文档库 最新最全的文档下载
当前位置:文档库 › 第二节金属丝弯折

第二节金属丝弯折

第二节金属丝弯折
第二节金属丝弯折

第四章金属丝成型

第二节金属丝弯折

一、教学设计思路

金属丝弯折技巧是技术性很强的一种技能,直接影响到整体的工艺效果,是成功教学的重要环节。要制作精致的工艺品,需要多次反复、比较才能成功弯折。若在自己的学习与工作的桌子上放置一只自己动手设计与制作的金属丝仿真自行车模型,既是对自己劳动成果的肯定,又是一种对艺术品的享受。

本节课内容包括两个方面:一是根据设计要求,利用手工工具或模具,将各部件金属丝材料按图样要求进行弯折,进一步加强基本技能的训练;二是完成自行车模型中的两大部件:(1)车把的弯折造型。(2)前、后车轮的弯折造型。

本设计思路是:通过讲解分析,引导学生观察、了解制作自行车模型的工艺流程;通过教师演示利用手工工具或模具进行弯折、调整成型等基本操作,引导学生合作探究、尝试体验,逐步掌握金属丝材料弯折的基本技法和操作要领,并完成自行设计的自行车模型的车把及前、后车轮的弯折造型。

完成本节课程的内容需2-3课时。

二、教学目标

1.知识和技能:

(1)了解对不同的金属丝、金属条和金属板材料,采用不同的弯折方法。

(2)初步学会用基本工具进行备料、下料、拉直、弯折成型等基本技能操作。

(3)初步学会利用靠模或“模具”弯折金属丝所需要的各种形状。

2.过程与方法:

(1)通过对金属丝自行车模型部件的观察与制作,提高观察能力和独立思维的能力。

(2)通过对金属丝自行车模型部件的制作,学会基本工具的正确使用方法。

3.情感态度与价值观:

(1)通过讨论交流、相互启发,养成良好的学习风气、勤于动手和创新精神。

(2)通过金属丝仿真自行车模型的欣赏、设计和制作,激发学习兴趣和需求,养成良好的节约、环保、质量等意识。

三、教学重点和难点

重点:金属丝仿真自行车模型中的两大部件:(1)车把的弯折造型。(2)车轮的弯折造型。

难点:自行车模型中轮子的制作与调试。

四、教学器材

教具:尖嘴钳、平口钳、斜口钳、钢直尺、水笔、剪刀、锉刀、圆规、布(用作拉直细金属丝)、美工刀、铁丝直径分别是1.00mm (车把、车架、车身)、1.20mm (轮子)、1.60mm (轮轴孔、脚踏孔的靠模)、大小口径不同的瓶子、原子笔芯空管、以及自行车系列的创意作品。

学具:同上

五、教学流程图

错误

(一)引入主题

1. 教具展示:展示部分有代表性的自行车模型的作品。

2. 提出问题:在样品中,将金属丝套上各种彩色套管、除了美观、牢固之外,还有什么作用?(便于控制弯折点)自行车模型的车架是怎样的结构?引出本章节学习的重点——金属丝弯折。

3.工艺流程分析: 引导学生仔细观察制作自行车模型的工艺流程。(从什么地方起

步开始,到什么地方止步结束,制作工艺类似于“一笔画”那样流畅的感觉。)

(二)了解本节课的技术要素

弯折就是利用手工工具或机械将金属丝等材料在每一个尺寸节点按图样的要求改变方向,最终完成符合规定形状和尺寸的作品部件。

金属丝弯折技巧直接影响到整体的工艺效果,它是技术性很强的一种技能,需要多次、反复、比较才能弯折成功。能使弯折达到预期的效果,需要选用合适的“靠模” 即借助某种工具来制作模型的目的。

(三)制作方法、步骤、操作要领

1、备料:

金属材料要制成所需的作品,首先要准备材料,明确需要哪一种材料,

铜丝、铁丝还是铝丝。然后再按设计图所示的尺寸备料,备料前要研读图纸,明确每段材料的规格、尺寸。

建议初学自行车模型所用的材料为铁丝,准备取直径为1.00mm 铁丝制作车架、1.20mm 铁丝制作车轮、1.60mm 铁丝作轮孔靠模。具体尺寸详见图。初学者在实际计算备料时,金属丝应略放余量。

2、操作过程和要领

(1)车把的制作 (2)前、后轮的制作

车把的弯折造型:(本文图中标出单位都是毫米)

图(1) 图(2)图

图(2)

车把与前叉是一个整体,用1根金属丝串接而成,总长度约等于180毫米。

长度为180毫米的金属丝按图示要求,先用水笔做记号,然后弯折成“丁字形”图(2)。套上7毫米的塑料管,既起到固定的作用,又能作装饰用。注意金属丝的两端尽量对齐,并

且要保持其对称性。

图(2)中:塑料套管的上面是制作车把,而套管的

下面部分,与车身整体连接后,是制作前叉的部分。

如果设计成赛车型,那么车把的宽度要适当增加。

见图(3)图(3)

(2)前、后轮的弯折造型。

图(4)图(5)制作前后轮需要金属丝2根,每根长度是130毫米。

剪取长度为80毫米的塑料管2根,分别套在2根直径1.20mm、长度为130毫米的金属丝中部,两端金属丝各露出25毫米。(轮内露出的2根金属丝长度略小于轮的直径)取直径约26毫米塑料瓶作靠模,将金属丝紧紧地缠绕在靠模上,形成圆形的轮圈。接着,按照图示要求,两端金属丝分别向圆中心处弯折,两根金属丝重叠在一起,且通过圆的中心。并且要注意修正,使轮内露出的2根金属丝长度略小于轮的直径,见图(4)左图。

剪取长度为12毫米的塑料管2根,分别套在前、后两车轮上。见图(4)中图。最后,在通过圆的中心处两端金属丝向外弯折, O为圆心,直线aob与圆的平面垂直。见图(4)右图、图(5)。对于轮子的轴心需要多次反复地调整。

操作要领:

弯折——利用手工工具或机械将金属丝等材料在每一个尺寸节点按图样的要求改变方向,最终完成符合规定形状和尺寸的作品部件。

靠模——依靠借助某种工具来制作模型的目的。

注意事项:尽量用一根金属丝通过各种弯折方法制成一个部件,以增强牢度和简化连接的工序。

实践操作练习: 自行车模型

用上节课完成的自行车模型各部件的所下料,本节课先进行车把的弯折造型以及前、后轮的弯折造型。

(四)展评台

评价标准

1、作品弯接是否正确,过渡段弯接是否流畅。

2、作品连接是否牢固,

缠绕接是否美观。 3、作品整体是否平滑美观。

(五)开拓与创新

1、参考教材提供的三轮货车图案,并结合你所观察到周围的实物,用上节课完成的三轮货车模型各部件的所下料,本节课先进行车把的弯折造型及前、后轮的弯折造型。

2、查阅网上或书本上有关的“黄包车”的资料,完成黄包车模型的车把和前、后轮的弯折造型。

金属弹性模量的测量

金属弹性模量的测量 1. 计算金属丝的杨氏弹性模量的公式为,其实验条件是: 2. 调节望远镜的步骤是:(1)调节目镜,看清;(2)前后移动目镜筒,改变和之间的距离,使最清晰,并消除,即眼睛上下晃动时,标尺刻线的像与叉丝无。 3. 在金属丝的长度、直径及所加外力相同的情况下,杨氏模量的金属丝的伸长量大,因此,杨氏模量是描述材料抵抗弹性开变的能力的重要物理量。 4. 在用拉伸法测金属丝的杨氏弹性模量的实验中,经常遇到:(1)在加砝码的过程中,发现标尺读数忽大忽小,没有规律,可能原因是;(2)在加砝码过程中,发现标尺读数不变,可能的原因是;(3)在加砝码过程中,标尺读数n与外力F的关系如图2-7所示,可能的原因是。 5. 在用光杠杆法测金属丝的杨氏模量的实验中,要求标尺铅直、镜面竖直、望远镜光轴水平、光杠杆三足尖所处平面水平,如果其中某一条件不满足,试分析对测量结果可产生多大影响: (1)光杠杆三足尖所处平面与水平面间的倾角 (2)标尺倾斜角 (3)望远镜光轴与水平面倾角 (4)镜面倾角 6. 在调节光杠杆系统过程中,若从望远镜中看不到平面镜,应怎么调?若看到了平面镜,而看不到标尺像,应怎么调?如果看到了标尺像,而看不清标尺上的刻度,又应怎么调? 7. 为了提高用拉伸法测金属丝杨氏模量的测量精度,应采取哪些措施? 液体表面张力系数的测定 8. 焦利氏秤实际上是一台用于测量的精细弹簧秤,它是根据定律而设计的。使用时应使、和的刻线三者重合,简称,其目的是为了消除,提高测量精度,焦利氏秤的分度值是。 9. 表面张力系数与液体的、和等因素有关,因此在人寿测定表面张力系数的实验时,必须注明实验室的。为了保证测量的准确度,必须仔细测量用具。 10. 焦利氏秤的校准是利用了在弹性限度内,弹簧的伸长量与所加外力的式,确定弹簧的的过程。焦利氏秤校准后,只要测出弹簧的,就可以算同作用在弹簧上的外力F。 11. 拉脱法测液体表面张力系数的实验操作有两个关键:(1)液膜必须得到;(2)液膜被拉伸的过程中,必须时刻保证。 12. 焦利氏秤的分度值为0.01cm,倔强系统为,仪器能测量的最小的力为。 13. 表面张力系数的计算公式为,若考虑液膜自身的重量,该公式应修正为。 液体的粘滞系数的测定 14. 用落球法测液体的粘滞系数根据定律。当小球在液体中匀速下落时,基平衡方和为。 15. 用落球法测液体的粘滞姝实验中,当小球落入液体的上表面附近时作运动,小球在液体中受到、和三个力的作用。当作用在小球上的各力平衡,即,此后小球将作运动。 16. 斯托克斯公式的条件是,因此,用落球法测液体的粘滞系数时,要求钢球的直径越好,而盛液体的量筒的直径越好。 17. 试选用不同密度和不同半径的小球做实验时,如何影响粘滞系数的测量误差。

金属丝杨氏弹性模量的测定

金属丝杨氏弹性模量的测定 本实验是根据胡克定律测定固体材料的一个力学常量——杨氏弹性模量。实验中采 用光杠杆放大原理测量金属丝的微小伸长量,并用不同准确度的测长仪器测量不同的 长度量;在数据处理中运用了两种基本而常用的方法——逐差法和作图法。 [一]. 实验目的 1.掌握不同长度测量器具的选择和使用,掌握光杠杆测微原理和调节。 2.学习误差分析和误差均分原理思想。 3.学习使用逐差法处理数据及最终测量结果的表达。 4.测定钢丝的杨氏弹性模量 E 值。 [二]. 实验原理 固体材料在外力作用下产生各部分间相对位置的变化,称之为形变。如果外力较小时,一旦外力停止作用,形变将随之消失,这种形变称为弹性形变;如果外力足够大,当停止作用时,形变却不能完全消失,这叫剩余形变。当剩余形变开始出现时,就表明材料达到了弹性限度。 在许多种不同的形变中,伸长(或缩短)形变是最简单、最普遍的形变之一。本实 验是针对连续、均匀、各向同性的材料做成的丝,进行拉伸试验。设细丝的原长为l ,横截面积为 A ,在外加力P的作用下,伸长了l 的长度,单位长度的伸长量l /l 称为应变,单位横截面所受的力则称为应力。根据虎克定律,在弹性限度内,应变与应力成正比关系,即 Pl E Al 式中比例常数E 称为杨氏弹性模量,它仅与材料性质有关。若实验测出在外加力用下细丝的伸长量l ,则就能算出钢丝的杨氏弹性模量 Pl Al 工程中E 的常用单位为(N/m2)或(Pa)。(1) P作 E:

几种常用材料的杨氏模量E 值见下表: 材料名称E(×1011Pa) 钢 2.0 铸铁 1.15~1.60 铜及其合金 1.0 铝及硬铝0.7 应当指出,(1)式只适合于材料弹性形变的情况。如果超出弹性限度,应变与应力的关系将是非 线性的。右图表示合金钢和硬铝等材料的应力-应 变曲线。 为了测定杨氏弹性模量值,在(2)式中的 P、l和A都比较容易测定,而长度微小变化量l 则很难用通常测长仪器准确地度量。本实验将采用 光杠杆放大法进行精确测量。 [三]. 实验装置 实验装置原理如右图所示。 被测钢丝的上端被夹头夹住(或螺丝顶住),悬挂于支架顶部A 点。下端被圆柱体B 的夹头夹住。圆柱体能在支架中部的平台C 的一个圆孔中自由上下移动,圆柱体下端悬有砝码盘P。支架底座上有三个螺丝用来调节支架铅直。 光杠镜如右图所示,它由一平面反射镜M 和T 字形支座构成。支座的刀口放在平台C 的凹槽内,后脚尖认放在圆柱体B 的上端面

衍射法微小线径的测定

评分: 大学物理实验设计方案 及实验报告 实验题目:微小线径的测定 专业班级: 姓名: 指导教师: 2005年11月6日

实验七 微小线径的测定 本实验是采用光的衍射方法,根据巴俾涅(Babinet )原理来间接测量头发丝的直径。 实验目的 1.观察细线衍射现象 。 2.验证光的衍射理论。 3.学会用衍射法测量细丝的直径。 实验原理 根据巴俾涅(Babinet )原理“两个互补屏所产生的衍射图形,其形状和光强完全相同,仅相位差为π/2。”可知细丝衍射图形和狭缝衍射图形是相同,细丝衍射计算和狭缝衍射计算相同。 当光在传播过程中经过障碍物时,例如不透明物体的边缘、不透明物体中的小孔、细线、狭缝等,一部分光会传播到几何阴影中去,产生衍射现象。如果障碍物的尺度与波长相近,那么这样的衍射现象就比较容易观察到。单缝衍射可分二种:1)菲涅耳衍射,单缝距光源和接收屏均为有限远或者说入射波和衍射波都是球面波;2)夫琅和费衍射,单缝距光源和接收屏均为无限远或者相当于无限远,即入射波和衍射波都可看作是平面波。 图 1 在本实验中,散射角极小的激光器产生的激光束通过一条很细的细丝,在细丝后较远的地方放上观察屏,就可看到衍射条纹,如图1所示。 当激光照射在细丝上时,根据惠更斯-菲涅耳原理,单缝上每一点都可看成是向各个方向发射球面子波的新波源。由于子波迭加的结果,在屏上可以得到一组平行于细丝的 明暗相间的条纹。由理论计算可得垂直入射于单缝平面的平行光经单缝衍射后光强 202 sin I I θθ= Bx =θ D d B λπ= d 是细丝的直径,λ是波长,D 是细丝位置到接收屏位置的距离,x 是从衍射条纹的 中心位置到测量点之间的距离。当θ相同,即x 相同时,光强相同,所以在屏上得到的光强相同的图样是平行于细丝的条纹。当θ=0时,x=0,I=I0,在整个衍射图样中,此

拉伸法测量金属丝弹性模量带数据处理

本科实验报告(详写) 【实验目的】 1.掌握拉伸法测量金属丝弹性模量的原理和方法。 2.学习光杠杆测量微小长度的变化的原理和方法。 3.进一步学习用逐差法,作图法处理数据。 4.多种长度测试方法和仪器的使用。 【实验内容和原理】 1.测定金属丝弹性模量 假定长为L、横截面积为S的均匀金属丝,在受到沿长度方向的外力F作用下伸长?L,根据胡克定律可知,在弹性限度内,应变?L /L与外F/S成正比,即

(E 称为该金属的杨氏模量) (1) 由此可得: (2) 其中F,S 和L 都比较容易测量;?L 是一个很小的长度变化量。 2.光杠杆测量微小长度变化 当金属丝受力伸长?L 时,光杠杆后脚1f 也随之下降?L ,在θ较小(即?L << b )时,有 ?L / b = tan θθ≈ (1) 若望远镜中的叉丝原来对准竖尺上的刻度为0r ;平面镜转动后,根据广的反射定律,镜面旋转θ,反射线将旋转2θ,设这时叉丝对准新的刻度为1r 。令?n= |1r –0r |,则当2θ很小(即?n <

i n 3.由以上可知,光杠杆的作用在于将微小的伸长量?L 放大为竖尺上的位移?n 。通过?n, b, D 这些比较容易准确测量的量间接地测定?L 。其中2D/b 称为光杠杆的放大倍数。 bl d FLD E 28π= (3) 4.为减小实验误差依次在砝码钩上挂砝码(每次1kg ,并注意砝码应交错放置整齐)。待系统稳定后,记下相应十字叉丝处读数(i=1,2,……,6)。依次减小砝码(每次1kg ),待稳定后,记十字叉丝处相应读数(i=1,2,……,6)。取同一负荷刻度尺读数平均值 2n n n ' i i i += (i=1,2, (6) 5.按逐差法处理数据的要求测量弹性模量。 计算对应3Kg 负荷时金属丝的伸长量 i 3i i n -n n +=? (i=1,2,3,) 及伸长量的平均值 3 n n 3 1 i i ∑=?= ? 将n ?,L,D,K,d 各测量结果代入(3)式,计算出待测金属丝的弹性模量及测量结果的不确定度。 22222 2)()()()(4)()(F K n d D L E E F K n d D L ?+?+??+?+?+?=?? (4)

头发丝直径的测定

头发丝直径的测定 班级060716 学号45 姓名元小平指导老师丁斌刚头发丝直径的测定,我们有很多方法。但是哪种方法是最为精确的呢,这才 是我们做这个实验的最终目的。而使用牛顿环测头发丝的直径能使我们的误差很小,比起其他方法有更多的优点,而且更加精确。以下就是实验。 一、实验目的 1.测量头发丝直径的大小。 2.掌握劈尖干涉测定细丝直径(或薄片厚度)的方法。 3.通过实验加深对等厚干涉原理的理解。 4.掌握牛顿环的使用原理。 二、实验原理 ①将两块平板玻璃叠放在一起,一端用头发丝将其隔开,则形成一辟尖形空气薄层见图(1-1),若用单色平行光垂直入射,在空气劈尖的上下表面发射的两束光将发生干涉,其光程差△=2l+λ/2 (l为空气薄膜厚度)。因为空气劈尖厚度相等之处是一系列平行于两玻璃板接触处(即棱边)的平行直线,所以其干涉图样是与棱边平行的一组明暗相间的等间距的直条纹,当Δ=(2k+1)λ/2,(k=0,1,2,3……)时, 为干涉暗条纹,与k级暗条纹对应的薄膜厚度为: d=k×λ/2 由于k值一般较大,为了避免数错,在实验中可先测出某长度l内的干涉暗条纹的间隔数n,则单位长度的干涉条纹数X=n/l,若棱边与头发丝的距离为L,则头发丝出现的暗条纹的级数为k=X×L,可得头发丝的直径为: D=X×L×λ/2= n/l×L×λ/2 ②也可用三角形相似原理如图(3-17-3) D/d=L/l D=(L/l)×d d=n×λ/2 取n=10(即间隔10个暗条纹)d=10×λ/2=5λ所以D=(L/l)×5λ三、实验器材电子显微镜,劈尖,头发丝,牛顿环

四、试验装置五、实验步骤 1.打开电源和钠灯光源并将电子显微镜的插头插上 2.调节显微镜的视野至明亮清晰处 3.取一根头发丝,将头发丝夹入劈见内(注意头发丝要拉直不可弯曲),固定好。 4.将固定好头发丝的劈见放入显微镜的平台内,调节显微镜直到看见清楚的干涉条纹 5.测量L的长度,找到两条最黑的暗条纹,记入数据L’、L’’ ;(L= L’—L’’) 6. 取n=10(间隔10个暗条纹)即l的长度,记入数据l’、l’’; ( l=l’—l’’ ) 7.重复上述过程,得到不同的几组数据 8.实验结束后,整理好实验器材 六、实验数据D=(L/l)×5λ钠灯波长λ=589.3nm 发根部头发丝直径数据 发中部头发丝直径数据

金属丝杨氏弹性模量的测定试验部分训练题

一、选择 1. 弹性模量的测定中哪个数据是用逐差法处理的?( ) A. 光杠杆读数 B. 金属丝直径 C.金属丝长度 D. 平面镜到标尺的距离 2. 在测量杨氏模量的实验中,用光杠杆镜尺法测量的物理量是 A.标尺到镜面的距离 B. 钢丝长度 C.钢丝直径 D. 钢丝长度的伸长量 3. 用光杠杆测微小长度的变化,从望远镜视场中所看到的标尺像是 C.拉直金属丝,避免将拉直过程当为伸长过程进行测量 D. 减少初读数,消除零误差 5. 对于一定温度下金属的杨氏模量,下列说法正确的是: ( A. 只与材料的物理性质有关而与材料的大小及形状无关; B. 与材料的大小有关,而与形状无关; C. 与材料的形状有关,而与大小无关; D. 与材料的形状有关,与大小也有关; 6. 在测量杨氏模量的实验中,若目镜中的叉丝不清晰,则应调节: A.望远镜的目镜 B. 望远镜的位置 C.望远镜的调焦轮 D. 望远镜的方向 7. 光杠杆镜尺法的放大倍数为:( ) . b B. 2b C. 2D D. D A. 2D D b 2K 8. 在测量杨氏模量的实验中,调节时在望远镜中只能看到镜子,若要看到标尺的 像应调节:( ) A.缩小的倒立实像 B. 放大的倒立虚像 C. 缩小的正立实像 D. 放大的正立实像 4.在测定金属丝的弹性模量实验中, 通常预加一定重量的负荷, 目的是:( ) A.消除摩擦力 B. 没有目的

A. 调焦轮 B. 目镜 C.望远镜位置 D.望远镜方向 二、判断 1.两根材料相同,长度、粗细均不相同的金属丝,它们的杨氏弹性模量应该相同。 2.在测量杨氏弹性模量的实验中,镜尺间距D的测量误差对杨氏模量的测量结果影 响最大。 3.在测量杨氏弹性模量的实验中,光杠杆的放大倍数与望远镜放大倍数有关。 4.在测量杨氏弹性模量的实验中,钢丝直径d的测量误差对杨氏模量的测量结果影 响最大。 5.拉伸法测杨氏模量实验中,采用加减砝码各测一次取平均的方法测量是为了消除 因磨擦和滞后带来的系统误差 三、简答 1 ?本实验中,为什么测量不同的长度要用不同的仪器进行?它们的最大允差各 是多少? 2.根据实验不确定度几何合成方法,写出杨氏模量E的相对不确定度的表达式, 并指出哪一个测量影响最大。 3.本实验所用的逐差法处理数据,体现了逐差法的哪些优点?若采用相邻两项相 减,然后求其平均值,有何缺点? 2D 2D 4 .若将丝作为光杠杆的“放大倍率”,试根据你所得的数值计算岀的值,你 b b 能想出几种改变“放大倍率”的方法来吗? 5.光杠杆法有何特点?你能应用光杠杆法设计一个测定引力常量G的物理实验 吗?

我国竞技运动水平发展目标定位及实现策略(doc 12页)

? ?

2000~2020年我国竞技运动水平发展目标定位及实 现策略 北京体育大学田麦久蔡睿刘大庆张英波 4.1 1979~2000年我国竞技体育运动水平的发展历程 4.1.1 迅速跻身于世界竞技体育强国之列 自1978年至1999年底,我国选手共获得1176个世界冠军,超创世界记录770次,竞技体育的综合实力已稳居亚洲首位。 1984年,我国第一次全面参加奥运会,在前苏联、东欧及古巴等国缺赛的情况下,获得了15枚金牌,取得了金牌榜第4位的较好赛绩。经历了1988年汉城奥运会的波谷时相,在第25、26两届奥运会上皆获得16枚金牌,并连续位列排名榜第4位。在2000年悉尼奥运会上更进至金牌榜和奖牌榜的第三位,进一步加强了我国竞技体育在国际上的地位。 可以说,我国竞技体育运动水平在短短的二十年里,获得迅猛的发展,已然跻身于世界竞技体育强国之列。 4.1.2 重点发展优势项目战略获得成功 1979年,我国恢复了在国际奥委会的合法地位之后,我国竞技体育运

动的决策组织机构根据我国竞技体育的发展状况以及经济发展水平提出了“重点发展优势运动项目”的战略。并组织专家、学者进行了我国重点竞技项目的设置与布局研究。1980、1984、1989年分别确定了13、16、18个重点项目,并对这些项目在全国各省市的重点布局作出了统一规划。这一战略对我国竞技体育运动水平的提高起到了重要作用,取得了巨大成功(见表1)。我国体操、跳水、举重、射击、乒乓球5个优势项目的运动员在5届奥运会中共获得金牌60块,占80块金牌总数的75%,是构成我国竞技运动水平总体实力的决定性因素。 表1 我国参加历届奥运会获金牌项目及数量分布 项目第23届第24届第25届第26届第27届合计 体操 5 1 2 1 3 12 15.0% 举重 4 0 0 2 5 11 13.8% 跳水 1 2 3 3 5 14 17.5% 乒乓球 2 3 4 4 13 16.3% 羽毛球 1 4 5 6.3% 射击 3 0 2 2 3 10 12.5% 柔道 1 1 2 4 5.0% 田径 0 1 1 1 3 3.8% 击剑 1 1 1.3% 游泳 4 1 0 5 6.3% 跆拳道 1 1 1.3% 女排 1 1 1.3% ∑ 15 5 16 16 28 80 100.0% 4.1.3 为国争光、举国体制、团结拼搏、科学训练结出丰硕成果 我国竞技运动水平能够在短短20年中发展为世界竞技体育格局中一支不可忽视的力量,其重要的原因一是高度重视爱国主义教育,运动员有着强烈的为国争光的责任感和荣誉感;二是发挥了社会主义优越性、坚持“举国体制”,支持和保证优秀选手的选拔和训练;三是发扬集体主义精神,团结拼搏;四是尊重竞技体育的客观规律,不断提高科学训练水平。这是半个世纪来我国体育战线所积累的宝贵经验,更是改革开放20年来不断创新、锐意进取的可喜成果。4.2 2020年我国竞技运动水平发展目标的科学定位 4.2.1 不断提高竞技运动水平是现代社会发展的需要 在人类社会的发展过程中,竞技运动与社会的关系十分密切。作为社会的“缩影”竞技运动一方面浓缩和反映着社会关系、社会心态和社会行为的现存状态,另一方面又对社会的发展起着激励与促进的作用。在今天的中国,这种作用表现得尤为强烈。 首先,竞技运动水平的高度发达有助于社会成员民族自信心的提升,有助于增强国家社会的凝聚力;同时,竞技选手顽强拼搏、奋勇争先、胜不骄、败不馁的精神,以及奥林匹克的积极参与意识、敢于展示个性的意识都是当今时代所推崇倡导的理念。 人的主观态度和客观行为构成了社会发展的原动力。现代人的主观态度与客观行为应是积极进取的,开放包容的,理性坚定的,同时又是个性鲜明的。竞技运动带给社会的,已不仅仅是简单的观赏需求的满足以及民族自尊的激发,而且在更深的层面,塑造积极参与社会发展所需要的现代人的精神理念。竞技运动给了我们一个积极进取的舞台,同时也给予我们一个严格游戏规则下公平竞争

劈尖干涉测量头发丝直径

劈尖干涉测量头发丝直径 摘要:根据等厚干涉原理,利用劈尖干涉,成功测量除了头发丝的直径。 关键词:干涉 劈尖 细丝直径 1. 引言:根据薄膜干涉原理,用两个很平的玻璃板间产生一个很小的角度,就构成一个楔形空气薄膜,用已知波长的单色光入射产生的干涉条纹,可以测量头发丝的直径。 2. 设计方法及设计原则: 2.1 理论依据: 当两片很平的玻璃叠合在一起,并在其一端垫入细丝时,两玻璃片之间就形成一空气薄层(空气劈)。在单色光束垂直照射下,经劈上、下表面反射后两束反射光是相干的,干涉条纹将是间隔相等且平行于二玻璃交线的明暗交替的条纹。 显然,劈尖薄膜上下两表面反射的两束光发生干涉的光程差为 2(21)k 0,1,222e k λ λ δ=+=+= 时,干涉条纹为暗纹与 k 级暗条纹对应的薄膜厚度为:2k e k λ = 两相邻暗条纹所对应的空气膜厚度差为: 21λ=-+k k e e 如果有两玻璃板交线处到细丝处的劈尖面上共有N 调干涉条纹,则细丝的直径d 为;

)2/(λN D = 由于N 数目很大,实验测量不方便,可先测出单位长度的条纹数l N N i = 0,再测出两玻璃交线处至细丝的距离L ,则 L N N 0= )2/(0λL N D = 已知入射光波长λ,测出0N 和L ,就可计算出细丝(或薄片)的直径D 。 2.2 实验方法: 实验仪器:钠光灯 读数显微镜 劈尖装置 1、将细丝(或薄片)夹在劈尖两玻璃板的一端,另一端直接接触,形成空气劈尖。然后置于移测显微镜的载物平台上。 2、开启钠光灯,调节半反射镜使钠黄光充满整个视场。此时显微镜中的视场由暗变亮。 调节显微镜目镜焦距及叉丝方位和劈尖放置的方位。调显微镜物镜焦距看清干涉条纹,并使显微镜同移动方向与干涉条纹相垂直。 3、用显微镜测读出叉丝越过条暗条纹时的距离l,可得到单位长度的条纹数0N 。再测出两块玻璃接触处到细丝处的长度L.重复测量六次,根据式 )2/(0λL N D =计算细丝直径D 平均值和不确定度。 3. 实验结果与分析: 3.1 实验数据与处理: 实验测量数据 l =(2.123+2.127+2.121+2.129+2.127+2.125)6 mm =2.125mm S i = (l ?l )2n i=1n ?1 = (2.123?2.125)2+(2.127?2.125)2+(2.121?2.125)2+(2.129?2.125)2+(2.127?2.125)2+(2.125?2.125)26?1 =0.0053mm ?l = S i 2+?仪 2= (0.0053)2+(0.005)2 mm 2=0.007mm 2 l =l ±?l = 2.125±0.007 mm E l =?l l =0.0072.125×100%=0.33%

金属丝杨氏模量的测定

物理实验报告 【实验名称】 杨氏模量的测定 【实验目的】 1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。 2. 掌握各种长度测量工具的选择和使用。 3. 学习用逐差法和作图法处理实验数据。 【实验仪器】 MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。 【实验原理】 一、杨氏弹性模量 设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即 L L Y S F ?= (1) 则 E L L S F Y ?= (2) 比例系数E 即为杨氏弹性模量。在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。Y 的国际单位制单位为帕斯 卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。 本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S 42d S π= 则(2)式可变为 E L d FL Y ?=24π (3) 可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量, F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时, F 每变化1kg 相应的ΔL 约为mm)。因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。 二、光杠杆测微小长度变化 尺读望远镜和光杠杆组成如图2所示的测量系统。光杠杆系统是由光杠杆镜架与尺读望远镜组成的。光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。三个尖足的边线为一等腰三角形。前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。尺读望远镜由一把竖立的毫米刻度尺和在尺旁的一个望远镜组成。

头发丝直径的实验报告.doc

头发丝直径的实验报告 篇一:设计性实验方案--测量头发丝的直径 在日常生活中,人们会经常使用测量工具来测量物体的长度,从而对物体产生具体客观的认识。众所周知,在生活中的诸多物体,人们不用多加思索就可以容易测量得知它们的具体长度参数。身体发肤受之父母,可对头发自己有了解几何呢?直接测量微小物体的长度参数以肉眼比较难得出较精确的数据,一般情况,微小长度的测量通常用将其放大的方式来进行测量。而微小长度在科学研究、精密仪器等方面更是有着不可或缺的地位。 在实验仪器不是很充裕的初级中学任物理教师,该怎样以更经济、更简单、更可行的方式来让学生了解微小物体长度的测量方法,以与自己切身相关的头发为楔子,从而引导、激发其他们的探索未知得欲望呢?好奇是一种动力,是一种向知识攀登、向未知探索的动力。为人师表,我们有责任和义务去培养学生,使学生具有这种动力! 一、实验原理 用一根长长的头发,紧密缠绕一个小的圆柱体n圈(n=30).用测量工具测出n圈头发的直径D,则由d= D/n,可求得头发d 的直径大小。 二、实验方法选择 方法1:用千分尺(螺旋测微器)来进行测量

定义:利用螺旋副原理对弧形尺架上两测量面间分隔的距离,进行读数的通用长度测量工具。外径千分尺常简称为千分尺,它是比游标卡尺更精密的长度测量仪器,它的量程是0- 25,25-50,50-75...毫米,分度值是0.01毫米。工作原理:根据螺旋运动原理,当微分筒(又称可动刻度筒)旋转一周时,测微螺杆前进或后退一个螺距──0.5毫米。这样,当微分筒旋转一个分度后,它转过了1/50周,这时螺杆沿轴线移动了1/50×0.5毫米=0.01毫米,因此,使用千分尺可以准确读出0.01毫米的数值。 将头发紧密缠绕在小圆柱后,用螺旋测微器来测量,依据千分尺的读数原理可以得到n圈头发的长度D,由d=D/n可得头发的直径d。 方法2:用游标卡尺来进行测量 精度是1mm除以游标上的格数则可知10格就是精确到0.1mm 、20格就是精确到0.05mm 、50格就是精确到0.02mm将头发紧密缠绕在小圆柱后,用游标卡尺测量物体外径的卡口来测量,依据游标卡尺的读数原理可以得到n圈头发的长度D,由 d=D/n可得头发的直径d。 方法3:劈尖干涉测头发丝的直径(利用等厚干涉原理) 当两片很平的玻璃叠合在一起,并在其一端垫入细丝时,两玻璃片之间就形成一空气薄层(空气劈)。在单色光束垂直照射下,经劈上、下表面反射后两束反射光是相干的,干涉条纹将

高速高精运动控制补偿及参数校准技术

华中科技大学 硕士学位论文 高速高精运动控制补偿及参数校准技术 姓名:朱凯 申请学位级别:硕士 专业:机械电子工程 指导教师:李小清 2011-01-14

摘要 随着现代制造业的迅速发展,高速度、高精度已成为现代运动控制追求的主要目标,开展高速高精运动控制的研究,对我国数字化装备制造业水平和竞争力的提升有着重大的意义。本文将着重对高速高精运动控制补偿及参数校准技术展开深入研究与实践。 数控机床工作台采用直线电机和主轴旋转电机的复合运动,实现高速、高精、多自由度的运动性能,其控制为多刚体、多变量、强耦合的非线性系统控制。对此,本文根据高速高精运动控制系统的性能要求,设计了系统硬件体系和软件构架。其中,系统硬件采用基于PCI总线的IPC+8136卡结构,软件包括人机界面、任务调度、信息交换缓冲、插补处理及位置控制等;针对复杂的曲线曲面加工中存在的小线段“拐点”问题,采用柔性度较好的S型曲线加减速控制来避免运动过程中产生的冲击,建立小线段高速加工速度、加速度衔接模型,对连续小线段衔接处的拐点速度及加速度约束条件进行讨论,同时对小线段速度进行插补预处理,以满足高速高精运动控制的要求;结合机床工作台通用的运动控制结构,研究了对控制精度具有较大影响的外部扰动因素,并设计了适用于高速高精的伺服运动控制结构,对其中的参数校准技术进行深入研究。 针对驱动系统的非理想因素,提出轨迹点前馈补偿校准技术,详细阐述前馈质量和前馈延时系数校准算法,推导出加速度前馈校准流程,极大的提高控制系统的高速响应特性;机床在运动过程中不可避免的存在谐振,通过计算系统传递函数,分析系统性能评价指标,设计Notch陷波滤波器参数,抑制机械谐振,提高加工精度;采用带二阶低通滤波的PID反馈控制器,基于积分误差最小的灵敏度约束方法对控制参数进行整定,抑制高频噪声,提高系统稳定性;研究伺服电机Cogging力/力矩产生机理,提出伺服电机齿槽推力波动的校准补偿,降低Cogging力/力矩对运动精度的影响。 最后,搭建高速高精运动控制补偿及参数校准技术试验平台,进行了PID调节、Notch滤波和小线段S型曲线加减速插补算法验证试验。试验表明本文方法可行有效。 关键词:高速高精小线段前馈补偿陷波滤波PID反馈

弹性模量测量方法

弹性模量测量方法 点击次数:3972 发布时间:2010-10-22 ? 弹性模量测量方法?最简单的形变是线状或棒状物体受到长度方向上的拉力 作用,发生长度伸长。设金属丝(或杆)的原长为L,横截面积为S,在弹性限度内的拉力F作用下,伸长了L。比值F/S为金属丝单位横截面积上所受的力,叫做胁强(或应力),相对伸长量L/L叫胁变(或应变)。据虎克定律,胁强和胁变成正比,即: (1) 比例系数: (2) E叫做物体的弹性模量(或称杨氏模量)。E的大小与物体的粗细、长短等形状无关,只决定于材料的性质,它是表示各种固体材料抗拒形变能力的重要物理量,是各种机械设计和工程技术选择构件用材必须考虑的重要力学参量。 任何固体在外力作用下都会改变固体原来的形状大小,这种现象叫做形变。一定限度以内的外力撤除之后,物体能完全恢复原状的形变,叫弹性形变。 杨氏弹性模量的测量方法有静态测量法、共振法、脉冲传输法等,其中以共振法和脉冲法测量精度较高。杨氏弹性模量的静态测量法就是在物体加载以后,测出物体的应力和应变,根据一定的计算式得到E值,主要有拉伸法、梁弯曲法等。 用力F作用在一立方形物体的上面,并使其下面固定(如图一),物体将发生形变成为斜的平行六面体,这种形变称为切变,出现切变后,距底面不同距离处的绝对形变不同(AA'>BB'),而相对形变则相等,即 ?弹性模量测量方法(6-3) 式中称为切变角,当值较小时,可用代替,实验表明,一定限度内切变角与切应力成正比,此处S为立方体平行于底的截面积,现以符号表示切应力,则 (6-4) 比例系数G称切变模量。 测量切变模量的方法有静态扭转法、摆动法。 实验目的

2000~2020年我国竞技运动水平发展目标定位及实现策略

2000~2020年我国竞技运动水平发展目标定位及实 现策略 北京体育大学田麦久蔡睿刘大庆张英波 4.1 1979~2000年我国竞技体育运动水平的发展历程 4.1.1 迅速跻身于世界竞技体育强国之列 自1978年至1999年底,我国选手共获得1176个世界冠军,超创世界记录770次,竞技体育的综合实力已稳居亚洲首位。 1984年,我国第一次全面参加奥运会,在前苏联、东欧及古巴等国缺赛的情况下,获得了15枚金牌,取得了金牌榜第4位的较好赛绩。经历了1988年汉城奥运会的波谷时相,在第25、26两届奥运会上皆获得16枚金牌,并连续位列排名榜第4位。在2000年悉尼奥运会上更进至金牌榜和奖牌榜的第三位,进一步加强了我国竞技体育在国际上的地位。 可以说,我国竞技体育运动水平在短短的二十年里,获得迅猛的发展,已然跻身于世界竞技体育强国之列。 4.1.2 重点发展优势项目战略获得成功 1979年,我国恢复了在国际奥委会的合法地位之后,我国竞技体育运动的决策组织机构根据我国竞技体育的发展状况以及经济发展水平提出了“重点发展优势运动项目”的战略。并组织专家、学者进行了我国重点竞技项目的设置与布局研究。1980、1984、1989年分别确定了13、16、18个重点项目,并对这些项目在全国各省市的重点布局作出了统一规划。这一战略对我国竞技体育运动水平的提高起到了重要作用,取得了巨大成功(见表1)。我国体操、跳水、举重、射击、乒乓球5个优势项目的运动员在5届奥运会中共获得金牌60块,占80 块金牌总数的75%,是构成我国竞技运动水平总体实力的决定性因素。 表1 我国参加历届奥运会获金牌项目及数量分布 项目第23届第24届第25届第26届第27届合计 体操 5 1 2 1 3 12 15.0% 举重 4 0 0 2 5 11 13.8% 跳水 1 2 3 3 5 14 17.5% 乒乓球 2 3 4 4 13 16.3% 羽毛球 1 4 5 6.3% 射击 3 0 2 2 3 10 12.5% 柔道 1 1 2 4 5.0% 田径 0 1 1 1 3 3.8% 击剑 1 1 1.3% 游泳 4 1 0 5 6.3% 跆拳道 1 1 1.3% 女排 1 1 1.3% ∑ 15 5 16 16 28 80 100.0% 4.1.3 为国争光、举国体制、团结拼搏、科学训练结出丰硕成果 我国竞技运动水平能够在短短20年中发展为世界竞技体育格局中一支不可

利用光的干涉原理测量发丝直径

利用光的干涉原理测量发丝直径 XXX (XXXX 大学 XXXX 学院 XXXX 班) 摘 要:利用等厚干涉可以测量微小角度、很微小长度、微小直径及检测一些光学元件的球 面度、平整度、光洁度等。本实验就是利用空气劈尖测量头发丝的直径。 关键词:等厚干涉;测量;头发丝;直径 中图分类号:O436.1 0 引言 干涉和衍射是光的波动性的具体表现。利用等厚干涉,由同一光源发出的光,分别经过 其装置所形成的空气薄膜上、下表面反射后,在上表面相遇产生的干涉。等厚干涉是光的干 涉中的重要物理实验。本实验利用劈尖干涉法测定细丝直径是等厚干涉的具体应用。光的干 涉是两束光(频率相同、振动方向相同、相位差恒定)相互叠加时所产生的光强按空间周期 性重新分布的一种光学现象。光的等厚干涉是采用分振幅法产生的干涉,劈尖即是利用光的 等厚干涉测量微小长度。 1 实验原理: 将两块光学平板玻璃叠放在一起,在一端插入头发丝,则在两玻璃板间形成了空气劈尖, 如图1所示: 当一平行单色光垂直入射时,将会产生干涉现象,产生的干涉条纹是一系列的平行的、 间隔相同的、明暗相间的条纹,如图2所示: 设入射光波长为λ,两束光的光程差为 2 2λ+=?e ,形成暗条纹的条件为 图1 劈尖 图2 干涉条纹

???=+=+=?,3,2,1,0,2)12(22k k e λ λ 当k=0时,对应?=0处为暗纹,第k 级暗纹处空气薄膜厚度为 ???==?,3,2,1,0,2k k λ 设从薄片左边至劈尖棱边的距离为L ,L 与左端之内的暗纹数为N ,可得薄片的厚度为 2d λ N = 设每相邻两条暗纹间长度为l ?,每△N 条暗纹测长度为L i ,△N ’=40 则 N')/L (/d 4 n 1i i 4i ?-=∑==+L L ) 2 实验仪器: 实验仪器名称 仪器的量程 仪器的精度 其他参数 读数显微镜 50mm 0.01mm 钠光灯 λ=589.3nm 劈尖 头发丝 刻度尺 200mm 1.0mm 3 实验步骤: 1制作劈尖,将细丝夹在距劈尖一端的3-5mm 处,将此端夹紧,将细丝拉直与劈尖边缘平行, 再将劈尖另一端适度夹紧。 2连通电源,打开钠光灯 3调节读数显微镜: (1)把劈尖置于载物台,物镜正下方,用压片压住;旋松手轮把显微镜放于适中位置(当 置物镜最下位置时不与劈尖相碰)。 (2)调节半反镜使之呈45度角,使读数显微镜的目镜中看到均匀明亮的黄色光场。 (3)调节读数显微镜的目镜直到清楚地看到叉丝,且分别与X,Y 轴大致平行,然后将目镜 固定紧。调节显微镜的镜筒使其下降(注意:应从显微镜外面看,而不是从目镜中看)。靠

大学物理设计实验-测量金属丝直径

吉林大学珠海学院课程设计报告 设计题目测量金属丝的直径 学生姓名 学号03150109 学生姓名 学号03150111 所属院系电子信息系 专业电子信息科学与技术 班级电子一班 指导教师王天会 设计地点实验楼437 2016年12月12日

一、 实验目的 1、 学习读数显微镜的使用方法 2、 观察劈尖干涉现象及其特点 3、 用劈尖干涉法测量金属丝直径 二、劈尖测量金属丝直径的原理 如图1-1所示,G 1、G 2为两片叠放在一起的平板玻璃,起一端的棱边相接触,另一端被一直径为D 的细丝隔开,故在G 1的下边卖女和G 2的上表面之间形成一层空气薄层,叫做空气劈尖。图中M 为倾斜45°角放置的半透明半反射平面镜,L 为透镜,T 为显微镜。 单色光源S 发出的光经透镜L 后成为平行光,经M 反射后垂直射入劈尖(入射角i=0)。自空气劈尖上、下两面反射的光相互干涉,从显微镜T 中可观察到明暗交替、均匀分布的干涉条纹, 如图 1-2所示。图中相邻两暗纹(或明纹)的中心间距b 叫做劈尖干涉的条纹宽度。 在图1-3中,D 为细丝直径,L 为玻璃片长度,θ为两玻璃片间的夹角。由于θ实际很小(为清晰期间被,图中θ被夸大),所以在劈尖的上表面处反射的光线都可看作垂直与劈尖表面,他们在劈尖表面处。相遇并相干叠加。由于劈尖层空气的折射率n 比比玻璃的折射率n 1小,所以光在劈尖下表面反射时因有相位跃变而产生附加光程差λ/2。 1-2

这样,由 kλ, k=1,2,…(加强) Δr=2n2d+λ/2= (2k+1),λ/2, k=0,1,2,…(减弱) 可得劈尖上下表面反射的两相干光的总光程差为 Δ=2nd+λ/2 式中d为劈尖上下表面间的距离。劈尖反射光干涉条纹极大(明纹)的条件为 2nd+λ/2=kλ,k=1,2,3,…(1-1) 产生干涉条纹极小(暗纹)的条件为 2nd+λ/2=(2k+1)λ/2, k=0,1,2,…(1-2) 从师1-1和1-2可以看出,凡劈尖内厚度d相同的地方均满足相同的干涉条件。因此,劈尖的干涉条纹是一系列平行于劈尖棱边的明暗相间的直条纹(图1-2)。这种现象叫做等厚干涉。 在两玻璃片相接处(劈尖厚度d=0),Δ=λ/2,故在棱边处应为暗条纹。这和实际观察结果一致。 根据以上,设第k级明纹处劈尖厚度为d k,第k+1级明纹处的劈尖厚度为d k+1,由式1-1得到 d k+1-d k=λ/(2n)=λn/2 (1-3) 式中λn(=λ/n)为光在折射率为n的介质中的波长。由式(1-3)可见,相邻两明纹处劈尖的厚度差为光在劈尖介质中波长的1/2;同理,相邻两暗条纹处劈尖的厚度差也为光在该介质中波长的1/2;而相邻的明、暗纹处劈尖的厚度差可有1-1和1-2得出,为光在劈尖介质中波长的1/4。 一般劈尖的夹角θ很小,若相邻两明(或暗)纹间的距离为b,则有 θ≈D/L,θ≈(λn/2)/b 得D=(λn/2b)L=(λ/2nb)L (1-4) 所以,若已知劈尖长度L、光在真空中的波长λ和劈尖介质的折射率n,并测出相邻暗纹(或明纹)间的距离b,就可以从1-4 计算出细丝直经D。 三、实验仪器 1、钠光灯 2、劈尖 3、读数显微镜 4、游标卡尺等 四、实验内容及步骤 1、调节劈尖装置

GPS运动目标提取及轨迹呈现

目录 目录 (1) 前言 (2) 1 定位信息的接收和提取 (2) 1.1 初始化串口 (2) 1.2 定位信息的接收 (3) 1.3 定位信息的提取 (3) 2 坐标变换 (5) 3.参数转换 (6) 3.1七参数与三参数的概论 (6) 3.2七参数与三参数的理论性试验 (7) 一、大地高对坐标转换的影响 (7) 二、七参数与三参数对坐标转换的影晌 (7) 三、大地高转换为正常高 (7) 4.求取转换参数的一些方法 (8) 5.小结 (8) 参考文献 (9)

前言 全球定位系统(GPS)是近年来开发的最具有开创意义的高新技术之一,其全球性、全能性和全天候性的导航定位、定时和测速优势必然会在诸多领域中得到越来越广泛的应用。在实际应用中,GPS 接收机输出的定位信息是通过RS232 串口传递给计算机,计算机主程序需要将GPS定位信息进行判别并提取所需要的有用数据(如目标当前的经纬度坐标、海拔、速度和时间等)。由于GPS 使用的坐标系WGS-84 与我国采用的坐标系不同,因此还需要将经纬度坐标进行坐标变换使其适应当地坐标系,再将当前目标显示在电子地图上。本文就针对当前比较普及的GPS,对其卫星定位信息的接收及其定位参数提取的实现和坐标转换的方法予以介绍。 1 定位信息的接收和提取 GPS 接收机主要由GPS 接收天线、变频器、信号通道、微处理器、存储器以及电源等部分组成。GPS接收机只要处于工作状态就会按照指令把接收并计算出的GPS 导航定位信息(NEMA0183 语句)通过串口传送到计算机中。计算机从串口读取数据有多种方法,Windows 中提供了一个串口通讯控件(MSComm),MSComm 控件可以采用轮询或事件驱动的方法从端口获取数据。比较常用的事件驱动方法:有事件(如接收到数据)时通知程序。在程序中需要捕获并处理这些通讯事件。这样可以很简单地利用串口进行通讯。在使用它之前,应将控件加在应用程序的对话框上。然后再用ClassWizard 生成相应的对象。 1.1 初始化串口 该控件有很多自己的属性,可以通过它的属性窗口来设置,也可以用程序设置。建议采用程序设置,这样更灵活。 if(m_ComPort.GetPortOpen())//设置串口配置信息前,先要关闭串口; m_ComPort.SetPortOpen(FALSE); m_ComPort.SetCommPort(1); //指定使用的串口为com1; m_ComPort.SetInBufferSize(1024);//设置输入缓冲区的大小; m_ComPort.SetOutBufferSize(512);//设置输出缓冲区的大小; m_ComPort.SetInputMode(1); //设置输入方式为二进制方式; m_ComPort.SetSettings("9600,n,8,1");//设置波特率等参数; m_ComPort.SetRThreshold(1);//设置为每接收一个字符就触发一个OnComm 事件; m_ComPort.SetInputLen(0); //设置为0时,程序将读取缓冲区的全部字符; if(!m_ComPort.GetPortOpen()) //打开串口; m_ComPort.SetPortOpen(TRUE);

拉伸法测量金属丝的弹性模量

实验三拉伸法测量金属丝的模量 一、实验目的 1. 掌握用拉伸法测量金属丝弹性模量的原理和方法。 2. 学习光杠杆测量微小长度变化的原理和方法。 2、 实验原理 1.弹性模量 在外力作用下,固体所发生的形状变化称为形变。如果力较小时,一旦外力停止了作用,形变将随之消失,这种形变称为弹性形变。如果外力足够大,当停止作用时,形变不能完全消失,留下剩余的形变称之为塑性形变。当开始出现塑形形变时,表明材料达到了弹性限度。 针对连续,均匀,各向同性的材料做成的钢丝,设其长为L,横截面积为S。沿长度方向施力F后,钢丝绳伸长或缩短ΔL。单位长度的伸长量ΔL/L称为线应变,单位横截面积所受的力F/S称为正应力。根据胡克定律,在金属丝弹性限度内正应力和线应变呈正比关系。比例系数 (1)称为弹性模量,旧城杨氏模量,他表征材料本身的弹性性质。E越大的材料,要使他发生一定的相对形变所需的单位横截面积上的作用力就越大。实验表明,弹性模量E与外力F,物体的原长L和横截面积S的大小无关。仅与材料的性质有关。 为测定弹性模量E值,式中F,S,L都可以用普通仪器及一般方法测出。唯有ΔL是一个微小的变化量。很难用普通测长的仪器准确的量度。本实验将采用光杠杆方法进行准确的测量。 2.光杠杆装置 初始时,平面镜处于垂直状态。标尺通过平面镜反射后,在望远镜中呈像。则望远镜可以通过平面镜观察到标尺的像。望远镜中十字线处在标尺上刻度为。当钢丝下降L时,平面镜将转动角。则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为处。由于平面镜转动角,进入望远镜的光线旋转2角。从图中看出望远镜中标尺刻度的变化。 因为角很小,由上图几何关系得:

相关文档
相关文档 最新文档