文档库 最新最全的文档下载
当前位置:文档库 › 汽车驱动桥壳疲劳寿命分析及结构优化

汽车驱动桥壳疲劳寿命分析及结构优化

汽车驱动桥壳疲劳寿命分析及结构优化
汽车驱动桥壳疲劳寿命分析及结构优化

驱动桥壳有限元分析

驱动桥壳有限元分析 汽车驱动桥壳的功用是支承并保护主减速器,差速器和半轴等,使左右驱动车轮的轴向相对位置固定,并且支承车架及其上的各总成质量。 1 驱动桥壳设计要求 在设计选用驱动桥壳时,要满足以下设计要求: (1)应该具有足够的强度和刚度,以保证主减速器齿轮啮合正常,并不使半轴产生附加弯曲应力。 (2)在保证强度和刚度的情况下,尽量减小质量以提高汽车行驶的平顺性。 (3)保证足够的离地间隙。 (4)结构工艺性好,成本低。 (5)保护装于其中的传动系统部件和防止泥水浸入。 (6)拆装,调整,维修方便。 2 驱动桥壳类型确定和材料选择 驱动桥壳通常分为整体式桥壳、分段式桥壳,前者强度和钢度较大,便于主减速的装配、调整和维修。普遍用于各类汽车上;多段式桥壳较整体式易于铸造,加工简便,但维修保养不便,汽车较少采用。 本设计选用整体式桥壳。后桥壳体为整体铸造,半轴套管从两端压入桥壳中。后桥壳前部和主减速器连接,后部为可拆式后盖,后桥壳上装有通气塞。 图1 驱动桥壳结构尺寸 1 1

2 本设计中的驱动桥壳总长为1800mm ,簧板距为970mm ,桥壳厚度为8mm ,选用材料为可锻铸铁,牌号为KT350-10,弹性模量为Mpa 61055.1 ,泊松比为0.23,密度为3/7200m kg ,抗拉强度为350Mpa ,屈服强度为200Mpa 。 这种材料有着较高的强度、塑性和冲击韧度,可用于承受较高的冲击,振动及扭转载荷下工作的零件。 3 对驱动桥壳进行有限元分析 ABAQUS 是一套功能强大的有限元分析软件,特别是在非线性分析领域,其技术和特点更是突出,它融结构、流体、传热学、声学、电学及热固耦合、流固耦合等于一体,由于其功能强大,再加上其操作界面人性化,越来越受到人们的欢迎。 在对桥壳进行有限元分析,首先将CATIA 软件设计的驱动桥壳模型导入ABAQUS 软件中,并将上述材料属性添加到模型。 图2 将模型导入ABAQUS 并赋予属性 由于本设计的桥壳为整体式桥壳,整体式桥壳与轮辋在凸缘盘外侧位置通过轴承相连接,因此可以将此处位置的约束看成全自由度约束。桥壳通过板簧座位置与车体相连接,此处位置承受车体载荷。 本设计中车体满轴载荷(后)为6910kg ,考虑到车满载状况下行驶通过不平路面,将受冲击载荷,所以取2.5倍满轴载荷加于板簧座上,即总质量为17275kg ,每个板簧座承受86375kg 。

汽车驱动桥的详细结构与分类

驱动桥的详细结构及分类 我爱车网类型:转载来源:腾讯汽车时间:2011-03-02 作者: 驱动桥主要由主减速器、差速器、半轴和驱动桥壳等组成。它的作用是将万向传动装置传来的动力折过90°角,改变力的传递方向,并由主减速器降低转速,增大转矩后,经差速器分配给左右半轴和驱动轮。 驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构较复杂,但可以大大提高汽车在不平路面上的行驶平顺性。 (1)非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 整体式驱动桥即非断开式驱动桥组成 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。 在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。

基于ANSYS的汽车驱动桥壳的有限元分析

基于ANSYS的汽车驱动桥壳的有限元分析 有限元法是一种在工程分析中常用的解决复杂问题的近似数值分析方法,以其在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用,特别是在材料应力、应变的线性范围更是如此。在汽车设计领域,无论是车身、车架的计算仿真,还是发动机的曲轴以及传动系统的计算均使用到该方法。 有限元分析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有限元法的理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS是当前国际上流行的有限元分析软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械和电子等行业。ANSYS软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要。通过结合ANSYS软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对模态分析计算结果进行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模块。 汽车驱动桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造。驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。但是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。 一、驱动桥壳强度分析计算 可将桥壳视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心),桥壳承受此力与车轮重力之差,受力如图1所示。

驱动桥壳毕业设计

驱动桥壳毕业设计 【篇一:驱动桥毕业设计111】 某型重卡驱动桥设计 摘要 驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车 轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是 增矩、降速,承受作用于路面和车架或车身之间的力。它的性能好 坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效 率高的单级减速驱动桥已经成为未来载重汽车的发展方向。 本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次 设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总 体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。数据确定后,利用autocad建立二维图,再 用catia软件建立三维模型,最后用caita中的分析模块对驱动桥壳 进行有限元分析。 关键词:驱动桥;cad;catia;有限元分析 abstract drivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.its performance will have a direct impact on automobile performance,and it is particularly important for the truck. using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks. this article referred to the traditional driving axles design method to carry on the truck driving axles design.in this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the main reducer, differential mechanism,half shaft and axle housing,then check the strength and life of them.after confirming the

汽车驱动桥开题报告.doc

本科毕业设计开题报告 题目基于Pro/E小型商用车后桥总成设计 院(系):__________ 机械工程学院_______________ 班级:__________ 机械电子工程08-3班___________ 姓名:_________________ 赫会宝 _________________ 学号:080514010323 ___________________________ 指导教师:______________ 李胜波 _________________ 教师职称:______________ 副教授 _________________

黑龙江科技学院本科毕业设计开题报告

策的目标还有相当的距离。目―1994年《汽车工业产业政策》颁布并执行以来,国内汽车产业结构有了显著变化,企业规模效益有了明显改善,产业集中度有了一定程度提高。但是,长期以来困扰中国汽车产业发展的散、乱和低水平重复建设问题,还没有从根本上得到解决。多数企业家预计,在新的汽车产业政策的鼓励下,将会有越来越多的汽车生产企业按照市场规律组成企业联盟,实现优势互补和资源共享。 独立悬架早期只单纯用于轿车上,目前大部分轻型货车和越野汽车为了提高舒适性也开始采用独立悬架,同时一些中型卡车及客车为了提高驾乘的舒适性和行驶性也开始采用独立悬架,在国外甚至一些轮式工程机械如吊车和重型卡车也开始采用独立悬架。因此对于独立悬架的设计技术,国内外都进行了研究,这些研究主要集中在以下几个方面:独立悬架设计方法,独立悬架参数对汽车行驶平顺性的影响;独立悬架对汽车操纵稳定性的影响。国内的研究主要表现为:独立悬架和转向系的匹配;独立悬架与转向横拉杆长度和断开点的确定;悬架弹性元件的设计分析;独立悬架的优化设计等。国外除上述研究外还进入了微观领域的研究,如用原子力学显微镜观察悬架材料内部聚合体的电子转化情况,研究悬架作为弹性介质的流变特性等,从而使得独立悬架向着智能化,轻量化,小型化,通用化方向发展。同时由于电子,微机技术的发展,使得独立悬架技术向着半主动、主动悬架方向发展。 非独立悬架早期广泛应用于除了轿车以外的其它车型中,由于其可靠性和简单的特性,现在还被广泛的用于轿车的后桥,轻型货车和越野汽车的后桥,重型货车的前后桥都采用非独立悬架。 由于汽车行驶的平顺性和操纵稳定性的要求,具有安全、智能和清洁的绿色智能悬架将是今后汽车后桥的发展趋势。 3、研究/设计的目标 a. 本课题解决的主要问题:设计出适合本课题的驱动桥。汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能完全解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。首先是因为绝大多数的发动机在汽车上的纵向安置的,为使其转矩能传给左、右驱动车 轮,必须由驱动桥的主减速器来改变转矩的传递方向,同时还得由驱动桥的差速器来解决左、右驱动车轮间的转矩分配问题和差速要求。其次,需将经过变速器、传动轴传来的动力,通过驱动桥的主减速器,进行进一步增大转矩、降低转速的变化。因此,要想使汽车驱动桥的设计合理,首先必须选好传动系的总传动比,并恰当地将它分配给变速器和驱动桥。 b. 本课题的设计总体思路:非断开式驱动桥的桥壳,相当于受力复杂的空心梁, 它要求有足够的强度和刚度,同时还要尽量的减轻其重量。所选择的减速器比应能满足汽车在给定使用条件下具有最佳的动力性和燃料经济性。对载货汽车,由于它们有时会遇到坎坷不平的坏路面,要求它们的驱动桥有足够的离地间隙,以满足汽车在通过性方面的要求。驱动桥的噪声主要来自齿轮及其他传动机件。提高它们的加工精度、 装配精度,增强齿轮的支撑刚度是降低驱动桥工作噪声的有效措施。驱动桥各零部件在保证其强度、刚度、可靠性及寿命的前提下应力求减小簧下质量,以减小不平路面对驱动桥的冲击载荷,从而改善汽车行驶的平顺性。 4、设计方案 4.1设计方案选型与分析 方案一:非断开式驱动桥。由于结构简单,制造工艺性好,成本低,可靠性好,维修调整容易,广泛应用于货车的和部分桥车上。但是,其悬挂质量较大,对降低动载荷和提高平顺性不利。如下图所示:

重型商用车驱动桥设计 开题报告

华南理工大学广州汽车学院 本科生毕业设计(论文)开题报告论文题目重型商用车驱动桥设计 班级07车辆4班 姓名陈威 学号200730851303 指导教师上官文斌 填表日期2011-2-26 二〇一一年二月

说明 1.毕业设计的开题报告是保证毕业设计质量的一个重要环节,为规范毕业设计的开题报告,特印发此表。 2.学生应在开题报告前,通过调研和资料搜集,主动与指导教师讨论,在指导教师的指导下,完成开题报告。 3.此表一式三份,一份交学院装入毕业设计(论文)档案袋,一份交指导教师,一份学生自存。 4.开题报告需经各系或论文指导小组讨论、学院教学指导委员会审查合格后,方可正式进入下一步毕业设计(论文)阶段。

姓名陈威开题时间2011-02 学制本科4年 专业车辆工程指导教师 上官文斌 (导师组长) 论文题目:重型商用车驱动桥设计 开题报告内容: 一、论文的选题背景和意义: 汽车驱动桥位于传动系的末端。其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。 对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N·m以上,百公里油耗是一般都在34升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而驱动桥则是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。 二、工作任务分析: 以重型商用车(斯太尔1291.260/N65车型 )为设计对象,进行驱动桥的设计。 (1)熟悉驱动桥的主要结构形式 (2)合理设计驱动桥主减速器、差速器、半轴、桥壳的结构 (3)经过计算,合理选择驱动桥各部件的主要参数 (4)利用CATIA软件进行驱动桥各部件的三维建模

驱动桥壳设计

驱动桥壳设计 驱动桥壳的主要功用是支撑汽车质量,并承受由车轮传来的路面的反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体驱动桥壳应满足如下设计要求: 1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力. 2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性. 3)保证足够的离地间隙. 4)结构工艺性好,成本低. 5)保护装于其上的传动部件和防止泥水浸入. 6)拆装,调整,维修方便. 一.驱动桥壳结构方案分析 驱动桥壳大致可分为可分式、整体式 和组合式三种形式。 1.可分式桥壳 可分式桥壳(图5—29)由一个垂直接 合面分为左右两部分,两部分通过螺栓联 接成一体。每一部分均由一铸造壳体和一 个压入其外端的半轴套管组成,轴管与壳 体用铆钉连接。 这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。但拆装、调整、维修很不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。 2.整体式桥壳

整体式桥壳(图5—30) 的特点是整个桥壳是一根空 心梁,桥壳和主减速器壳为两 体。它具有强度和刚度较大, 主减速器拆装、调整方便等优 点。 按制造工艺不同,整体式 桥壳可分为铸造式(图5— 30a)、钢板冲压焊接式(图5 —30b)和扩张成形式三种。铸 造式桥壳的强度和刚度较大, 但质量大,加:上面多,制造 工艺复杂,主要用于中、·重型货车上。钢板冲压焊接式和扩张成形式桥壳质量小,材料利用率高,制造成本低,适于大量生产,广泛应用于轿车和中、小型货车及部分重型货车上。 3)组合式桥壳 组合式桥壳(图5—31)是将主 减速器壳与部分桥壳铸为一体,而 后用无缝钢管分别压入壳体两端, 两者间用塞焊或销钉固定。它的优 点是从动齿轮轴承的支承刚度较 好,主减速器的装配、调整比可分 式桥壳方便,然而要求有较高的加 工精度,常用于轿车、轻型货车中。 二.驱动桥壳强度计算

汽车驱动桥桥壳的有限元分析(牟建宏)

汽车驱动桥桥壳的有限元分析 牟建宏 (西南大学工程技术学院,北碚 400715) 摘要:用任意三维软件建立了驱动桥壳的三维实体模型。通过对驱动桥壳进行有限元分析(在此仅进行静力学分析)。通过有限元进行应力计算,判断驱动桥壳每m轮距最大变形量和垂直弯曲后背系数是否符合要求。为驱动桥壳的结构改进及优化设计提供了理论依据。关键词:驱动桥壳;有限元分析;ANSYS 0引言 驱动桥壳是汽车上重要的承载件和传力件。非断开式驱动桥壳支承汽车重量,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力、垂向力也是经过桥壳传到悬挂及车架或车厢上[1]。因此,驱动桥壳的使用寿命直接影响汽车的有效使用寿命。合理地设计驱动桥壳,使其具有足够的强度、刚度和良好的动态特性,减少桥壳的质量,有利于降低动载荷,提高汽车行驶的平顺性和舒适性。而驱动桥壳形状复杂,应力计算比较困难,所以有限元法是理想的计算工具。1有限元法的简介 1.1有限元法的定义 有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理

为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系[2]。 1.2有限元法的基本原理 将连续的求解域离散为一组单元的组合体,用在每个单元假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题[3]。 1.3有限元分析的基本步骤 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。

驱动桥的拆装实验报告

驱动桥的拆装 一、实训目的 1、掌握主减速器与差速器的功用、构造和工作原理 2、熟悉主减速器与差速器的拆装顺序,以及一些相关的检测与维修知识 二、实验原理 根据驱动桥的种类、结构特点、工作原理和组成部分,以及主减速器与差速器的结构特点、工作原理和组成部分,进行驱动桥总成的分拆装实训。 三、设备和实训用具 1、驱动桥总成1个(非断开式驱动桥) 2、工作台架1个 3、常用、专用工具全套 4、各式量具全套 四、实验步骤 1、用专用工具从驱动桥壳中拉下左、右两边 半轴主减速器 2、松下主减速器紧固螺栓,卸下主减速器总成 3、松开差速器支撑轴承的轴承盖紧固螺栓,卸下轴承盖,并做好记号 4、卸下支撑轴承,并做好标记,以及分解出差速器总成 5、从主减速器壳中,拉出主减速器双曲面主动齿轮(可视需要进行分拆装) 6、分解差速器总成,直接卸下一边半轴锥齿轮,接着卸下行星齿轮,以及另一边半轴锥齿轮 7、观察各零部件之间的结合关系,以及其工作原理

8、装配顺序与上述顺序相反

五、注意事项 1、拆卸差速器轴承盖时,应做好左、右两边轴承盖的相应标记 2、驱动桥为质量大部件,需小心操作,必要时用吊装,切忌勿站在吊装底下 3、严格按照技术要求及装配标记进行装合,防止破坏装配精度,如差速器及盖、调整垫片、传动轴等部位。行星齿轮止推垫片不得随意更换 4、差速器轴承的预紧度要按标准调整 5、差速器侧盖与变速器壳体的接合面装复时要涂密封 6、侧盖固定螺栓要按规定的扭矩拧紧 7、从动锥齿轮的固定螺栓应按规定的扭矩拧紧 &差速器轴承装配时可用压床压入 六、实验结果与分析 1、驱动桥的动力传递路线: 从万向传动轴到主减速器小齿轮,到从动锥齿轮,差速器壳T十字轴T行星齿轮T半轴齿轮T左右半轴。 2、主减速器、差速器等的支撑方式,及轴承预紧度调整: (1)主动锥齿轮与轴制成一体,主动轴前端支承在相互贴近而小端相向的两个圆锥滚子轴承上,后端支承在圆柱滚子轴承上,形成跨置式支承。其轴承预紧度可通过相对两个锥齿轮中加减垫片进行调整。 (2)从动锥齿轮连接在差速器壳上,而差速器壳则用两个圆锥滚子轴承支承在主减速器壳的座孔中。 (3)在从动锥齿轮背面,装有支承螺栓,以限制从动锥齿轮过度变形而影响齿轮的正常工作。装配时,一般支承螺栓与从动锥齿轮端面之间的间隙为0.3~0.5mm。 3、齿轮啮合间隙调整方法:

驱动桥壳设计

驱动桥壳的主要功用是支撑汽车质量,并承受由车轮传来的路面的反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体 驱动桥壳应满足如下设计要求: 1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力. 2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性. 3)保证足够的离地间隙. 4)结构工艺性好,成本低. 5)保护装于其上的传动部件和防止泥水浸入. 6)拆装,调整,维修方便. 一.驱动桥壳结构方案分析 驱动桥壳大致可分为可分式、整体式和组合式三种形式。 1.可分式桥壳 可分式桥壳(图1)由一个垂直接合面分为左右两部分,两部分通过螺栓联接成一体。每一部分均由一铸造壳体和一个压入其外端的半轴套管组成,轴管与壳体用铆钉连接。 可分式桥壳 这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。但拆装、调整、维修很不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。 2.整体式桥壳 整体式桥壳(图2)的特点是整个桥壳是一根空心梁,桥壳和主减速器壳为两体。它具有强度和刚度较大,主减速器拆装、调整方便等优点。

整体式桥壳 按制造工艺不同,整体式桥壳可分为铸造式(图a)、钢板冲压焊接式(图b)和扩张成形式三种。铸造式桥壳的强度和刚度较大,但质量大,加:上面多,制造工艺复杂,主要用于中、重型货车上。钢板冲压焊接式和扩张成形式桥壳质量小,材料利用率高,制造成本低,适于大量生产,广泛应用于轿车和中、小型货车及部分重型货车上。 3)组合式桥壳 组合式桥壳(图3)是将主减速器壳与部分桥壳铸为一体,而后用无缝钢管分别压入壳体两端,两者间用塞焊或销钉固定。它的优点是从动齿轮轴承的支承刚度较好,主减速器的装配、调整比可分式桥壳方便,然而要求有较高的加工精度,常用于轿车、轻型货车中。 组合式桥壳 二.驱动桥壳强度计算 对于具有全浮式半轴的驱动桥,强度计算的载荷工况与半轴强度计算的:三种载荷工况相同。图4为驱动桥壳受力图,桥壳危险断面通常在钢板弹簧座内侧附近,桥儿端郎的轮毂轴承座根部也应列为危险断面进行强度验算。 1)牵引力或制动力最大时,桥壳钢板弹簧座处危险断面的弯曲应力δ和扭转切应力τ分别为 式中,Mv为地面对车轮垂直反力在危险断面引起的垂直平面内的弯矩,Mv=m’2G2b/2b为轮胎中心平面到板簧座之间的横向距离,如图4所示;为一侧车轮上的牵引力或制动力芦Fx2在水平面内引起的弯矩, =Fx2b;TT为牵引或制动时,上述危险断面所受转矩,TT=Fx2rr;Wv、Wh、、分别为危险断面垂直平面和水平面弯曲的抗弯截面系数及抗扭截面系数。

轻型货车驱动桥设计

目录 1 前言 (2) 1.1 本课题的来源、基本前提条件和技术要求 (2) 1.2 本课题要解决的主要问题和设计总体思路 (2) 1.3 预期的成果 (2) 2 国内外发展状况及现状的介绍 (4) 3 总体方案论证 (5) 4 具体设计说明 (8) 4.1 主减速器的设计 (8) 4.1.1 主减速器的结构型式 (8) 4.1.2 主减速器主动锥齿轮的支承型式及安装方法 (10) 4.1.3 主减速器从动锥齿轮的支承型式及安装方法 (11) 4.1.4 主减速器的基本参数的选择及计算 (12) 4.2 差速器的设计 (15) 4.2.1差速器的结构型式 (15) 4.2.2差速器的基本参数的选择及计算 (16) 4.3 半轴的设计 (17) 4.3.1半轴的结构型式 (17) 4.3.2半轴的设计与计算 (18) 4.4驱动桥壳结构选择 (21) 5 结论 (23) 参考文献 ............................................................................... 错误!未定义书签。

1 前言 本课题是进行轻型货车汽车后驱动桥的设计。设计出小型轻型货车汽车后驱动桥,包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件,协调设计车辆的全局。 1.1 本课题的来源、基本前提条件和技术要求 a.本课题的来源:轻型载货汽车在汽车生产中占有大的比重。驱动桥在整车中十分重要,设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展。 b.要完成本课题的基本前提条件是:在主要参数确定的情况下,设计选用驱动桥的各个部件,选出最佳的方案。 c.技术要求:设计出的驱动桥符合国家各项轻型货车的标准[1],运行稳定可靠,成本降低,适合本国路面的行驶状况和国情。 1.2 本课题要解决的主要问题和设计总体思路 a. 本课题解决的主要问题:设计出适合本课题的驱动桥。汽车传动系的总 任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能完全解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。首先是因为绝大多数的发动机在汽车上的纵向安置的,为使其转矩能传给左、右驱动车轮,必须由驱动桥的主减速器来改变转矩的传递方向,同时还得由驱动桥的差速器来解决左、右驱动车轮间的转矩分配问题和差速要求。其次,需将经过变速器、传动轴传来的动力,通过驱动桥的主减速器,进行进一步增大转矩、降低转速的变化。因此,要想使汽车驱动桥的设计合理,首先必须选好传动系的总传动比,并恰当地将它分配给变速器和驱动桥。 b. 本课题的设计总体思路:非断开式驱动桥的桥壳,相当于受力复杂的空心梁,它要求有足够的强度和刚度,同时还要尽量的减轻其重量。所选择的减速器比应能满足汽车在给定使用条件下具有最佳的动力性和燃料经济性。对载货汽车,由于它们有时会遇到坎坷不平的坏路面,要求它们的驱动桥有足够的离地间隙,以满足汽车在通过性方面的要求。驱动桥的噪声主要来自齿轮及其他传动机件。提高它们的加工精度、装配精度,增强齿轮的支承刚度,是降低驱动桥工作噪声的有效措施。驱动桥各零部件在保证其强度、刚度、可靠性及寿命的前提下应力求减小簧下质量,以减小不平路面对驱动桥的冲击载荷,从而改善汽车行驶的平顺性。 1.3 预期的成果 设计出小型轻型货车汽车的驱动桥,包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件,配合其他同组同学,协调设计车辆的全局。使设计出的产品使用方便,材料使用最少,经济性能最高。 a.提高汽车的技术水平,使其使用性能更好,更安全,更可靠,更经济,更

汽车驱动桥设计

车辆工程专业课程设计 学院机电工程学院班级 12级车辆工程 姓名黄扬显学号 20120665130 成绩指导老师卢隆辉 设计课题某型轻型货车驱动桥设计 2015 年11 月15 日

整车性能参数(已知) 驱动形式: 6×2后轮 轴距: 3800mm 轮距前/后: 1750/1586mm 整备质量 4310kg 额定载质量: 5000kg 空载时前轴分配轴荷45%,满载时前轴分配轴荷26% 前悬/后悬: 1270/1915mm 最高车速: 110km/h 最大爬坡度: 35% 长宽高: 6985 、2330、 2350 发动机型号: YC4E140—20 最大功率: 99.36kw/3000rmp 最大转矩: 380N·m/1200~1400mm 变速器传动比: 7.7 4.1 2.34 1.51 0.81 倒档传动比: 8.72 轮胎规格: 9.00—20 离地间隙: >280mm

1总体设计 (3) 1.1 非断开式驱动桥 (3) 1.2 断开式驱动桥 (4) 2 主减速器设计 (4) 2.1 主减速器结构方案分析 (4) 2.1.1 螺旋锥齿轮传动 (4) 2.2 主减速器主、从动锥齿轮的支承方案 (5) 2.2.1 主动锥齿轮的支承 (5) 2.2.2 从动锥齿轮的支承 (5) 2.3 主减速器锥齿轮设计 (5) 2.3.1 主减速比i0的确定 (6) 2.3.2 主减速器锥齿轮的主要参数选择 (7) 2.4 主减速器锥齿轮的材料 (8) 2.5 主减速器锥齿轮的强度计算 (9) 2.5.1 单位齿长圆周力 (9) 2.5.2 齿轮弯曲强度 (9) 2.5.3 轮齿接触强度 (10) 2.6 主减速器锥齿轮轴承的设计计算 (10) 2.6.1 锥齿轮齿面上的作用力 (10) 2.6.2 锥齿轮轴承的载荷 (11) 2.6.3 锥齿轮轴承型号的确定 (13) 3 差速器设计 (15) 3.1 差速器结构形式选择 (15) 3.2 普通锥齿轮式差速器齿轮设计 (15) 3.3 差速器齿轮的材料 (17) 3.4 普通锥齿轮式差速器齿轮强度计算 (18) 4 驱动桥壳设计 (19) 4.1 桥壳的结构型式 (19) 4.2 桥壳的受力分析及强度计算 (20) 致谢 (22) 参考文献 (23)

驱动桥桥壳设计

目录 摘要 Abstract 1 绪论 ....................................................................................................................... 2 桥壳设计 ............................................................................................................... 2.1桥壳的设计要求................................................................................................. 2.2桥壳的结构型式................................................................................................. 2.3桥壳的三维参数化设计..................................................................................... 2.4桥壳强度计算..................................................................................................... 2.4.1 桥壳的静弯曲应力计算 ................................................................................. 2.4.2 在不平路面冲击载荷作用下桥壳的强度计算 ............................................. 2.4.3 汽车以最大牵引力行驶时桥壳的强度计算 ................................................. 2.4.4 汽车紧急制动时桥壳的强度计算 ................................................................. 2.4.5 汽车受最大侧向力时桥壳的强度计算 ......................................................... 3 半轴的设计 ........................................................................................................... 3.1半轴形式............................................................................................................. 3.2三维建模............................................................................................................. 3.3实心半轴强度校核计算:................................................................................. 3.3.1 半轴材料的性能指标: (12) 3.3.2 断面B-B处的强度计算:............................................................................. 3.3.3 断面B-B处的强度计算(四档时) ................................................................ 3.3.4 断面C-C处强度计算..................................................................................... 3.4空心半轴强度校核............................................................................................. 3.4.1断面B-B处的强度校核 (14) 3.4.2 断面B-B处的强度计算(四档时) ................................................................ 3.4.3 断面C-C处的强度计算................................................................................. 结论 ........................................................................................................................... 参考文献 致谢 微型汽车后驱动桥半轴和桥壳设计

汽车驱动桥壳现代设计方法的实例分析

汽车驱动桥壳现代设计方法的实例分析 传统设计方法设计的桥壳最终应以台架试验为检验标准, 传统的汽车驱动桥壳设计方法是: 桥壳复杂的受力状况简化成三种典型的计算工况, 即当车轮承受最大的铅垂力、承受最大切向力以及承受最大侧向力时。只要在这三种载荷计算工况下桥壳的强度得到保证, 就认为该桥壳在汽车各种行驶条件下是可靠的。设计桥壳时将桥壳看成简支梁并校核某特定断面的最大应力值. 传统的汽车驱动桥壳设计方法受力分析 现代设计方法的思路是: 在计算机上根据经验建立汽车驱动桥壳的三维CAD 初始模型, 模拟其三种台架试验, 以满足试验标准为设计要求, 并对结构参数进行优化设计。 利用UG软件进行桥壳建模。设计的桥壳为整体式, 由钢板冲压焊接而成。对模型作了必要的简化, 建成三维驱动桥壳初始模型。利用ANSYS 软件对桥壳进行有限元的分析。首先在ANSYS 中通过输入接口读入三维桥壳初始模型。经分析和实践, 模型采用三维8节点实体单元.驱动桥壳垂直弯曲刚性试验模拟, 通过有限元的计算, 可得到桥壳各节点的位移量。 有限元分析力学模型 驱动桥壳垂直弯曲静强度试验模拟, 在有限元模型中, 驱动桥壳在满载工况下, 各点的位移及应力云图.为了尽量接近实际,对左端轮距位置的6 个节点进行X、Y、Z 方向自由度的约束, 右端轮距位置的6 个节点约束其Y、Z 方向的自由度。观察节点当量应力云图。

位移和应力云图 除约束点出现应力集中外, 应力较大处位于钢板弹簧座两侧的上下表面. 根据标准规定, 驱动桥壳垂直弯曲失效后备系数Kn= Pn/P, 其中Pn为驱动桥壳垂直弯曲失效载荷, P 为满载轴荷。在计算机上驱动桥壳垂直弯曲失效载荷的确定, 可用桥壳应力值达到材料的强度极限对应的载荷代替。分别用不同的面载荷加载, 然后由有限元进行计算. 判断该桥壳垂直弯曲失效后备系数是否足够。 驱动桥壳垂直弯曲疲劳试验模拟, 根据以上的有限元应力分析结果, 选取板簧座附近应力最大的节点进行疲劳寿命计算。输入材料的应力寿命曲线( S- NCurve)由于零件尺寸、几何形状变化、加工质量及强化因素等的影响, 使得零件的疲劳极限要小于材料试件的疲劳极限。故先计算弯曲疲劳极限的应力集中系数SCF。输入相关的数值, 模拟计算结果。看结果是否低于行业标准中桥壳疲劳寿命不得低于50 万次的要求。 参数的优化设计,.结构参数的优化设计是驱动桥壳现代设计方法的组成部分。当桥壳台架试验的模拟计算全部满足要求时, 可根据优化目标对可变设计参数进行优化, 使驱动桥壳的设计更理想更经济。一般情况下,可以重量或体积最小为优化目标。随着轻量化材料技术,包括生产工艺、装配、连接、材料性能等的不断发展和成熟, 针对不同轻质材料的不同性能,进行多材料混合结构设计,即同一部件的组成零件可由不同材料制造, 以实现所用的材料与零件功能达成最佳组合, 已经成为未来汽车设计发展的方向。

驱动桥壳分析

新产品 最新动态 技术文章 企业目录 资料下载 视频/样本 反馈/论坛 | 基础知识 | 外刊文摘 | 业内专家 | 文章点评 投稿 基于ANSYS 的汽车驱动桥壳的有限元分析 作者:武汉理工大学 杨波 罗金桥 析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS 是当前国际上流行的有 软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械SYS 软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。 桥壳强度分析计算 视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反胎中心),桥壳承受此力与车轮重力之差,受力如图1所示。

相关文档