文档库 最新最全的文档下载
当前位置:文档库 › 具有温度自补偿功能的光纤光栅传感器结构

具有温度自补偿功能的光纤光栅传感器结构

具有温度自补偿功能的光纤光栅传感器结构
具有温度自补偿功能的光纤光栅传感器结构

光纤光栅温度传感器 报告

波长调制型光纤温度传感器《光纤传感测试技术》 课程作业报告 提交时间:2011年10月27 日

1 研究背景 (执笔人: ) 被测场或参量与敏感光纤相互作用,引起光纤中传输光的波长改变,进而通过测量光波长的变化来确定北侧参量的传感方法即为波长调制型光纤传感器。 光纤光栅传感器是一种典型的波长调制型光纤传感器。基于光纤光栅的传感过程是通过外界参量对布拉格中心波长B λ的调制来获取传感信息,其数学表达式为: 2B eff n λ=Λ 式中:eff n 为纤芯的有效折射率;Λ是光栅周期。 这是一种波长调制型光纤温度传感器,它具有一下明显优势: (1)抗干扰能力强。由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输介质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这使它在各种大型机电、石油化工、冶金高压、强电磁干扰、易燃、易爆、强腐蚀环境中能方便而有效地传感,具有很高的可靠性和稳定性。 (2)传感探头结构简单,体积小,重量轻,外形可变,适合埋入大型结构中测量结构内部的应力 、应变及结构损伤,稳定性、重复性好,适用于许多应用场合,尤其是智能材料和结构。 (3)测量结果具有良好的重复性。 (4)便于构成各种形式的光纤传感网络。 (5)可用于外界参量的绝对测量。 (6)光栅的写入技术已经较为成熟,便于形成规模生产。 (7)轻巧柔软,可以在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,实现分布式传感。 由于以上优点,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康检测以及能源化工等领域得到了广泛的应用。但是它也存在一些不足之处。因为光纤光栅传感的关键技术在于对波长漂移的检测,而目前对波长漂移的检测需要用较复杂的技术和较昂贵的仪器或光纤器件,需大功率的宽带光源或可调谐光源,其检测的分辨率和动态范围也受到一定的限制等。 光纤布拉格光栅无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为检测材

光纤光栅原理及应用

光纤光栅传感器原理及应用 (武汉理工大学) 1光纤光栅传感原理 光纤光栅就是利用紫外光曝光技术,在光纤中产生折射率的周期分布,这种光纤内部折射率分布的周期性结构就是光纤光栅。光纤布喇格光栅(Fiber Bragg grating ,FBG )在目前的应用和研究中最为广泛。光纤布喇格光栅,周期0.1微米数量级。FBG 是通过改变光纤芯区折射率,周期的折射率扰动仅会对很窄的一小段光谱产生影响,因此,如果宽带光波在光栅中传输时,入射光将在相应的波长上被反射回来,其余的透射光则不受影响,这样光纤光栅就起到了波长选择的作用,如图1。 图1 FBG 结构及其波长选择原理图 在外力作用下,光弹效应导致折射率变化,形变则使光栅常数发生变化;温度变化时,热光效应导致折射率变化,而热膨胀系数则使光栅常数发生变化。 (1)光纤光栅应变传感原理 光纤光栅反射光中心波长的变化反映了外界被测信号的变化情况,在外力作用下,光弹效应导致光纤光栅折射率变化,形变则使光栅栅格发生变化,同时弹光效应还使得介质折射率发生改变,光纤光栅波长为1300nm ,则每个με将导致1.01pm 的波长改变量。 (2)光纤光栅温度传感原理 光温度变化时,热光效应导致光纤光栅折射率变化,而热膨胀系数则使光栅栅格发生变化。光纤光栅中心波长为1300nm ,当温度变化1摄氏度时,波长改变量为9.1pm 。 反射光谱 入射光谱 投射光谱 入射光 反射光 投射光 包层 纤芯 光栅 光栅周期

2光纤光栅传感器特点 利用光敏元件或材料,将被测参量转换为相应光信号的新一代传感技术,最大特点就是一根光纤上能够刻多个光纤光栅,如图2所示。 光纤光栅传感器可测物理量: 温度、应力/应变、压力、流量、位移等。 图2 光纤光栅传感器分布式测量原理 光纤光栅的特点: ● 本质安全,抗电磁干扰 ● 一纤多点(20-30个点),动态多场:分布式、组网测量、远程监测 ● 尺寸小、重量轻; ● 寿命长: 寿命 20 年以上 3目前我校已经开展的工作(部分) 3.1 基于光纤光栅传感的旋转传动机械动态实时在线监测技术与系统 利用光纤光栅传感技术的特性,实现转子运行状态的非接触直接测量。 被测参量 宽带光源 光纤F-P 腔 测点1 测点2 测点3 测点n 波长 光 强 λ1 测点1 λ2 测点2 λ3 测点3 λn 测点n 光源波长

光纤光栅传感器的应用

光纤光栅传感器的应用 一、光纤光栅传感器的优势 与传统的传感器相比,光纤Bragg光栅传感器具有自己独特的优点: (1) 传感头结构简单、体积小、重量轻、外形可变, 适合埋入大型结构中, 可测量结构内部的应力、应变及结构损伤等, 稳定性、重复性好; (2) 与光纤之间存在天然的兼容性, 易与光纤连接、低损耗、光谱特性好、可靠性高; (3) 具有非传导性, 对被测介质影响小, 又具有抗腐蚀、抗电磁干扰的特点, 适合在恶劣环境中工作; (4) 轻巧柔软, 可以在一根光纤中写入多个光栅, 构成传感阵列, 与波分复用和时分复用系统相结合, 实现分布式传感; (5) 测量信息是波长编码的, 所以, 光纤光栅传感器不受光源的光强波动、光纤连接及耦合损耗、以及光波偏振态的变化等因素的影响, 有较强的抗干扰能力; (6) 高灵敏度、高分辩力。 正是由于具有这么多的优点,近年来,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康监测,以及能源化工等领域得到了广泛的应用。 光纤Bragg光栅传感器无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为监测材料和结构的载荷,探测其损伤的传感器。 二、光纤光栅的传感应用 1、土木及水利工程中的应用 土木工程中的结构监测是光纤光栅传感器应用最活跃的领域。 力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和健康状况监测是非常重要的.通过测量上述结构的应变分布,可以预知结构局部的载荷及健康状况.。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行健康检测、冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况.。

常见光纤光栅传感器工作原理

常见光纤光栅传感器工作原理 光纤光栅传感器的工作原理 光栅的Bragg波长λB由下式决定:λB=2nΛ (1) 式中,n为芯模有效折射率,Λ为光栅周期。当光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化,通过测量物理量变化前后反射光波长的变化,就可以获得待测物理量的变化情况。如利用磁场诱导的左右旋极化波的折射率变化不同,可实现对磁场的直接测量。此外,通过特定的技术,可实现对应力和温度的分别测量,也可同时测量。通过在光栅上涂敷特定的功能材料(如压电材料),还可实现对电场等物理量的间接测量。 1、啁啾光纤光栅传感器的工作原理 上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时,就显得力不从心。一种较好的方法就是采用啁啾光纤光栅传感器。 啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。与光纤Bragg光栅传感器的工作原理基本相同,在外界物理量的作用下啁啾光纤光栅除了△λB的变化外,还会引起光谱的展宽。这种传感器在应变和温度均存在的场合是非常有用的,啁啾光纤光栅由于应变的影响导致了反射信号的拓宽和峰值波长的位移,而温度的变化则由于折射率的温度依赖性(dn/dT),仅影响重心的位置。通过同时测量光谱位移和展宽,就可以同时测量应变和温度。 2、长周期光纤光栅(LPG)传感器的工作原理 长周期光纤光栅(LPG)的周期一般认为有数百微米,LPG在特定的波长上把纤芯的

光耦合进包层:λi=(n0-niclad)。Λ。式中,n0为纤芯的折射率,niclad为i阶轴对称包层模的有效折射率。光在包层中将由于包层/空气界面的损耗而迅速衰减,留下一串损耗带。一个独立的LPG可能在一个很宽的波长范围上有许多的共振,LPG共振的中心波长主要取决于芯和包层的折射率差,由应变、温度或外部折射率变化而产生的任何变化都能在共振中产生大的波长位移,通过检测△λi,就可获得外界物理量变化的信息。LPG在给定波长上的共振带的响应通常有不同的幅度,因而LPG适用于多参数传感器。 光纤光栅传感器的应用 1、在民用工程结构中的应用 民用工程的结构监测是光纤光栅传感器最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和状况监测是非常重要的。通过测量上述结构的应变分布,可以预知结构局部的载荷及状况。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。 光纤光栅传感器可以检测的建筑结构之一为桥梁。应用时,一组光纤光栅被粘于桥梁复合筋的表面,或在梁的表面开一个小凹槽,使光栅的裸纤芯部分嵌进凹槽得以保护。如果需要更加完善的保护,则最好是在建造桥时把光栅埋进复合筋,由于需要修正温度效应引起的应变,可使用应力和温度分开的传感臂,并在每一个梁上均安装这两个臂。 两个具有相同中心波长的光纤光栅代替法布里-珀罗干涉仪的反射镜,形成全光纤法布里-珀罗干涉仪(FFH),利用低相干性使干涉的相位噪声最小化,这一方法实现了高灵敏度的动态应变测量。用FFPI结合另外两个FBG,其中一个光栅用来测应变,另一个被保护起来,免受应力影响,以测量和修正温度效应,所以FFP~FBG实现了同时测量三个量:温度、静态应变、瞬时动态应变。这种方法兼有干涉仪的相干性和光纤布拉格光栅传感器的优点。已在5mε的测量范围内,实现了小于1με的静态应变测量精度、0.1℃的温度灵敏度和小于1nε/(Hz)1/2的动态应变灵敏度。

光纤光栅传感器的应用

光纤光栅传感器的应用 光纤布拉格光栅传感器的应用 1。光纤光栅传感器 的优点与传统传感器相比,光纤光栅传感器有其独特的优点:(1)传感头结构简单,体积小,重量轻,形状可变,适合嵌入大型结构中,能够测量结构内部的应力、应变和结构损伤,具有良好的稳定性和重复性; (2)与光纤自然兼容,易于与光纤连接,损耗低,光谱特性好,可靠性高; (3)不导电,对被测介质影响小,具有耐腐蚀和抗电磁干扰的特点,适合在恶劣环境下工作; (4)轻便灵活,可在一根光纤中写入多个光栅组成传感阵列,结合波分复用和时分复用系统实现分布式传感; (5)测量信息为波长编码,因此光纤光栅传感器不受光源光强波动、光纤连接和耦合损耗以及光波偏振态变化的影响,抗干扰能力强。 (6)高灵敏度和分辨率 正是因为它的许多优点。近年来,光纤光栅传感器已经广泛应用于大型土木工程结构、航空航天等领域的健康监测,以及能源和化工等领域。 光纤光栅传感器无疑是一种优秀的光纤传感器,特别是在测量应力和应变的情况下,具有其他传感器无法比拟的优势。它被认为是智能结构中最有前途的集成在材料内部的传感器,作为监测材料和结构的

载荷和检测其损伤的传感器。 2,光纤光栅的传感应用 1,在土木和水利工程中的应用 土木工程中的结构监测是光纤光栅传感器应用最活跃的领域 力学参数的测量对于桥梁、矿山、隧道、大坝、建筑物等的维护和健康监测非常重要。通过测量上述结构的应变分布,可以预测结构的局部载荷和健康状况。光纤布拉格光栅传感器可以预先附着在结构表面或嵌入结构中,同时对结构进行健康检测、冲击检测、形状控制和减振检测,监测结构的缺陷。 另外,多个光纤光栅传感器可以串联成传感网络,对结构进行准分布式检测,传感信号可以由计算机远程控制 (1)在桥梁安全监测中的应用目前,光纤光栅传感器应用最广泛的领域是桥梁安全监测 斜拉桥的斜拉索、悬索桥的主缆和吊杆、系杆拱桥的系杆是这些桥梁体系的关键受力构件,其他土木工程结构的预应力锚固系统,如用于结构加固的锚索和锚杆,也是关键受力构件上述受力构件的应力大小和分布变化最直接地反映了结构的健康状况,因此监测这些构件的应力状态并以此为基础进行安全分析和评价具有重要意义。加拿大卡尔加里附近的 199贝丁顿小道桥是最早使用光纤光栅传感器进行测量的桥梁之一(1993)。16个光纤光栅传感器连接到预应力混凝土支撑的钢筋和碳纤维复合材料钢筋上,对桥梁结构进行长期监测,这在以前被认为是不

光纤传感器论文

摘要 关键词:光纤传感器;介绍;优点;应用 近几年来,物联网发展飞快。光纤通信与光纤传感技术将在物联网领域发挥重要作用。光纤具有宽带特性,可将各种传感器复用到一根光纤,进行检测和传输。由于光纤本身具有电绝缘性好、不受电磁干扰、无火花、能在易燃易爆的环境中,还具有成本低、结构简单、可靠性高等优点,光纤材料用做传感器具有独特的优势。物联网与光纤传感有相辅相成、相互促进的作用。各种光纤传感器有望在物联网中得到广泛应用。 ABSTRACT The Internet of things develop quickly in recent years.Optical fiber communication and optical fiber sensing technology will play an important role in the field of Internet of things.Optical fiber have broadband characteristics, various sensors can be reused to a single fiber to text and transport.Because of the fiber’s good electrical insulation, not subject to electromagnetic interference, no spark, can in inflammable and explosive environment ,also has the advantages of low cost, simple structure, high reliability ,optical fiber materials used for sensor has a unique advantage.The Internet of things with the optical fiber sensing supplement each other and promote each other. All kinds of optical fiber sensor is expected to be widely used in the Internet of things. Keywords:Optical fiber grating sensor; Introduction; Advantages; application

光纤温度传感器

光纤温度传感器 电子092班 张洪亮 2009131041

光纤温度传感器 摘要 本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外 主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。 关键词:光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理 1 引言: 光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。70 年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977 年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。从70 年代中期到 80 年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是: 光纤传感系统;现代数字光 纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控; 民用研究计划。以上计划仅在 1983 年就投资 12-14 亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等 28 个主要单位。美国光纤

光纤光栅

“现代传感与检测技术”课程学习汇报 光纤光栅传感器及其在医学上的应用 学院:机电学院 专业:仪器科学与技术 教师:刘增华 学号: S201201134 姓名:王锦 2013年03月

目录 第一章光纤光栅简介 (3) 1.1 光纤的基本概念 (3) 1.2 光纤光栅器件的基本概念 (3) 1.3 光纤光栅的加工工艺 (4) 1.4 光纤光栅的类型 (5) 第二章光纤光栅传感器 (7) 2.1光纤光栅温度传感器 (7) 2.2 光纤光栅应变与位移传感器以及振动与加速度传感器 (8) 第三章光纤光栅传感器的应用 (10) 3.1 光纤光栅传感器在结构健康测试方面的应用 (10) 3.2光纤光栅传感器在医学中的应用 (10) 3.3 光纤光栅在其他领域的应用 (11) 第四章总结 (12) 参考文献 (12)

第一章光纤光栅简介 1.1 光纤的基本概念 光纤的结构十分简单。光纤的纤芯是有折射率比周围包层略高的光学材料制作而成的,折射率的差异引起全内反射,引导光线在纤芯内传播。 光纤纤芯和包层的尺寸根据不同的用途,有多中类型。如传输图像的光纤要尽可能地收集到起端面上的光,因此其包层相对于纤芯而言非常薄。长距离传输过程中,通信光纤的厚半层能避免光束泄露出纤芯。然而,短距离通信光纤的纤芯较大,能够尽可能地手机光,一般称为多模光纤,长距离通信光纤的纤芯直径 一边比较小,一般只能传输一个模式,因此成为单模光纤。 光纤具有机械特性和光学特性。在机械方面光纤坚硬而又灵活,机械强度大。光纤的光学特性取决于他们的结构与成分。一般轴对称的单模光纤可以同时传输两个线偏振正交模式或者两个圆偏振正交模式。这两个正交模式在光纤中将以相同的速度向前传播,因而在其传播过程中偏振态不会发生变化。 1.2 光纤光栅器件的基本概念 加拿大渥太华通信研究中心的K.O.Hill等人于1978年首次在掺锗石英光纤中发现光线的光敏效应,并采用驻波写入法制成世界上第一只光纤光栅。光纤光栅是近几年发展最快夫人光纤无源器件之一,他的出现将可能在光纤技术以及众多相关领域中引起一场新的技术革命。由于它具有在管线通信、光纤传感、光计算和光信息处理等领域均具有广阔的应用前景。 光纤光栅是利用光线材料的光敏性(外界入射光子和纤芯锗离子相互作用in 器折射率永久性变化),在纤芯内形成空间相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或者反射)滤波或者反射镜。利用这一特性可构成许多性能独特的光纤无源器件,例如利用光纤光栅的窄带高反射特性构成光纤反馈腔,依靠掺铒光纤等为增益介质可制成光纤激光器;利用光纤光栅作为激光二极管的外腔反射器,可以构成课调谐激光二极管;利用光纤光栅课构成Michelson干涉仪型Mach-Zehnder干涉仪和Febry-Peort干涉仪型的光纤色散补偿器。利用闪耀光栅可以制成光纤平坦滤波器;利用非均匀光纤光栅还可以制成用于检测应力、应变、温度等诸多参量的光纤传感器和各种传感网。

光纤温度传感器简介

光纤温度传感器 摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。 关键字:光纤传感温度应用 1引言 在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。光纤温度传感器是20世纪70年代发展起来的一种新型传感器。与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。 2光纤温度传感器分类 光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。 目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。 2.1光纤光栅温度传感器 光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。 光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程: =2nA 式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。 长周期光纤光栅是一种特殊的光纤光栅,其传光原理是将前向传输的基模耦合到前向传输的包层模中。由于其宽带滤波、极低的背景发射等特点引起人们的重视,是一种新型的宽带带阻滤波器。 光纤温度监测系统主要由光纤光栅传感器、传输信号用的光纤和光纤光栅解调器组成。光纤光栅解调器用于对光纤光栅传感器的信号检测和数据处理,以获得测量结果,传输光纤用于传输光信号,光纤光栅传感器则主要用于反射随温度变化中心波长的窄带光,如图1所示:

悬臂梁结构光纤光栅温度自补偿位移传感器实验研究

悬臂梁结构光纤光栅温度自补偿位移传感器实验研究 摘要:以悬臂梁为基本构架,以FBG 为敏感元件,设计了一种新型的具 有温度自补偿特性的FBG 位移传感器方案。对悬臂梁进行分析,推导出位移 传感器的传递函数,然后对其定标并实际测量,得到了传感器线性度和灵敏度同悬臂梁长度以及光纤布拉格光栅的位置之间的关系,并从结果看出本传感器精度高,运行稳定,且有好的重复性,线性范围最大为16mm。关键词:光纤光栅;悬臂梁;位移传感器;传递函数;温度自补偿0 引言自从1978 年K.O.Hill 等人首次在锗硅光纤上用驻波持续曝光制作成第一个光纤布拉格光栅(FBG)以来,FBG 的应用研究引起了全世界学者的广泛关注。光纤光栅传感器的材料优势及传感优势使FBG 传感技术近年来引起人们极大的兴趣。在光 纤光栅传感方案中,温度补偿的准确性和可靠性对测量结果的准确性有非常大的影响,要做到合理准确又有效的温度补偿,只能通过单个传感器的温度自补偿来实现。本文在FBG 的传感机理上,依据悬臂粱结构提出一种位移传感器 方案,此方案结构简单、运行稳定,且能够实现温度补偿与减小外界干扰的作用,获得较高的灵敏度。1 原理基本结构原理为,图1 为矩形悬臂梁基本结构,粱长为L,梁轴线的曲率为p(η),梁的轴线称为挠度线,则曲线上任 一点η处在外力F 作用下的纵坐标f(η)即为该点的挠度,传振原理为,当自由端有静挠度y 时,距离固定端为的截面处的静挠度f(η):式中,εz 为轴向应变,Pe 为弹光系数,a∧为光纤的热膨胀系数,a0 表示热光系数,△T 温度的变化量。温度自补偿原理为,当采用双光栅差分式分布在梁上下表面时,两根光栅中心波长的变化方向是相反的。两根光栅封装方式完全一样,热膨胀系数与热光系数均相同,长度一致,且两者应变等幅反向,即有:故由两根光栅分别满足式(2),同时具有(3)(4)两式所示条件,可以

光纤温度传感器

光纤温度传感器的种类很多,除了以上所介绍的荧光和分布式光纤温度传感器外,还有光纤光栅温度传感器、干涉型光纤温度传感器以及基于弯曲损耗的光纤温度传感器等等,由于其种类很多,应用发展也很广泛,例如,应用于电力系统、建筑业、航空航天业以及海洋开发领域等等。 分布式光纤温度传感器在电力系统行业的发展 光纤温度传感器在电力系统的应用中得到发展,由于电力电缆温度、高压配电设备内部温度、发电厂环境的温度等,都需要使用光纤传感器进行测量,因此就促进了光纤传感器的不断完善和发展。尤其是分布式光纤温度传感器得到了改善,经过在电力系统行业的应用,从而使其接收信号和处理检测系统的能力都得到了提升。 光纤光栅温度传感器在建筑业的发展 光纤光栅温度传感器由于其较高的分辨率和测量范围广泛等优点,被广泛应用于建筑业温度测量工作中。西方很多发达国家都已普遍采用此系统,进行建筑物的温度、位移等安全指标的测试工作,例如,美国墨西哥使用光栅温度传感器,对高速公路上桥梁的温度进行检测。通过广泛使用,光栅温度传感器所存在的问题,如:交叉敏感的消除、光纤光栅的封装等都得到了解决,因而此系统得到了完善。 航空航天业中的应用发展 航空航天业使用传感器的频率较高,包括对飞行器的压力、温度、燃料等各方面的检测,都需要使用光纤温度传感器进行检测,并且所使用到的传感器数量多达百个,所以对传感器的大小和重量要求很严

格。因此,基于航空航天业对传感器的要求,光纤温度传感器的体积、重量规格方面都经过了调整。2222222分布式光纤温度传感器分布式光纤温度传感器,通常用在检测空间温度分布的系统,其原理最早于1981年提出,后随着科学家的实验研究,最终研制出了此项技术。这种传感器原理发展是基于三种传感器的研究,分别是瑞利散射、布里渊散射、喇曼散射。在瑞利散射(OTDR)和布里渊散射(OTDR)的研究已取得了很大的进展,因此未来的传感器研究热点,将放在对基于喇曼散射(OTDR)的新分布式光纤传感器的研究上。最近,土耳其Gunes Yilmaz开发出了一种分布式光纤温度传感器,此传感器的温度分辨率是1℃,空间分辨率是1.23m。在我国也有很多大学展开了对分布式光纤温度传感器的研究,例如,中国计量大学1997年发明出煤矿温度检测的传感器系统,其检测温度为-49℃~150℃,温度分辨率为0.1℃。 光纤荧光温度传感器 当前最热门的研究,就是针对光纤荧光温度传感器,其是利用荧光的材料会发光的特性,来检测发光区域的温度。这种荧光的材料通常在受到紫外线或红外线的刺激时,就会出现发光的情况,发射出的光参数和温度是有着必然联系的,因此可以通过检测荧光强度来测试温度。世界各国的高校都设计过此类传感器,例如,韩国汉城大学发现10cm的双掺杂光纤,在其915nm的地方所反射出的荧光强度所对应的温度指数是20℃~290℃;我国清华大学借用半导体GaAs原料来吸收光,进而以光随温度改变的原理,研发出了温度范围是0℃~

光纤光栅传感器及其在桥梁结构健康监测中的应用

光纤光栅传感器及其在桥梁结构健康监 测中的应用 姓名:朱少波 学号:U201115536 班级:电气中英1101班 2015年1月23日星期五

摘要:作为20世纪测试领域的重大发明,光纤光栅传感技术得到了快速发展,并已经成 为诸多领域的前沿研究与应用方向。本文主要介绍了相关产业化企业近年来基于光纤光栅感知元件发展起来的系列传感器、部品、重大土木工程结构健康监测的应用以及项目研究与产业化状况。主要包括:光纤光栅系列直接传感器、光纤光栅间接传感器、光纤光栅传感部品(结构)与结构健康监测的光纤光栅传感网络与集成系统及其在大型桥梁结构健康监测中的应用。最后,介绍了课题组与相关企业在该方向的项目研究、国际合作与产业化情况,并指出该方向的主要研究与应用方向。 关键词:光纤光栅传感器,桥梁结构,健康监测 1.引言 重大桥梁工程结构的使用期长达几十年、甚至上百年,环境侵蚀、材料老化和荷载的长期效应、疲劳效应与突变效应等灾害因素的耦合作用将不可避免地导致结构和系统的损伤积累和抗力衰减,从而抵抗自然灾害、甚至正常环境作用的能力下降,极端情况下引发灾难性的突发事故。因此,为了保障结构的安全性、完整性、适用性与耐久性,对重大桥梁工程结构增设长期的健康监测系统,以监测结构的服役安全状况,并为验证结构设计、施工控制以及研究结构服役期间的损伤演化规律提供有效的、直接的手段,并实时监测其服役期间的安全状况、避免重大事故的发生。结构健康监测已经成为世界范围内重大桥梁结构工程的前沿研究方向。 然而,重大桥梁工程结构和基础设施体积大、跨度长、分布面积大,使用期限长,传统的电学量传感设备组成的长期监测系统性能稳定性、耐久性和分布范围都不能很好地满足实际工程需要。随着智能感知材料的发展,高性能传感器及其测试技术为结构智能健康监测系统的研究与发展提供了崭新的途径,尤其是以光纤光栅为代表的光纤传感元件的出现与发展,更为这一热点课题提供了广阔的生机。光纤通信技术和光纤传感技术在20世纪后半叶至21世纪初期的几十年里日新月异,极大地推动了人类社会的进步。光纤传感技术随着光通信技术的发展应运而生,尤其是光纤光栅的出现不仅给光纤传感技术,而且给相关领域带来了一次里程碑式的革命[1],使人们可以设计和制作大量基于光纤光栅的新型智能传感器[2]。与传统的各类传感器相比光纤光栅传感器具有以下优点[3]: 1)抗电磁干扰,电绝缘,本质安全 由于光纤传感器是利用光波传输信息,而光纤是电绝缘的传输媒质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这一特性使其在高压、强电磁干扰、易燃、易爆的环境中能有效的传感。 2)耐腐蚀 由于光纤表面的涂覆层是由高分子材料组成,承受环境或者结构中酸碱等化学成分腐蚀的能力强,适合于结构的长期健康监测。 3)测量精度高 光纤传感器采用波长调制技术,分辨率可达到波长尺度的皮米量级,对应温度监测中0.1℃与应变监测中1με。光测量及波长调制技术使光纤传感器的灵敏度优于一般的传感器。 4)测量对象广泛

光纤位移传感器

课程设计中期报告课题名称:光纤位移传感器 班级:2013级机电1班 组长:彭欢201307124101 组员:郑岩201307124123 马晓龙201307124117 张林201307124128

光纤位移传感器 重庆三峡学院机械工程学院机械电子专业2013级重庆万州 404000 摘要:光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,称为被调制的信号光,再过利用被测量对光的传输特性施加的影响,完成测量. 绝缘子污秽、磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流、光纤传感器可用于位移、震动、转动、压力、弯曲、应变、速度、加速度、电流、磁场、电压、湿度、温度、声场、流量、浓度、PH值和应变等物理量的测量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年来一直存在的技术难题,具有很大的市场需求。 关键字:位移光纤传感器 1引言 光纤传感器的基本工作原理是将来自光源的光信号经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,成为被调制的信号源,在经过光纤送入光探测器,经解调后,获得被测参数。 1.1光纤位移传感器的发展 光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。光纤传感器有70多种,大致上分成光纤自身传感器和利用光纤的传感器。 1.2光纤位移传感器的特性 一。灵敏度较高 二。几何形状具有多方面的适应性,可以制成任意形状的光纤传感器 三。可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件; 四。可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境; 五。而且具有与光纤遥测技术的内在相容性。附属说明:可以用来检测多种物理量,比如声场、电场、压力、振动、温度、加速度等,还可以完成现有检测工作中难以完成的检测任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了超强的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤传感器。近年来得到很好的发展,大多应用在低碳领域。在风力发电中,光纤传感工艺开始用于检测和优化风力发电风轮系统。作为发展最快的能源工艺,风轮的尺寸越来越大。这些风轮体积巨大,又安装在比较遥远的地点。监控工程师需要实时了解这些风轮的状态。因此,光纤传感器就能发挥其功效,帮助工程师了解风力发电机机组的运行情况。光纤传感器工艺耗能极低而且灵敏,特别在远距离传输中,信号稳定,受干扰小。这些特点使光纤传感器成为极端环境下的理想选择。

光纤光栅传感器及其发展趋势详解

【摘要】光纤光栅是现代光纤传感中应用最广泛的器件与技术。自1978年加拿大渥太华研究中心利用光纤的光敏效应成功制成第一根光纤光栅以来,光纤光栅传感器便因为体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等特点及其具有本征自相干能力强和能在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势而被广泛应用于各行各业。本文先对光纤光栅传感器的工作原理及其分类进行论述,接着简述光纤光栅传感器的一些重要应用,然后对光纤光栅传感器的研究方向进行简单分析,最后是小结和展望。 【关键词】传感器;光纤光栅传感器;光纤光栅传感技术 一、光纤光栅传感器的工作原理及其分类 光纤光栅是利用光致折射率改变效应,使纤芯折射率沿轴向产生周期性变化,在纤芯内形成空间相位光栅。光纤光栅传感器目前研究的主要有三种类型:一是利用光纤布喇格光栅(FBG )背向反射特征制作的传感器;二是利用长周期光纤光栅(LPG )同向透射特征制作的传感器;三是利用啁啾光纤光栅色散补偿特征制作的传感器。下面将对这三种传感器的传感机理进行简单概述。 1.1 光纤布喇格光栅传感原理 光纤布喇格光栅纤芯轴向的折射率呈现周期性变化,其作用的实质相当于是在纤芯内形成一个窄带的滤波器或反射镜。如图1-1所示,当一束宽光谱光经过光纤光栅时,满足光纤光栅布喇格条件的波长将产生反射,其余的波长将透过光纤光栅继续往前传输。 图1-1 光纤布喇格光栅原理图 光纤布喇格光栅反射谱的中心波长B λ满足 Λ=eff n 2B λ 其中,eff n 为有效折射率,Λ为光纤光栅栅距。 光纤光栅的栅距是沿光纤轴向分布的,因此在外界条件诸如温度、压力等的作用下,光

实验--光纤光栅传感实验

光纤光栅传感器实验 一、实验目的 1. 了解和掌握光纤光栅的基本特性; 2. 了解和掌握光纤光栅传感器的基本结构、基本原理; 3. 光纤光栅传感测量的基本方法和原理。 二、实验原理 光纤光栅是近年来问世的一种特殊形式的光纤芯内波导型光栅,它具有极为 丰富的频谱特性,在光纤传感、光纤通信等高新技术领域已经展示出极为重要的 应用。特别是在用于光纤传感时,由于其传感机构(光栅)在光纤内部,且它属 于波长编码类型,不同于普通光纤传感的强度型,因而具有其他技术无法与之相 比的一系列优异特性,如防爆、抗电干扰、抗辐射、抗腐蚀、耐高温、寿命长、 可防光强变化对测量结果的影响、体积小、重量轻、灵活方便,特别能在恶劣环 境下使用。光纤光栅传感器可集信息的传感与信息的传输于一体,它极易促成光 纤系统的全光纤化、微型化、集成化以及网络化等等,因此光纤光栅传感技术一 经提出,便很快受到青睐,并作为一门新兴传感技术迅猛崛起。 1. 光纤光栅及其基本特性 光纤光栅的基本结构如图1-1所示。它是利用光纤材料的光折变效应,用 紫外激光向光纤纤芯内由侧面写入,形成折射率周期变化的光栅结构,这种光栅 称之为布喇格(Bragg )光纤光栅。 这种折射率周期变化的Bragg 光纤光栅满足下面相位匹配条件时,入射光将 被反射: Λ=eff B n 2λ (1) 式中B λ 为Bragg 波长(即光栅的反射波长), 为光栅周期,eff n 为光纤材料的有效折射率。如果光纤光栅的长度为L ,由耦合波方程可以计算出反射率R 为: 附图1-1 光纤光栅示意图 布喇格光纤光栅 纤芯 入射光 反射光 光纤包层

()R A A sL s sL sL r i ==+002222222()sinh cosh (/)sinh *κκβ? 图1-2 显示了两条不同反射率的布喇格光纤光栅反射谱,附图1-3为实际的 一个布喇格光纤光栅反射谱和透射谱。 其峰值反射率m R 为: ????????Λ?=eff m n nL R 2tanh 2 π (2) 反射的半值全宽度(FWHM ),即反射谱的线宽值 2 2???? ???+??? ??Λ=?eff B B n n L λλ (3) (1)式中,,eff n Λ是温度T 和轴向应变ε的函数,因此布喇格波长的相对变化量 可以写成: /()(1)B a T Pe λλξε=++- (4) 其中a 、ξ分别是光纤的热膨胀系数和热光系数,;Pe 是有效光弹系数,大 约为0.22。应变ε可以是很多物理量(如,压力、形变、位移、电流、电压、振 动、速度、加速度、流量等等)的函数,应用光纤光栅可以制造出不同用途的传 感头,测量光栅波长的变化就可以计算出待测物理量的变化,所以(4)式是光 栅传感的基本方程。 SGQ-1型光纤光栅传感实验仪是我公司设计的系列实验设备之一。通过本实 验仪的相关实验使学生了解和掌握光纤光栅的基本特性、光纤光栅传感器的基本 附图1-2 曲线κL =2和κL =5的反射谱 附图1-3 布喇格光纤光栅透射

位移传感器的发展现状

《材料工程检测技术》课程作业(二): 位移传感器的发展现状概述 课程: 任课老师: 学院(系): 专业: 学生姓名: 学号:

1 位移传感器 位移是指物体位置对参考点产生的偏移量,是指物体相对于某参考坐标系一点的距离的变化量,它是描述物体空间位置变化的物理量。位移传感器又称为线性传感器,是将位移转换成电量的传感器。位移传感器的发展经历了两个阶段,经典位移传感器阶段和半导体位移传感器阶段。 2 位移传感器的分类 2.1 电位器式 电位器位移传感器分为绕线电位器和非绕线电位器2种:绕线电位器一般由电阻丝烧制在绝缘骨架上,由电刷引出与滑动点电阻对应的输入变化。电刷由待测量位移部分拖动,输出与位移成正比的电阻或电压的变化;常见的非线绕式电位器位移传感器是在绝缘基片上制成各种薄膜元件,如合成膜式、金属膜式、导电塑料和导电玻璃釉电位器等。 2.2 电阻应变式 传感器是由弹性敏感元件和电阻应变片构成,当测量杆随试件产生位移时,弹性敏感元件在感受到测量杆变化而产生变形,其表面产生的应变与测量杆的位移成线性关系。这种传感器具有线性好、分辨率较高、结构简单和使用方便等特点,其位移测量围较小,通常在0.1um-0.1mm之间,测量精度小于2%,线性度为0.1%一0.5%。 2.3 电容式 电容传感器通过位移来改变电容两个极板之间的距离,即将位移量转换成电容变化量进行测量的。 它具有功率小、阻抗高、动态特性好、可进行非接触测量等优点;但是电容传感器存在寄生电容和分布电容,会影响测量精度,且常用的变隙式电容传感器存在测量量程小,存在非线性误差等缺点。一般使用极距变化型电容式位移传感器和面积变化型电容式位移传感器。

光纤光栅传感器的应用及发展

光纤光栅传感器的应用及发展 光纤光栅自从问世以来,就以其优良特性成为传感领域的新亮点。简要回顾了光纤光栅的 发展历史,介绍了光纤光栅的分类,着重论述了光纤光栅传感器的应用情况,分析了光纤光栅 传感器的未来发展趋势及面临的问题。 光纤光栅的分类: 光纤光栅是光纤导波介质中物理结构呈周期性分布的一种光子器件。根据物理机制的不同,可将光纤 光栅分为蚀刻光栅和折射率调制的相位光栅两类。前者在成栅过程中使光纤的结构出现明显的物理刻痕, 后者主要使纤芯折射率呈周期性分布。目前,无论是发还是工程实用,后者均占主导地位。因此,通常所说的光纤光栅 指的是后者。根据光敏机制的不同,又可将光纤光栅分为I型、Ⅱ型和Ⅲ型. I型先纤光栅 连续或者能量较弱的多个脉冲光波在光敏光纤中形成的传统意义上的光折变光栅被称之为I型光栅 Ⅱ型光纤光栅 采用单脉冲成栅时发现,不断提高脉冲能量存在一个取决于光纤中锗浓度的阈值(~1J/cm),低于该 阈值时形成的光栅均为I型光栅,而高于该阈值时写入光栅的调制度变得非常大,反射率接近100%,将 此时的光栅称为Ⅱ型光栅。Ⅲ型光纤光栅区别于I型光栅的是,随着曝光量的增加,折射率呈负增长趋势,显然也不属于Ⅱ型光栅,因此称之为Ⅲ型光栅。根据折射率变化是否均匀,可以将其分为均匀光纤光 栅和非均匀光纤光栅两类。 1)均匀光纤光栅 指栅格周期沿纤芯轴向均匀且折射率调制深度为常数的一类光纤光栅。从栅格周期的长短及波矢方向的差异等因素考虑,这类光纤光栅的典型代表有光纤布喇格光栅(rBG)、长周期光纤光栅(LPG)闪烁光纤光栅刮等. 2)非均匀光纤光栅 指栅格周期沿纤芯轴向不均匀或折射率调制深度不为常数的一类光纤光栅。从栅格周期的长短及折射率调制深度等因素考虑,这类光纤光栅的典型代表有线性啁啾光纤光栅、分段啁啾光纤光栅和非均匀特种光纤光栅等。 光纤光栅传感器的应用与发展: 1978年,加拿大的Hill等人首次观察到掺锗光纤中因光诱导产生光的效应J,制成了世界上第一只被称为“Hill光栅”的光纤光栅。1989年,美国的Meltz等人发明了紫外光侧面写入光敏光栅的技术,为光纤光栅实用化开辟了一条可行的道路。1993年,Hill等人提出了相位掩模写人技术,极大地放宽了对写入光源相干性的要求,使得光纤光栅的制作更加灵活并使光栅的批量生产成为可能。此后,世界各国迅速开展了对光纤光栅及其应用的研究。光纤光栅的写入技术及光纤光敏化技术不断取得新的进展,其制作技术也不断提高和完善。而光纤光栅独有的抗电磁干扰、高灵敏度和复用技术等优势也逐渐显现出来。自从1989年美国的Morey等人首次报导光纤光栅用于传感以来,光纤光栅传感技术引起了人们极大的兴趣并得到飞速发展,被广泛用于温度、应变、压力、加速度、超声波、振动、电磁场和折射率等多种物理量的测量,其中一部分光纤光栅传感系统已经实际应用。目前,FBG为传感器件的传感器成为研发主流,以LPG和啁啾光纤光栅CFG)为传感器件的传感器的研究同样引起人们的兴趣。在土木工程中,对于桥梁大坝、隧道矿井和大型建筑物等来说,其结构会随着时间的推移或者外界环境的改变而变化。因此,需要通过测量结构的应变分布和局部载荷状态来确保其结构健康并安全运行。光纤光栅传感器尺寸小,既可以贴在现存工程结构的表面,也可以在浇筑时埋入结构中。多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式实时监测。1993年,加拿大卡尔加里附近的BeddingtonTrail大桥首先采用了光纤光栅进行应力测量,并用此方法长期监测桥梁结构。此后,国外发达国家也都选用光纤光栅传感器作为桥梁长期安全监测的首选技术。1999年,美国新墨西哥Las Cruces10号州际高速公路的一座钢结构桥梁上安装了120个光纤光栅传感器,创造了当时在一座桥梁上使用光纤光栅传感器数量最多的纪录。在我国,近几年来,随着国家对安全生产问题的高度重视,大型建筑物安全监测与预警的意义和作用也逐步受到人们的重视。武汉理工大学将光纤光栅传感器引入桥梁长期安全监测预警系统中,解决了传统电测手段无法长期稳定监测的问题,并应用于武汉阳逻长江大桥、武汉长江二桥等十余座大型桥梁的长期安全监测,取得了非常好的效果。哈尔滨工业大学采用光纤光栅传感器完成了lO余项重大工程的健康监测。此外,南开大学与上海紫珊光电技术有限公司合作,在世博场馆大空间结构安全保障关键技术项目中采用光纤光栅传感器进行健康监测J。这些领域开展的实验测试和实际应用为我国桥梁大坝、隧道矿井及大型建筑物的长期安全监测与预警提供了典范。先进的复合材料抗疲劳、抗腐蚀性能较好,质量轻,可以减轻船体或航天器的重量,已经越来越多地被用于制造高速航空航海工具。在复合材料结构的制造过程中埋入光纤光栅传感器,可以在飞行器或舰船运行过程中进行实时健康监测和损伤探测J。自从光纤光栅传感器于1990年次埋人环氧树脂复合材料以及1992年首次埋人混凝土中以来,光纤光栅在航空航天复合材料/结构的健康监测中开始试用。将光纤光栅粘贴于航空航天飞行器(如机身、机翼蒙皮)及发射塔表面或者埋人其内部,可构成分布式智能传感网络,实时监测飞行器及发塔的应力、应变、温度及其结构内部损伤等健康状况. 根据测结果,由驱动元件对结构状态进行相

相关文档