平均相对湿度不大于90%。 7. 空气质量:周围空气可以受到尘埃、烟、腐蚀性气体、蒸汽或盐雾的污染。污秽等级不超过现行GB/T5582中的Ⅲ级。 8. 地震烈度:不超过8度。 四.主要技术参数

变压器设计

变压器设计 一.变压器设计简介: 变压器是用来变换交流电压、电流而传输交流电能的一种静止的电器设备。它是根据电磁感应的原理实现电能传递的。变压器有很多的类型有很多种,我这次设计的是电力变压器,主要是对电力输配电和对用户配电的一种电压转换。①设计要求:满足在户外低温环境下使用,满足未来五年内电力发展的需要。②变压器用途:用在农村电网的城市居民照明。 我设计计算的是单相柱上式配电变压器,主要参数如下: 二、铁芯计算 1、铁芯材料:选用国标35Q145冷轧硅钢片,叠片系数:97.0=d f 2、铁芯直径:每柱容量:254 100 2ri z ==?∑= zh h m p P 铁芯直径的估算:mm 3.1162552425.00=?=?=zh D P K D 取120mm 3、铁心中磁通(Φm )及磁通密度( Bm )计算 普通电力变压器设定t m B e 105.4,757.13-m ?=Φ=

4、铁心重量计算 铁心柱重:Kg S H m G tx zh zh zh 08.1241065.737.101800210440=????=????=--ρ 铁轭重量:Kg M m G tx e 459.01065.7300210440e =???=???=--ρ(800mm 和 300mm 为目测) 铁心重量:Kg G G G G e zh 639.1431.19459.008.124tx =++=++=? 5、空载损耗:W G P K P tx P 5.231639.143535.105.1tx 00=??=??= (535.1tx =P ,375.1=tx q ) 6、空载电流:()[] %45.110/2%zh 0=????+?++=??x j j tx e zh P q n S q K G G G I 7、铁芯温升: 一般为60K 二、线圈计算 1、线圈材料:选用纸包圆铜线 标称直径()00.1d =mm 标称截面积 () 7854.0mm 2=S 绝缘外径()30.1=mm D t 绝缘重量 (3.0t =δ)时59.6%=t C 2、线圈型式:圆筒式(层式)线圈 多层圆筒式线圈: 常用于容量 <630 kVA, 电压 3~35 kV 级的高压线圈。 3、低压线圈每相匝数:9.1127240/dy =÷==t dy e U W 取整为2匝 4、电压比偏差:529224010000127/2121=÷?==U U n n %0019.0%10010000)10000529289.1(%100/)e (%=?÷- ?=?-?=U U W V t 满足≤±0.25% 5、线圈导线总截面积计算 采用圆筒式 径向并联数(m b)×轴向并联数(n b ) =1×1 2 q 7854.07854.0111mm s n n m S b b = ÷??=???= 6、 线圈电流密度计算 因使用铜导线,铜导线一般取 2 q /3mm A J = 7、 线圈平均匝长计算:由37.202 =P R π得mm R 47p = 295.010******* 3=???=??=--ππp pt R L 8、 线圈每相导线长度:m L L W L pt q q 6.1123.0=+?=+?= 9、 线圈导线电阻计算 :Ω=÷?=?=043.07854.06.102135 .0/q q q k S L R ρ 10、 线圈导线重量计算: Kg S L m G x q q x 0112.0109.87854.06.111033q =????=????=--ρ

2013.7 多摩川编码器总结

2013.7 多摩川编码器总结 一、摘要 基于CPLD 和DSP 实现CPLD 与多摩川编码器的通讯,通过对编码器发送请求,得到编码器发回的数据并进行解码,得到绝对位置值。 二、学习步骤: 1、熟悉工作环境,掌握Modelsim 以及Quartus 的使用。 2、阅读多摩川编码器的通讯协议。 3、根据协议编写testbench ,并在Modelsim 上进行仿真调试。 4、仿真通过后,通过Quartus 编译后下载到CPLD 上并与编码器通讯,实际情况下运行。 5、完成各项要求的功能。 6、对代码进行优化,尽可能减少资源占用。 7、验收。 三、总体结构 双绞线,差分式,串行 地址/数据总线接口RO,DI,DIR逻辑信号结构分三部分:多摩川编码器,CPLD ,DSP 。 1、编码器跟CPLD 之间通过MAX485电平转换进行连接。 2、CPLD 与DSP 则通过总线进行连接(这一部分结构编写学长已经完成并且提供了端口连接) 3、主要工作是CPLD 的解码部分。 四、通讯协议 1、TS5668的技术指标:(物理层) 精度:单圈精度: 17位(131 072) 多圈精度: 16位(65 536) 最高转速/ ( r ·min - 1 ): 6 000】 输出:差分NRZ 编码二进制 传输速度/Mbp s : 2. 5 发送、接收电路:差分形式 通信方式:主从模式 接口:3FG ,4sig+ ,5sig-,7VCC ,8DGND 。4和5为差分信号接口。 2、通信步骤如下图:(逻辑链路层) 1)CPLD 向编码器发送一个控制字CF 2)3us 后编码器返回数据包。 3)CPLD 对数据包进行解码,并将得到的数据放在总线上,等待DSP 获取。 具体流程如下图:

电力变压器设计手册5阻抗计算

设计手册 油浸电力变压器阻抗计算

目 录 1 概述 第1页 漏磁通及漏抗电势 第1页 短路阻抗 第1页 短路阻抗允许偏差 第2页 2 电抗分量计算 第2页 电抗计算公式中的符号代表意义 第2页 双绕组变压器电抗计算 第5页 双绕组有载变压器电抗计算 第6页 双绕组变压器 (高-低-高) 电抗计算 第7页 双绕组变压器(高-低-高)电抗计算方法之一 第7页 双绕组变压器(高-低-高)电抗计算方法之二 第8页 双绕组变压器 ( 高-低-高-低 ) 电抗计算 第9页 三绕组变压器电抗计算 第10页 三绕组自耦变压器电抗计算 第11页 双绕组变压器 ( 低压Z 形联结) 电抗计算 第12页 分裂变压器电抗计算 第13页 单相分裂变压器电抗计算 第13页 三相径向分裂变压器电抗计算 第14页 三相轴向分裂变压器电抗计算 第15页 单相旁轭有载调压自耦变压器(低压励磁)电抗计算 第16页 3 电阻分量计算 第17页 4 短路阻抗计算 第17页 共 页 第 页 01 01 油 浸 电 力 变 压 器 阻 抗 计 算

1 概述 漏磁通及漏抗电势 在变压器中 , 凡没有全部链着所有绕组及所有 匝数的磁通称为漏磁通。在双绕组变压器中, 如果 其中一绕组内有电流流过, 并产生磁势, 而与其相 平衡的另一绕组内也会产生电流和磁势, 从而产生 漏磁通。并在两个绕组中分别感应出漏抗电势。 双绕组变压器一相的漏磁分布如图所示。 根据电磁感应定律, 绕组的漏抗电势正比于该 绕组的漏磁链。因此, 绕组的漏抗电势也正比于漏 磁通, 即正比于产生它的磁势 (安匝) , 反比于磁路 的磁阻。故它取决于绕组的电流和匝数, 同时也取 决于绕组的几何尺寸。 漏磁通在绕组所占据空间里流动的方向是与绕组轴向方向平行的, 常称为纵向漏磁通。相应的纵向漏磁通所产生的漏抗电势, 称为纵向漏抗电势。 由于变压器的一次、二次绕组的磁势(安匝)总是平衡的, 但由于绝缘结构及调压线段等缘故, 从而沿绕组整个高度上一次、二次绕组的安匝数并不完全处于平衡状态, 即在一些区域里, 一次、二次绕组的安匝数不相等, 各等效绕组的有效安匝数等于各区域内一次、二次绕组的安匝数之差。这样, 相当于在绕组整个高度上交错地排列着几个等效绕组。某等效绕组的有效安匝数必然与其相邻的一个或几个区域的等效绕组的有效安匝数相平衡。而相互平衡的磁势将产生漏磁通。此漏磁通在绕组所占据空间里流动的方向是与绕组轴向方向相垂直的, 称为横向漏磁通。横向漏磁通所产生的漏抗电势,称为横向漏抗电势。 因此, 绕组的漏抗电势, 实际上是由纵向漏抗电势与横向漏抗电势两部分组成。不过一般横向漏抗电势比纵向漏抗电势小得多, 所以, 在变压器计算中, 往往仅计算纵向漏抗电势。但在某些大型变压器中, 当横向漏抗电势占一定比例时, 才需要计算横向漏抗电势。 短路阻抗 变压器的短路阻抗是指在额定频率和参考温度下, 一对绕组中某一绕组端子之间的等 效串联阻抗 Z = R + j X(Ω)。确定此值时,另一绕组的端子短路,而其他绕组(如果有)开路。短路阻抗,它是由折到某一绕组同一匝数的两个绕组的漏电抗之和的电抗分量及由变压器的负载损耗计算而得的电阻分量组成。在变压器的阻抗中, 电抗分量所占比例较大, 随着变压器容量的增大, 此比例也将增大。在大型变压器中, 完全可用电抗值来代替阻抗 值。对于三相变压器, 表示为每相的阻抗。短路阻抗一般常以无量纲的相对值来表示, 即表 示为该对绕组中同一绕组的参考阻抗Z ref = U 2 /P r 的分数值(标么值)或百分数表示,则有: Z % = 100 Z / Z ref ⊙ 资 料 来 源 编 制 校 核 标 审 提出部门 审 定 标记 处数 更改文件号 签 字 日 期 实施日期 批 准 代替 共 17 页 第 1 页 油 浸 电 力 变 压 器 阻 抗 计 算 设 计 手 册 图 双绕组变压器一相的漏磁分布

相关文档
相关文档 最新文档