文档库 最新最全的文档下载
当前位置:文档库 › midas时程荷载工况中几个选项的说明

midas时程荷载工况中几个选项的说明

midas时程荷载工况中几个选项的说明
midas时程荷载工况中几个选项的说明

时程荷载工况中几个选项的说明

动力方程式如下:

在做时程分析时,所有选项的设置都与动力方程中各项的构成和方程的求解方法有关,所以在学习时程分析时,应时刻联想动力方程的构成,这样有助于理解各选项的设置。另外,正如哲学家所言:运动是绝对的,静止是相对的。静力分析方程同样可由动力方程中简化(去掉加速度、速度项,位移项和荷载项去掉时间参数)。

0.几个概念

自由振动: 指动力方程中P(t)=0的情况。P(t)不为零时的振动为强迫振动。

无阻尼振动: 指[C]=0的情况。

无阻尼自由振动: 指[C]=0且P(t)=0的情况。无阻尼自由振动方程就是特征值分析方程。

简谐荷载: P(t)可用简谐函数表示,简谐荷载作用下的振动为简谐振动。

非简谐周期荷载: P(t)为周期性荷载,但是无法用简谐函数表示,如动水压力。

任意荷载: P(t)为随机荷载(无规律),如地震作用。随机荷载作用下的振动为随机振动。

冲击荷载: P(t)的大小在短时间内急剧加大或减小,冲击后结构将处于自由振动状态。

1.关于分析类型选项

目前有线性和非线性两个选项。该选项将直接影响分析过程中结构刚度矩阵的构成。

非线性选项一般用于定义了非弹性铰的动力弹塑性分析和在一般连接中定义了非线性连接(非线性边界)的结构动力分析中。当定义了非弹性铰或在一般连接中定义了非线性连接(非线性边界),但是在时程分析工况对话框中的分析类型中选择了“线性”时,动力分析中将不考虑非弹性铰或非线性连接的非线性特点,仅取其特性中的线性特征部分进行分析。

只受压(或只受拉)单元、只受压(或只受拉)边界在动力分析中将转换为既能受压也能受拉的单元或边界进行分析。

如果要考虑只受压(或只受拉)单元、只受压(或只受拉)边界的非线性特征进行动力分析应该使用边界条件>一般连接中的间隙和钩来模拟。

2.关于分析方法选项

目前有振型叠加法、直接积分法、静力法三个选项。这三个选项是指解动力方程的方法。关于振型叠加法、直接积分法可以参考一些动力方程方面的书籍。

振型叠加法是将多自由度体系的动力反应问题转化为一系列单自由度体系的反应,然后再线性叠加的方法。其优点是计算速度快节省时间,但是由于采用了线性叠加原理,原则上仅适用于分析线弹性问题,当进行非线性动力分析时或者因为装有特殊的阻尼器而不能满足阻尼正交(刚度和质量的线性组合)时是不能使用振型叠加法的。

直接积分法是将时间作为积分参数解动力方程式的方法,又称为时域逐步积分法。直接

积分法的优点是可以考虑刚度和阻尼的非线性特点,计算相对准确,但是因为要对所有时间步骤都要积分,所以分析时间相对较长。

静力法是使用动力分析方法模拟Pushover分析(静力弹塑性分析)的方法。也可以用于确定静力荷载作用下(使用时变静力荷载方法)结构的铰状态。之所以称为静力法,是因为求解过程中忽略了动力方程中的加速度和速度项,而位移和荷载项也没有了真正意义上的时间概念,只有荷载控制和位移控制中的步骤概念。时程分析中的静力法与Pushover分析相比,其优点是:

a.可控制正反两个方向上的位移,这样更接近于实际地震的振动(Pushover分析的位移

是单方向的).

b.用户定义铰特性值更自由,并且可通过定义纤维截面更详细地确认截面内破坏情况。

3.关于时程类型选项

目前有瞬态和周期两个选项。这两个选项是指动力荷载的类型以及分析中荷载的使用方法。

“瞬态”一般用于无规律的振动(例如地震荷载)。选择该项时,分析时间长度是由输入的“分析时间”控制的。

“周期”一般用于有规律的振动(例如简谐振动)。选择该项时,时间荷载可只定义一个周期。例如:周期为1秒的无衰减的正弦波荷载,如果用户想要分析一直重复振动的结果,那么可以在定义时间荷载时只定义1个周期长度的时间荷载(即时间荷载长度为1秒),然后在时程荷载工况对话框中的“分析时间”中输入1秒,在“时程类型”中选择“周期”,程序分析结果就会给出循环加载的效果。当然,也可以在定义时间荷载时重复定义多次循环,在时程荷载工况对话框中的“分析时间”中输入很长的时间,在“时程类型”中选择“瞬态”,两者效果是相同的。

4.关于加载顺序选项

当前时程荷载工况要在前次荷载工况(可以是时程荷载、静力荷载、最后一个施工阶段荷载、初始内力状态)作用下的位移、速度、加速度、内力状态下继续分析,则在定义当前时程荷载工况时要选择“接续前次”选项。

a.荷载工况选项

在荷载工况列表中可选择的前次荷载工况有TH(时程荷载)、ST(静力荷载)、CS(最后一个施工阶段荷载)。

当前次荷载工况为时程荷载时(例如前次为TH1、当前为TH2),并且要想按照TH1->TH2的顺序进行连续分析时,TH1和TH2的“分析类型”和“分析方法”选项的选择需要一致。

当前次荷载工况为ST(静力荷载)或CS(最后一个施工阶段荷载)时,且定义了非弹性铰做动力弹塑性分析时,如果静力荷载本身的大小致使结构的位移超出了弹性变形的范围,则当前时程荷载工况分析结果会不准确。因为静力荷载的分析是弹性分析,其内力结果是弹性分析的结果,但是这个内力结果实际上超过了产生弹塑性铰的内力,这时的内力状态是不真实的。所以要注意ST(静力荷载)或CS(最后一个施工阶段荷载)的荷载要在弹性范围内。

当前次荷载工况为时程荷载时,不存在要求前次时程荷载工况的结果处于弹性阶段的要求。因为前次时程荷载分析也是在做非线性分析,分析过程考虑了内力和位移的非线性关系,在保证精度和收敛条件下其结果是真实的。

b.初始单元内力表格选项

该选项可定义时程分析的初始条件(内力、初始几何刚度)。一般可用于有初始恒荷载作用的地震作用的弹塑性时程分析,即先做静力分析获得结构的初始内力,程序会使用该内力状态构成结构的初始刚度矩阵,然后做时程分析。同荷载工况选项中的说明一样,内力表格中的内力值要在弹性范围内。

生成初始单元内力表格的方法参见联机帮助说明。

c. 累加位移/速度/加速度结果

不选此项时,查看本荷载工况的结果时只输出本荷载工况作用的结果;选择此项时,查看本荷载工况的结果时包含了前次荷载工况最终步骤的影响。程序只要选择了加载顺序选项,程序计算当前荷载工况时就会考虑前次荷载工况的影响,该选项(不选时)仅是为了方便用户想查看不受前次荷载工况影响的当前荷载工况作用结果。所以该选项仅影响结果的输出,不影响内部计算过程。

d. 保持最终步骤荷载不变

保持前次荷载工况最终步骤时的荷载不变,加到本次荷载工况各荷载时间步骤中。

5. 关于阻尼的计算

阻尼矩阵的生成方法比较多样,程序目前提供的组尼计算方法如下

(1) 有直接输入各振型阻尼的方法(目前翻译名称为直接模型,今后版本中名称修

改为振型阻尼)

(2) 质量和刚度因子法(一般称为瑞利阻尼法)

(3) 应变能因子法

(4) 单元质量和刚度因子法

其中在分析方法选项中选择“振型叠加法”时将不必构成结构总体阻尼矩阵,按各振型进行求解方程;在分析方法选项中选择“直接积分法”时,将构成结构的总体阻尼矩阵。

直接输入振型阻尼的方法: 直接输入各振型的阻尼,所有振型也可以采用相同的阻尼。 质量和刚度因子法(瑞利阻尼): [C]=a 0*[M]+a 1*[K],程序中可直接输入a 0和a 1,也可以通过输入两个自振频率的阻尼比来计算a 0和a 1,计算公式如下:

01n n n a a 22

ωζω=+ 工程上一般在确定a 0和a 1时使用的阻尼比相等,但要注意的是两个自振频率的取值。确定瑞利阻尼的原则是: 选择的两个用于确定常数a 0和a 1的频率点i ω和j ω要覆盖结构分析中感兴趣的频段。感兴趣的频率的确定要根据作用于结构上的外荷载的频率成分和结构的动力特性综合考虑。在频段[i ω,j ω]内,阻尼比略小于给定的阻尼比ζ(在i、j 点上i j ζζζ==),这样在该频段的结构反应将略大于实际的反应,这样的计算结果对工程设计而言是安全的,如果i ω和j ω选择的好,则可避免过大设计。在频段[i ω,j ω]以外,阻尼比将迅速增大(瑞利阻尼的特点),这样频率成分的振动会被抑制,所以这部分是可以忽略的。但是如果i ω和j ω选择的不合理,频段[i ω,j ω]以外有对结构设计有重要影响的频率分量

时,则可能导致严重的不安全。简单地采用前两阶自振频率来确定常数的方法应预纠正。

应变能比例法: 只有定义了组阻尼时才起作用。根据用户定义的组阻尼程序会计算各振型对应的阻尼比。

单元质量和刚度因子法: 只有定义了组阻尼时才起作用。根据用户定义的组阻尼程序会自动构成结构总体阻尼矩阵。定义组阻尼时,使用不同材料的单元要分别定义为不同的结构组,并给出不同的阻尼比。

6. 关于直接积分法中的时间积分参数

直接积分法又叫时域逐步积分法,是解动力方程的一种方法。直接积分法中常用的数值分析方法类型如下(还有一些方法,本资料未列出,可参考动力分析方面的书籍)。

(1) 中心差分法

(2) 平均常加速度法

(3) 线形加速度法

(4) Newmark-β法

(5) Wilson-θ法

评价逐步积分法的优劣标准是收敛性、计算精度、稳定性、计算效率。

收敛性: 当时间离散步长Δt->0时,数值解是否收敛于解析解。

计算精度:截断误差与时间步长Δt 的关系,若误差接近于0(Δt N ),则称方法具有N 阶精度。

稳定性:随着计算时间步数的增大,数值解是否变得无穷大(即远离精确解)。 计算效率:所花费计算时间的多少。

逐步积分法按是否需要联立求解耦联方程组又分为隐式方法和显式方法,其中上述方法中除了中心差分法属于显式方法外,其余属于隐式方法。

Newmark-β法是通过假定至i t 1i t +时段内加速度的变化规律,以时刻的运动为初始值通过积分方法得到时刻的运动量的方法。其中a、b、c 三种方法包含在Newmark-i t 1i t +β法中,Wilson-θ方法是在线性加速度法的基础上发展起来的数值分析方法,因此线性加速度方法也可以说的Wilson-θ方法的一个特例(θ=1时)。目前MIDAS 程序中提供的直接积分法为Newmark-β法。

根据Newmark-β法中的γ和β的取值不同,对应的逐步积分法不同。

其中,Tn 是结构的最小自振周期,γ=0.5时具有二阶精度,20γβ?=时无条件稳定。

当选择直接积分法时(特别是用户自行输入Newmark时间积分参数时),要慎重选择时间t?γ和β,因为这将影响到分析的精度和稳定性。

步长、参数

7.关于非线性分析控制参数中的“更新阻尼矩阵”选项

该选项只有同时选择下列选项时才会被激活。

“分析类型”: 选择“非线性”

“分析方法”: 选择“直接积分法”

“阻尼计算方法”: 选择“质量和刚度因子”法或“单元质量和刚度因子”法 这是因为使用“质量和刚度因子”法或“单元质量和刚度因子”法计算阻尼矩阵时,阻尼值与刚度矩阵相关,而产生非弹性铰时结构的刚度矩阵将发生变化。

程序默认选项为“否”,即不更新阻尼矩阵,是为了使非线性分析更容易收敛。

8.非线性分析迭代控制中“容许不收敛”选项

一般其他程序当分析过程不收敛时将退出分析。但是有时用户需要看前面已经收敛步骤地结果,所以本程序增加了该选项,即使分析过程中不收敛也让分析继续进行下去。

9.其他

a.使用分析方法中的“静力法”选项做Pushover分析的步骤(参考验证例题NLTH-1)

(1)定义静力荷载(恒荷载、活荷载)

(2)定义时程荷载函数(无量刚,0秒时值为0,1秒时值为1即可)

(3)定义非弹性铰并赋予相应构件

(4)将静力荷载作用定义为初始的时程荷载工况,选项如下:

分析类型:非线性

分析方法: 静力法

静力加载控制: 荷载控制

(5)定义一系列连续的时程荷载工况,选项如下:

分析类型:非线性

分析方法: 静力法

静力加载控制: 位移控制,此时的控制位移指相对位移值

(6)注意事项:

-所有的时程荷载工况都要定义为时变静力荷载(使用相同的时程荷载函数)

-接续的时程荷载工况要一直采用位移控制(否则不容易收敛)

b.关于质量矩阵[M]

程序中影响矩阵的命令有下面几个:

模型>结构类型(将结构的自重转换为质量)

模型>质量(节点质量)

模型>质量(将荷载转换为质量)

单元自重和荷载转换为质量的方法有集中质量法和一致质量法。700以上版本中,将单

元自重转换为质量时可以选择集中质量法也可以选择一致质量法,将荷载转换为质量程序默认为集中质量法。

使用一致质量法转换质量时,在计算结构固有周期时程序默认规定使用兰佐斯法(Lanczos法)(在分析>特征值分析控制对话框中定义),这样会提高计算效率。

c.时程分析中的振型叠加法的有关说明

-分析时间步长不宜大于基本周期的1/10,且不应大于输入的时间荷载数据时间间隔。

-要做特征值分析(因为计算中需要结构的固有周期)

-要注意的是时程分析中的振型叠加与反应谱分析中的振型组合不同,时程分析中的振型叠加是各振型在各时间步上的线性组合,而反应谱分析中的振型组合方式有SRSS、CQC、ABS。

参考文献:

1.结构动力学,刘晶波、杜修力主编

2.MIDAS用户手册、联机帮助

midas时程分析

16. 时程分析 概述 对下面受移动荷载的简支梁运行时程分析。 ?材料 弹性模量 : 2.4?1011 psi 容重(γ) : 0.1 lbf/in3 ?截面 截面面积(Area) : 1.0 in2 截面惯性矩(Iyy) : 0.083333 in4 半径(radius) : 10.0 in 厚度(thickness) : 2.0 in 重力加速度(g) : 1.0 in/sec2

速度 容重 整体坐标系原点 (a)受移动荷载的简支梁 (b)时程荷载函数 图 16.1 分析模型 模型是受600 in/sec速度的移动荷载的简支梁结构。通过时程分析了解动力荷载下结构的反映,改变荷载周期来查看共振的影响。

设定基本环境 打开新文件以‘时程分析 1.mgb’为名保存. 文件 / 新文件 文件 / 保存 ( 时程分析 1 ) 设定单位体系。 工具 / 单位体系 长度 > in ; 力 > lbf 图 16.2 设定单位体系

设定结构类型为 X-Z 平面。且为了特征值分析,设定自重自动转换为节点质量。 模型/ 结构类型 结构类型 > X-Z 平面 将结构的自重转换为质量> 转换到 X, Y, Z 重力加速度( 1 ) 点格(关) 捕捉点(关) 捕捉节点捕捉单元正面 图 16.3 设定结构类型

定义材料以及截面 输入材料和截面,采用用户定义的类型和数值的类型输入数据。 模型/ 特性/ 材料 一般> 名称( 材料) ; 类型> 用户定义 用户定义 > 规范>无 分析数据 > 弹性模量 ( 2.4E+11 ) 容重( 0.1 ) ? 模型/ 特性/ 截面 数值 名称( 截面) ; 截面形状> Pipe 尺寸 > D ( 10 ) ; t w( 2 ) 截面特性值> 面积( 1 ) ; Iyy ( 0.083333 )? 图 16.4 定义材料图 16.5 定义截面

midas连续梁分析报告实例

1. 连续梁分析概述 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 内力。 3跨连续两次超静定 3跨静定 3跨连续1次超静定 图 1.1 分析模型

?材料 钢材: Grade3 ?截面 数值 : 箱形截面 400×200×12 mm ?荷载 1. 均布荷载 : 1.0 tonf/m 2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差) 设定基本环境 打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。 文件/ 新文件 文件/ 存档(连续梁分析 ) 工具 / 单位体系 长度> m ; 力 > tonf 图 1.2 设定单位体系

设定结构类型为 X-Z 平面。 模型 / 结构类型 结构类型> X-Z 平面? 设定材料以及截面 材料选择钢材GB(S)(中国标准规格),定义截面。 模型 / 材料和截面特性 / 材料 名称( Grade3) 设计类型 > 钢材 规范> GB(S) ; 数据库> Grade3 ? 模型 / 材料和截面特性 / 截面 截面数据 截面号( 1 ) ; 截面形状 > 箱形截面; 用户:如图输入 ; 名称> 400×200×12 ? 选择“数据库”中的任 意材料,材料的基本特 性值(弹性模量、泊松 比、线膨胀系数、容 重)将自动输出。 图 1.3 定义材料图 1.4 定义截面建立节点和单元

为了生成连续梁单元,首先输入节点。 正面, 捕捉点 (关), 捕捉轴线 (关) 捕捉节点 (开), 捕捉单元 (开), 自动对齐 模型 / 节点 / 建立节点 坐标 ( x, y, z ) ( 0, 0, 0 ) 图 1.5 建立节点 参照用户手册的“输 入单元时主要考虑事项”

用midas做稳定分析步骤

用MIDAS来做稳定分析的处理方法(笔记整理) 对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题: A.整个结构的稳定性 B.构成结构的单个杆件的稳定性 C.单个杆件里的局部稳定(如其中的板件的稳定)A整个结构的稳定性: 1. 在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳 特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态 2:极值点失稳 特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载。 3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。B构成结构的单个杆件的稳定性 通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。 C 单个杆件里的局部稳定(如其中的板件的稳定) 在MIDAS里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还没

有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。和A是同样的道理,这里充分体现了结构即构件,构件即结构的道理 A整个结构的稳定性: 分析方法: 1:线性屈曲分析(对象:桁架,粱,板) 在一定变形状态下的结构的静力平衡方程式可以写成下列形式: (1):结构的弹性刚度矩阵:结构的几何刚度矩阵:结构的整体位移向量:结构的外力向量 结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过N=3.1415^2*E*I/L^2时,杆的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。临界荷载可以用已知的初始值和临界荷载的乘积计算得到。临界荷载和屈曲模态意味着所输入的临界荷载作用到结构时,结构就发生与屈曲模态相同形态的屈

midas荷载组合与桥博的对应关系

m i d a s荷载组合与桥博 的对应关系 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

相信在用桥博做了桥梁计算之后,再用midas计算,刚开始会遇到一个很普遍的问题。那就是:m i d a s里面的荷载组合跟桥博是如何对应的? 说实话,对于初学者来说,midas的前处理(建模阶段)相对来说还算比较容易的,但是后处理(结果分析)阶段跟桥博相比就显的有些无从下手了。毕竟两个计算软件是不同的国家开发的。 桥博作为我们国内最优秀的桥梁专业类的计算软件,比较符合我们中国人的习惯,而且做起直线桥、一般的杆系桥很快捷。而midas这个韩国人开发的软件,里面多多少少总有些地方我们不是很习惯。这两个软件都是很好的软件,对我们的桥梁设计提供了很大的帮助,当然同时也存在很大的不同,各有千秋。 下面我就荷载组合这个问题来说明一下他们的区别与联系。 一、桥博荷载组合 a.桥博里面常用的荷载组合有: 1、承载能力极限状态组合Ⅰ:基本组合 2、正常使用极限状态组合Ⅰ:长期效应组合 3、正常使用极限状态组合Ⅱ:短期效应组合 4、正常使用极限状态组合Ⅲ:标准值组合 相应荷载组合的基本定义可以查看规范JTG D60-2004第4.1.6 b.桥博里面荷载组合的应用: 1、钢筋混凝土构件设计: 承载能力极限状态强度验算:查看承载能力极限状态荷载组合I强度验算结果;

?正常使用极限状态裂缝宽度验算:查看正常使用极限状态荷载组合II裂缝验算结果; ?构件的各种应力可供参考,建议用户对钢筋混凝土构件的压应力应有所控制; 2、预应力混凝土构件设计: ?承载能力极限状态强度验算:查看承载能力极限状态荷载组合I强度验算结果; ?正常使用极限状态应力验算: ?法向压应力:查看正常使用极限状态荷载组合III应力验算结果;(最大压应力验算结果) ?法向拉应力(抗裂性): 全预应力构件:查看正常使用极限状态荷载组合II应力验算结果; (最大拉应力验算结果) 部分预应力A类构件: ?长期效应组合:查看正常使用极限状态荷载组合I应力验算结果;(最大拉应力验算结果) ?短期效应组合:查看正常使用极限状态荷载组合II应力验算结果;(最大拉应力验算结果) ?主压应力:查看正常使用极限状态荷载组合III应力验算结果;(最大主压应力验算结果) ?主拉应力:查看正常使用极限状态荷载组合II应力验算结果;(最大主拉应力验算结果)

midas施工阶段分析

目录 Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 (2) Q2、 POSTCS阶段的意义 (2) Q3、施工阶段定义时结构组激活材龄的意义 (2) Q4、施工阶段分析独立模型和累加模型的关系 (2) Q5、施工阶段接续分析的用途及使用注意事项 (2) Q6、边界激活选择变形前变形后的区别 (3) Q7、体内力体外力的特点及其影响 (4) Q8、如何考虑对最大悬臂状态的屈曲分析 (4) Q9、需要查看当前步骤结果时的注意事项 (5) Q10、普通钢筋对收缩徐变的影响 (5) Q11、如何考虑混凝土强度发展 (5) Q12、从施工阶段分析荷载工况的含义 (5) Q13、转换最终阶段内力为POSTCS阶段初始内力的意义 (6) Q14、赋予各构件初始切向位移的意义 (6) Q15、如何得到阶段步骤分析结果图形 (6) Q16、施工阶段联合截面分析的注意事项 (6) Q17、如何考虑在发生变形后的钢梁上浇注混凝土板 (7)

Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 A1.“施工阶段荷载”类型仅用于施工阶段荷载分析,在POSTCS阶段不能进行分析。如果将在施工阶段作用的荷载定义为其他荷载类型,则该荷载既在施工阶段作用,也在成桥状态作用。在施工阶段作用的效应累加在CS合计中,在成桥状态作用的荷载效应以“ST荷载工况名称”的形式体现。 因此为了避免相同的荷载重复作用,对于在施工阶段作用的荷载,其荷载类型最好定义为施工阶段荷载。 注:荷载类型“施工荷载”和“恒荷载”一样,都属于既可以在施工阶段作用也可以在POSTCS阶段独立作用的荷载类型。 Q2、P OSTCS阶段的意义 A2.POSTCS是以最终分析阶段模型为基础,考虑其他非施工阶段荷载作用的状态。通常是成桥状态,但如果在施工阶段分析控制数据中定义了分析截止的施工阶段,则那个施工阶段的模型就是POSTCS阶段的基本模型。沉降、移动荷载、动力荷载(反应谱、时程)都是只能在POSTCS阶段进行分析的荷载类型。 施工阶段的荷载效应累计在CS合计中,而POSTCS阶段各个荷载的效应独立存在。 POSTCS阶段荷载效应有ST荷载,移动荷载,沉降荷载和动力荷载工况。 有些分析功能也只能在POSTCS阶段进行:屈曲、特征值。 Q3、施工阶段定义时结构组激活材龄的意义 A3.程序中有两个地方需要输入材龄,一处是收缩徐变函数定义时需输入材龄,用于计算收缩应变;一处是施工阶段定义时结构组激活材龄,用于计算徐变系数和混凝土强度发展。因此当考虑徐变和混凝土强度发展时,施工阶段定义时的激活材龄一定要准确定义。 当进行施工阶段联合截面分析时,计算徐变和混凝土强度发展的材龄采用的是施工阶段联合截面定义时输入的材龄,此时在施工阶段定义时的结构组激活材龄不起作用。 为了保险起见,在定义施工阶段和施工阶段联合截面分析时都要准确的输入结构组的激活材龄。 Q4、施工阶段分析独立模型和累加模型的关系 A4.进行施工阶段分析的目的,就是通过考虑施工过程中前后各个施工阶段的相互影响,对各个施工阶段以及POSTCS阶段进行结构性能的评估,因此通常进行的都是累加模型分析。 对于线性分析,程序始终按累加模型进行分析,如欲得到某个阶段的独立模型下的受力状态,可以通过另存当前施工阶段功能,自动建立当前施工阶段模型,进行独立分析。 在个别情况下,需要考虑当前阶段的非线性特性时,可以进行非线性独立模型分析,如悬索桥考虑初始平衡状态时的倒拆分析,需用进行非线性独立模型分析。 Q5、施工阶段接续分析的用途及使用注意事项 A5.对于复杂施工阶段模型,一次建模很难保证结构布筋合理,都要经过反复调整布筋。 每次修改施工阶段信息后,都必须重新从初始阶段计算。接续分析的功能就是可以指定接续分析的阶段,被指定为接续分析开始阶段前的施工阶段不能进行修改,其后的施工阶段可以进行再次修改,修改完毕后,不必重新计算,只需执行分析〉运行接续

MIDAS的PSC设计验算说明

北京迈达斯技术有限公司 2007年5月

MIDAS/Civil PSC设计验算功能说明 一.程序给出的验算结果 (2) 二. 程序验算结果说明及与规范中相应条文的对应关系 (2) 1、施工阶段正截面法向应力验算:(对应规范7.2.7,7.2.8) (2) 2、受拉区钢筋拉应力验算:(对应规范6.1.3~6.1.4,7.1.3~7.1.5) (3) 3、使用阶段正截面抗裂验算:(对应规范6.3.1(第1条)和规范6.3.2) (3) 4、使用阶段斜截面抗裂验算:(对应规范6.3.1(第2条)和规范6.3.3) (4) 5、使用阶段正截面压应力验算:(对应规范6.1.5,6.1.6,7.1.3~7.1.5) (4) 6、使用阶段斜截面主压应力验算:(对应规范7.1.3~7.1.6) (4) 7、使用阶段裂缝宽度验算:(对应规范6.4.2~6.4.4) (4) 8、普通钢筋估算:(对应规范5.2.2~5.2.5) (5) 9、预应力钢筋量估算: (5) 10、使用阶段正截面抗弯验算:(应规范5.2.2~5.2.5) (5) 11、使用阶段斜截面抗剪验算:(对应规范5.2.6~5.2.11) (6) 12、使用阶段抗扭验算:(对应规范5.5.1~5.5.6) (6) 三、PSC设计验算时错误信息说明 (7) 四、PSC设计其它相关说明 (7)

MIDAS/Civil PSC设计验算功能说明 一.程序给出的验算结果 程序一共给出了12项验算结果,如下所列。根据“PSC设计参数”中“截面设计内力” 和“构件类型”选定的内容的不同,给出的具体验算结果是不同的,详见表1。 1)施工阶段正截面法向应力验算 2)受拉区钢筋的拉应力验算 3)使用阶段正截面抗裂验算* 4)使用阶段斜截面抗裂验算* 5)使用阶段正截面压应力验算* 6)使用阶段斜截面主压应力验算* 7)使用阶段裂缝宽度验算 8)普通钢筋量估算* 9)预应力钢筋量估算* 10)使用阶段正截面抗弯验算 11)使用阶段斜截面抗剪验算 12)使用阶段抗扭验算 不同的“PSC设计参数”对应的验算结果 项目二维二维+扭矩三维 全预应力不提供第7)、8)、12)项验算不提供第7)、8)项验算不提供第7) 、8)项验算部分预应力 不提供第7)、12)项验算不提供第7)项验算不提供第7)项验算A类 部分预应力 不提供第3)、12)项验算不提供第3)项验算不提供第3)项验算B类 二. 程序验算结果说明及与规范中相应条文的对应关系 1、施工阶段正截面法向应力验算:(对应规范7.2.7,7.2.8) -进行施工阶段正截面法向应力验算时,由预加力和荷载产生的法向应力可分别按照规范第6.1.5条和第7.1.3条进行计算。此时,预应力钢筋应扣除相应阶段的预应力损 失,荷载采用施工荷载,截面性质按本规范第6.1.4条的规定采用。对计算结果的叠 加要满足规范第7.2.8条的规定。 -最大、最小分别代表施工阶段在相应截面产生的正截面混凝土法向压应力和正截面混凝土法向拉应力。 -设计结果表格中最大/最小分别表示的是混凝土最大压应力/混凝土最大拉应力,同

迈达斯Midas-civil梁格法建模实例

北京迈达斯技术有限公司

目录 概要 (3) 设置操作环境........................................................................................................... 错误!未定义书签。定义材料和截面....................................................................................................... 错误!未定义书签。建立结构模型........................................................................................................... 错误!未定义书签。PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。输入荷载 .................................................................................................................. 错误!未定义书签。定义施工阶段. (60) 输入移动荷载数据................................................................................................... 错误!未定义书签。输入支座沉降........................................................................................................... 错误!未定义书签。运行结构分析 .......................................................................................................... 错误!未定义书签。查看分析结果........................................................................................................... 错误!未定义书签。PSC设计................................................................................................................... 错误!未定义书签。

(整理)midas荷载组合与桥博的对应关系.

相信在用桥博做了桥梁计算之后,再用midas计算,刚开始会遇到一个很普遍的问题。那就是:midas里面的荷载组合跟桥博是如何对应的? 说实话,对于初学者来说,midas的前处理(建模阶段)相对来说还算比较容易的,但是后处理(结果分析)阶段跟桥博相比就显的有些无从下手了。毕竟两个计算软件是不同的国家开发的。 桥博作为我们国内最优秀的桥梁专业类的计算软件,比较符合我们中国人的习惯,而且做起直线桥、一般的杆系桥很快捷。而midas这个韩国人开发的软件,里面多多少少总有些地方我们不是很习惯。这两个软件都是很好的软件,对我们的桥梁设计提供了很大的帮助,当然同时也存在很大的不同,各有千秋。 下面我就荷载组合这个问题来说明一下他们的区别与联系。 一、桥博荷载组合 a.桥博里面常用的荷载组合有: 1、承载能力极限状态组合Ⅰ:基本组合 2、正常使用极限状态组合Ⅰ:长期效应组合 3、正常使用极限状态组合Ⅱ:短期效应组合 4、正常使用极限状态组合Ⅲ:标准值组合 相应荷载组合的基本定义可以查看规范JTG D60-2004第 4.1.6条~第 4.1.7条的相关规定。 b.桥博里面荷载组合的应用: 1、钢筋混凝土构件设计: ?承载能力极限状态强度验算:查看承载能力极限状态荷载组合I强度验算结果; ?正常使用极限状态裂缝宽度验算:查看正常使用极限状态荷载组合II裂缝验算结果; ?构件的各种应力可供参考,建议用户对钢筋混凝土构件的压应力应有所控制; 2、预应力混凝土构件设计: ?承载能力极限状态强度验算:查看承载能力极限状态荷载组合I强度验算结果; ?正常使用极限状态应力验算: 法向压应力:查看正常使用极限状态荷载组合III应力验算结果; (最大压应力验算结果) 法向拉应力(抗裂性): 全预应力构件:查看正常使用极限状态荷载组合II应力验算结果;(最大拉应力验算结果) 部分预应力A类构件: ?长期效应组合:查看正常使用极限状态荷载组合I应力验算 结果;(最大拉应力验算结果) ?短期效应组合:查看正常使用极限状态荷载组合II应力验 算结果;(最大拉应力验算结果) 主压应力:查看正常使用极限状态荷载组合III应力验算结果;(最大主压应力验算结果) 主拉应力:查看正常使用极限状态荷载组合II应力验算结果;(最

Midas:荷载工况与荷载组合-2015-04-21

Midas:荷载工况与荷载组合 荷载工况的荷载安全系数(荷载分项系数)(荷载组合系数):当分析桥梁结构时,根据"公路钢筋混凝土及预应力混凝土桥涵设计规范"(JTJ023-85),当汽车荷载效应占总荷载效应5%及以上时,荷载安全系数应提高5%;当汽车荷载效应占总荷载效应33%及以上时,荷载安全系数应提高3%;当汽车荷载效应占总荷载效应50%及以上时,荷载安全系数不再提高。目前按规范自动生成的荷载组合没有考虑提高的荷载安全系数,用户应根据需要将其进行相应调整。 施工阶段荷载工况:该项只有定义了施工阶段时才处于激活状态。 ST:只用定义为非施工阶段荷载类型的工况生成荷载组合。 CS:只用定义为施工阶段荷载类型的工况生成荷载组合。 ST+CS:同时考虑施工阶段中的荷载效应和使用阶段的荷载效应自动生成荷载组合。在此应注意的是在施工阶段中激活和钝化的荷载,在荷载工况定义中一定要定义为“施工阶段荷载”类型。 2.在施工阶段分析后,程序会自动生成一个Postcs阶段以及下列荷载工况:(Postcs阶段的模型和边界为在施工阶段分析控制对话框中定义的“最终施工阶段”的模型,荷载为该最终施工阶段上的荷载和在“基本”阶段上定义的没有定义为“施工阶段荷载”类型的所有其他荷载)。 恒荷载(CS):除预应力、收缩和徐变之外,在各施工阶段激活和钝化的所有荷载均保存在该工况下。 施工荷载(CS):当要查看恒荷载(CS)中的某个荷载的效应时,可在施工阶段分析控制对话框中的“从施工阶段分析结果:恒荷载(CS)工况中分离出荷载工况(施工荷载(CS))”中将该工况分离出来,分离出的工况效应将保存在施工荷载(CS)工况中。 合计(CS): 具有实际意义的效应的合计结果。在查看各种效应(反力、位移、内力、应力)时,在荷载工况/组合列表框中,在“合计(CS)”上面的工况均为有意义的工况效应,在“合计(CS)”下面的工况均为无意义的工况效应。

迈达斯Midas-civil梁格法建模实例

迈达斯技术

目录 概要 (3) 设置操作环境................................................................................................................ 错误!未定义书签。定义材料和截面............................................................................................................ 错误!未定义书签。建立结构模型................................................................................................................ 错误!未定义书签。PSC截面钢筋输入......................................................................................................... 错误!未定义书签。输入荷载 ........................................................................................................................ 错误!未定义书签。定义施工阶段. (62) 输入移动荷载数据........................................................................................................ 错误!未定义书签。输入支座沉降................................................................................................................ 错误!未定义书签。运行结构分析................................................................................................................ 错误!未定义书签。查看分析结果................................................................................................................ 错误!未定义书签。PSC设计 ......................................................................................................................... 错误!未定义书签。

栈桥——迈达斯分析验算示例(清晰版)

栈桥分析 北京迈达斯技术有限公司

目 录 栈桥分析 (1) 1、工程概况 (1) 2、定义材料和截面 (2) 定义钢材的材料特性 (2) 定义截面 (2) 3、建模 (4) 建立第一片贝雷片 (4) 建立其余的贝雷片 (8) 建立支撑架 (9) 建立分配梁 (12) 4、添加边界 (17) 添加弹性连接 (17) 添加一般连接 (19) 释放梁端约束 (22) 5、输入荷载 (22)

添加荷载工况 (22) 6、输入移动荷载分析数据 (23) 定义横向联系梁组 (23) 定义移动荷载分析数据 (23) 输入车辆荷载 (24) 移动荷载分析控制 (26) 7、运行结构分析 (27) 8、查看结果 (27) 生成荷载组合 (27) 查看位移 (28) 查看轴力 (29) 利用结果表格查看应力 (30)

栈桥分析 1、工程概况 一座用贝雷片搭建的施工栈桥,跨径15m(5片贝雷片),支承条件为简支,桥面宽6米。设计荷载汽—20,验算荷载挂—50。贝雷片的横向布置为5×90cm,共6片主梁,在贝雷片主梁上布置I20a分配梁,位置作用于贝雷片上弦杆的每个节点处,间距约75cm。如下图所示: 贝雷片参数:材料16Mn;弦杆2I10a槽钢(C 100x48x5.3/8.5,间距8cm),腹杆I8(h=80mm,b=50mm, tf=4.5mm ,tw=6.5mm)。贝雷片的连接为销接。 图1 贝雷片计算图示(单位:mm) 支撑架参数:材料A3钢,截面L63X4。 分配横梁参数:材料A3钢,截面I20a,长度6m。

建模要点:贝雷片主梁用梁单元,销接释放绕梁端y-y轴的旋转自由度;支撑架用桁架单元;分配横梁用梁单元,与贝雷主梁的连接采用节点弹性连接(仅连接平动自由度,旋转自由度不连接);车道布置一个车道,居中布置。 2、定义材料和截面 定义钢材的材料特性 模型 / 材料和截面特性 / 材料/添加 材料号:1 类型>钢材;规范:JTJ(S) 数据库>16Mn (适用) 材料号:2 类型>钢材;规范:JTJ(S) 数据库>A3 确认 定义截面 注:midas/Civil的截面库中含有丰富的型钢截面,同时还拥有强大的截面自定义功能。 模型 / 材料和截面特性 / 截面/添加 数据库/用户 截面号1; 名称:(弦杆) 截面类型:(双槽钢截面) 选择用户定义,数据库名称(GB-YB); 截面名称:C 100x48x5.3/8.5 C:(80mm)点击适用

学习midas心得

r Calculate Propertes Now MIDAS/SPC U 1.5.1 - Sectional Property Calculate Iriported AutoCAD DXF model data -Model: Cunie [140], Point [仙町 I —I —JI —1\ Procts# Message / i r I r 练习 midas 时的心得 I Generate Section Type ---------------- ti Plane 广 Line ? ■■I. ..■■■. .■■■ . ?■■■■■ ^11 ■■■ :_■■■■■? ?■■■. . ■■■ r i^lerge Strai^t Line^— Angle | [Deg] rjame [ r Location I 厂 Group I Sectior Color Apply Clos e I 馆 SEcliQn ]

HIDA^/src V 1 ■応~I - 5e[;n re]… PtLilt [*] H PW pl4ihr ii^cl L?i (S^Etitii f1 J a n 缈?叶 fr^pgrti ?& >f 1 CBqrinn 町?町駁|c ?)4Eud ? 首先在CAD 中将需要导入的截面画好(注意截面必须是闭合的!),然后保存 为DXF 文件;在midas 中打开截面特性计算器,选择与 导入DXF 文件,然后点生成截面、计算截面特性再保存为 中截面添加选择spc 数值,点击导入spc 截面就是保存的sec 文件!然后只需 要设置一些截面的参数就可以了! 7! > V tt ■,■ 10 u Hart Sortian I- Marhbo-EHr CciaiE Fne ke<^LJdt^ [占田 a I CtKt ] V ¥1* Ei 七 尹打*■冷劈《 T<-ilc K+lp 'D 磴U 曾I 口 垢 PnriBfhf HnJ _ lb IlH ■ *C 1 2户怕口怕3胶I 厂 血I |>Pdr m2、 f 畅(5性 F : hd mVfiR 甩口F Irntidl ['Iv% 何rrn ■哎 oL|「*nii 广 Irf 『Em nri Iratq] L ] 口cram Zn- L JJ. T U a Bf 7 niBAS/y^C V ii5 +1 £Htr ?rMi m 托 uw* |vf?rrF<1 A ?FinR4? Kr rw4l*l 4?la -ItodHp Curve ffl]. P*lnt [fl] 决? pl?e fPCLl.n [lectio.-PI] y^ner^tea. ItiF prftfiertiFS - ?-F 1 arctinn ATF C -J J 匚 ulalrd. I i I CAD 一致的单位,再 sec 文件;在 midas 刁:>■ V r > . 1£ tie 4 >

迈达斯Midascivil梁格法建模实例

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

midas时程荷载工况中几个选项的说明

时程荷载工况中几个选项的说明 动力方程式如下: 在做时程分析时,所有选项的设置都与动力方程中各项的构成和方程的求解方法有关,所以在学习时程分析时,应时刻联想动力方程的构成,这样有助于理解各选项的设置。另外,正如哲学家所言:运动是绝对的,静止是相对的。静力分析方程同样可由动力方程中简化(去掉加速度、速度项,位移项和荷载项去掉时间参数)。 0.几个概念 自由振动: 指动力方程中P(t)=0的情况。P(t)不为零时的振动为强迫振动。 无阻尼振动: 指[C]=0的情况。 无阻尼自由振动: 指[C]=0且P(t)=0的情况。无阻尼自由振动方程就是特征值分析方程。 简谐荷载: P(t)可用简谐函数表示,简谐荷载作用下的振动为简谐振动。 非简谐周期荷载: P(t)为周期性荷载,但是无法用简谐函数表示,如动水压力。 任意荷载: P(t)为随机荷载(无规律),如地震作用。随机荷载作用下的振动为随机振动。 冲击荷载: P(t)的大小在短时间内急剧加大或减小,冲击后结构将处于自由振动状态。 1.关于分析类型选项 目前有线性和非线性两个选项。该选项将直接影响分析过程中结构刚度矩阵的构成。 非线性选项一般用于定义了非弹性铰的动力弹塑性分析和在一般连接中定义了非线性连接(非线性边界)的结构动力分析中。当定义了非弹性铰或在一般连接中定义了非线性连接(非线性边界),但是在时程分析工况对话框中的分析类型中选择了“线性”时,动力分析中将不考虑非弹性铰或非线性连接的非线性特点,仅取其特性中的线性特征部分进行分析。 只受压(或只受拉)单元、只受压(或只受拉)边界在动力分析中将转换为既能受压也能受拉的单元或边界进行分析。 如果要考虑只受压(或只受拉)单元、只受压(或只受拉)边界的非线性特征进行动力分析应该使用边界条件>一般连接中的间隙和钩来模拟。 2.关于分析方法选项 目前有振型叠加法、直接积分法、静力法三个选项。这三个选项是指解动力方程的方法。关于振型叠加法、直接积分法可以参考一些动力方程方面的书籍。 振型叠加法是将多自由度体系的动力反应问题转化为一系列单自由度体系的反应,然后再线性叠加的方法。其优点是计算速度快节省时间,但是由于采用了线性叠加原理,原则上仅适用于分析线弹性问题,当进行非线性动力分析时或者因为装有特殊的阻尼器而不能满足阻尼正交(刚度和质量的线性组合)时是不能使用振型叠加法的。 直接积分法是将时间作为积分参数解动力方程式的方法,又称为时域逐步积分法。直接

弹塑性时程分析实例

80 第40卷 增刊 建 筑 结 构 2010年6月 北京某超高层商住楼动力弹塑性时程分析 徐晓龙,高德志,桂满树,姜毅荣,何四祥,王 侃 (北京迈达斯技术有限公司,北京 100044) [摘要] 基于梁柱塑性铰和剪力墙纤维模型,利用MIDAS Building 软件实现了超高层建筑结构的弹塑性时程分析。结合该结构研究了在大震作用下结构将出现的破坏模式、塑性发展特点等,并与弹性分析进行了对比,说明弹塑性分析更能反映实际情况,能对结构的抗震性能给出较为合理全面的评价,并对工程设计给出指导。 [关键词] 动力弹塑性时程分析;MIDAS Building ;纤维模型 Elastic-plastic time-history analysis on the super-high business-living building in Beijing Xu Xiaolong, Gao Dezhi, Gui Manshu, Jiang Yirong, He Sixiang, Wang Kan (Beijing MIDAS Technology Information Co.,Ltd,. Beijing 100044,China ) Abstract: Based on the theory of plastic hinges (beams and columns ) and fiber model (walls ), elastic-plastic time-history analysis is performed on the super-high business-living building in Beijing by MIDAS Building software under the scarce earthquake load. Failure Modes and plastic zone development are researched according to the feature of the structure. Through the comparison with the elastic analysis, it is considered that evaluation on the structure can be deduced from the elastic-plastic analysis more reasonably and comprehensively, and there will be better instruction to the projects. Keywords: dynamic elastic-plastic analysis; MIDAS Building; fiber model 1 结构特点 某50层的超高层商住两用建筑,地上50层,结构高度达到236.3m ,采用钢骨混凝土柱框筒结构形式,平面尺寸64.8m ×43.8m (轴线尺寸)。结构已经超过型钢混凝土框架-钢筋混凝土筒体结构8度(0.2g )抗震设防下的最大适用高度(150m ),该结构为抗震超限结构,故有必要对结构进行动力弹塑性时程分析,以考察其在罕遇地震作用下的响应、薄弱环节、破坏模式等。结构整体模型及首层平面见图1,2。 2 动力弹塑性时程分析 图1 结构模型图 图2 首层平面图 时程分析法[1]被认为是目前结构弹塑性分析的最可靠和最精确的方法,它不仅能对结构进行定性分析,同时又可给出结构在罕遇地震下的量化性能指标,并且得到结构在各个时刻的真实地震反应。弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过逐步积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接积分法。 弹塑性动力时程分析有如下优点:1)输入的是罕遇地震波的整个过程,可以真实反映各个时刻地震作用引起的结构响应,包括变形、内力、损伤状态(开裂和破坏)等;2)有些程序通过定义材料的本构关系来考虑结构的弹塑性性能,故可以准确模拟任何结构,计算模型简化较少;3)该方法基于塑性区的概念,对带剪力墙的结构,结果更为准确可靠。 基于MIDAS Building 动力弹塑性分析平台,对北京某超高层商住楼进行了罕遇地震作用下的动力时程分析,研究其各个抗震性能指标以及破坏模式。 2.1 弹塑性动力分析的基本方法 弹塑性动力分析包括以下几个步骤:1)建立结构

Midas civil荷载组合详解

主要根据公路桥涵设计通用规范(JTG D60-2004)编制。在结果>荷载组合对话框中选择“自动生成”功能。 a. 在荷载>移动荷载分析数据中定义移动荷载时,下面组合中的符号L 用ML 代替。b. 反应谱荷载工况的简称为ESP c. 在荷载>移动荷载分析数据中,将人群荷载按移动荷载定义,并在移动荷载工况中将其与其它汽车荷载子荷载工况进行组合时(在移动荷载工况中选择“组合”),在定义人群荷载子荷载工况时,系数应取0.8(根据通用规范 4.1.6 条第 1 项)。为了考虑人群荷载单独作用的情况(系数1.0 的情况),需要另外单独定义一个人群荷载移动工况。 d. 下面组合中考虑了可变荷载作用的不同时组合(JTG D60-2004 中表4.1.5) e. 不考虑汽车荷载的恒荷载+其他可变荷载的组合及组合值系数需用户另外添加(规范无规定)。 f. 永久荷载中既有对结构承载能力不利,又有对结构的承载能力有利的永久荷载时,需要用户另外添加组合或修改“永久荷载对结构的承载能力有利组合”中的系数。g. 在荷载组合自动生成对话框中选择“考虑弯桥制动力”时,当汽车制动力与离心力同时出现在荷载组合中时,制动力荷载的组合系数自动乘以0.7 的系数。 h. 程序会自动生成各状态组合的包络组合。i. 钢结构的组合依然沿用旧规范。j. 当有移动荷载作用时,在设计中实际采用的组合会更多(对每个荷载组合都会对弯矩最大时、剪力最大时、轴力最大时的情况进行验算)。k. 在荷载>静

力荷载工况中定义荷载名称,但没有具体定义荷载值时,荷载组合的自动生成功能将不包含该荷载工况名称。l. 预应力混凝土设计荷载组合在荷载组合的“混凝土”中定义。a) 永久荷载对结构的承载能力不利(120 个) 恒荷载组合(1 个): 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL 永久荷载+1 个可变作用(8 个): 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*(L+IL+CF) 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*LS 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*CRL 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.1*W 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*SF 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*IP 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*(T+TPG) 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0.

相关文档