文档库 最新最全的文档下载
当前位置:文档库 › 碳化硅_氮化硅材料力学性能的研究

碳化硅_氮化硅材料力学性能的研究

碳化硅_氮化硅材料力学性能的研究
碳化硅_氮化硅材料力学性能的研究

氮化硅结合碳化硅材料的生产与应用_张林

氮化硅结合碳化硅材料的生产与应用 ◆ 张 林 孟宪省 山东工业陶瓷研究设计院 淄博255031 ◆ 赵光华 朱喜仲 水利部丹江口水利枢纽管理局碳化硅总厂 摘 要 阐述了氮化硅结合碳化硅窑具材料的生产技术、生产工艺流程及使用情况。指出作为现代窑具的替代产品,它具有较好的市场前景。 关键词 氮化硅结合碳化硅,工艺,生产,应用 1 生产工艺与性能 1.1 混料 压制料是按配方称量SiC砂和Si粉,倒入高效混料机,并均匀加入事先称量好且加水稀释的添加剂和临时结合剂。搅拌15~20min,并过筛,放入料仓困料24h以上。 挤出料是根据配方,用上述相似的方法进行混料和困料。并应额外加入可塑剂。 注浆料是先将Si粉放在水池中浸泡48h后,再由泥浆泵抽送到压滤机经压滤处理。根据配方称量SiC砂和Si饼,倒入高速搅拌罐并加入一定量的水、临时结合剂和悬浮剂搅拌2h。 1.2 成型 压制成型是将困好的料准确称量后,均匀布于模具中,振动加压成型,再经真空吸盘转移到储坯车上。 挤出成型是将混合料放入真空练泥机进行真空处理,使泥料均匀混合。泥料用塑料薄膜覆盖严实,困料24h,再经真空挤出成型机挤出。 浇注成型主要是满足异型件要求,由于SiC 砂和Si粉为瘠性料,自身密度大,导致泥浆的悬浮性差,易产生沉淀,使泥浆内颗粒分布不均匀。因此,配方中颗粒不能太粗且比例要适当,同时加入悬浮剂和解胶剂(一般采用明胶),并采用压力注浆。然后把经24h搅拌过的泥浆从储浆罐抽入压力注浆罐中,进行真空处理,注浆罐带有慢速搅拌机,加压后泥浆通过管道输送至浇注台的石膏模内成型;保持一定的压力和时间,待吃浆厚度达到要求后,空浆;坯体巩固后,脱模。 1.3 干燥 成型后粗修和整形的合格坯体,入储坯车至干燥室内。干燥室的热风来自热风炉(或窑炉余热利用),热风温度以100~120℃为好,有条件也可使用电热干燥。应严格控制升温速度,以免坯体出现变形或开裂。坯体干燥3天。达到干燥残余水分(一般<0.5%)后推出冷却,经精修坯体和生坯检查,合格的进入氮化炉烧成。 1.4 烧成 合格干燥品装入窑车进氮化室,对氮化反应空间密封后推入梭式窑,接上充氮管和抽真空管,升温至700~1450℃进行抽真空和氮化烧成。中高温氮化阶段(指1100℃以上),严格控制升温制度及氮气质量,氮气纯度应达到99.99%以上。在1180℃及1280℃两个反应高峰期应增加保温时间,以免反应过速出现“流硅”。 1.5 制品的性能 氮化硅结合碳化硅制品抗折强度随温度升高而提高,至1400℃时,强度开始下降,但到1500℃时仍保持常温抗折强度指标。氮化硅结合碳化硅材质的高温抗折强度是普通耐火材料的4~8倍;热膨胀系数是高铝耐火材料的一半;导热系数是一般耐火材料的7~8倍[1]。 生产应用 NAIHU O CAILIAO 1999,33(3)156~157,175  收稿日期:1998-09-07编辑:徐慧娟156  耐火材料1999/3

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

陶瓷的力学性能

陶瓷的力学性能 陶瓷材料的化学健大都为离子键和共价健,健合牢固并有明显的方向性,同一般的金属相比,其晶体结构复杂而表面能小。因此,它的强度、硬度、弹性模量、耐磨性、耐蚀性和耐热性比金属优越,但塑性、韧性、可加工性、抗热震性及使用可靠性却不如金属。因此搞清陶瓷的性能特点及其控制因素,不论是对研究开发还是使用设计都具有十分重要的意义。本节主要讨论弹性、硬度、强度、韧性及其组织结构因素、环境因素的影响。 一.弹性性能 1.弹性和弹性模量 陶瓷材料为脆性材料,在室温下承载时几乎不能产生塑性变形,而在弹性变形范围内就产生断裂破坏。因此,其弹性性质就显得尤为重要。与其他固体材料一样。陶瓷的弹性变形可用虎克定律来描述。 陶瓷的弹性变形实际上是在外力的作用下原子间里由平衡位置产生了很小位移的结果。弹性模量反映的是原子间距的微小变化所需外力的大小。表11.3给出一些陶瓷在室温下的弹性模量。 2.温度对弹性模量的影响 由于原子间距和结合力随温度的变化而变化,所以弹性核量对温度变化很敏感、当温度升高时。原子间距增大,由成j变为d,(见图11.2)而该处曲线的斜率变缓,即弹性模量降低。因此,固体的弹性模量一般均随温度的升高而降低。图11.3给出一些陶瓷的弹性模量随温度的变化情况。一般来说,热膨胀系数小的物质,往往具有较高的弹性模量。

3.弹性模量与熔点的关系 物质熔点的高低反映其原子间结合力的大小。一般来说,弹性模量与熔点成正比例关系。不同种类的陶瓷材料样性模量之间大体上有如下关系氧化物<氯化物<硼化挪<碳化物。 泊松比也是描述陶瓷材料弹性变形的重要参数。表11.4给出一些陶瓷材料和金属的泊松比。可以看出除BeO与MgO外大多数陶瓷材料的泊松比都小于金属材制的泊松比。

陶瓷材料的力学性能检测方法

陶瓷材料力学性能的检测方法 为了有效而合理的利用材料,必须对材料的性能充分的了解。材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。 1.弯曲强度 弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。 图1-1 三点弯曲和四点弯曲示意图 由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对中性轴的惯性矩为I z ,那么距中性轴距离为y 点的应力大小为: z I My = σ 在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为: =??? ? ???= z I y a P max max 21σ???? ?圆形截面 16矩形截面 332D Pa bh Pa π

其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。 而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为: =??? ? ???= z I y a P l max max 4σ???? ?圆形截面 8矩形截面 2332D Pl bh Pl π 式中l 为两个支点之间的距离(也称为试样的跨度)。 上述的应力计算公式仅适用于线弹性变形阶段。脆性材料一般塑性变形非常小,同弹性变形比较可以忽略不计,因此在断裂前都遵循上述公式。断裂载荷所对应的应力即为试样的弯曲强度。 需要注意的是,一般我们要求试样的长度和直径比约为10,并且在支点的外伸部分留足够的长度,否则可能影响测试精度。另外,弯曲试样下表面的光洁度对结果可能也会产生显著的影响。粗糙表面可能成为应力集中源而产生早期断裂。所以一般要求表面要进行磨抛处理。当采用矩形试样时,也必须注意试样的放置方向,避免使计算中b 、h 换位得到错误的结果。 2.断裂韧性 应力集中是导致材料脆性断裂的主要原因之一,而反映材料抵抗应力集中而发生断裂的指标是断裂韧性,用应力强度因子(K )表示。尖端呈张开型(I 型)的裂纹最危险,其应力强度因子用K I 表示,恰好使材料产生脆性断裂的K I 称为临界应力强度因子,用K IC 表示。金属材料的K IC 一般用带边裂纹的三点弯曲实验测定,但在陶瓷材料中由于试样中预制裂纹比较困难,因此人们通常用维氏硬度法来测量陶瓷材料的断裂韧性。 陶瓷等脆性材料在断裂前几乎不产生塑性变形,因此当外界的压力达到断裂应力时,就会产生裂纹。以维氏硬度压头压入这些材料时,在足够大的外力下,压痕的对角线的方向上就会产生裂纹,如图2-1所示。裂纹的扩展长度与材料的断裂韧性K IC 存在一定的关系,因此可以通过测量裂纹的长度来测定K IC 。其突出的优点在于快速、简单、可使用非常小的试样。如果以P C 作为可使压痕产生雷文的临界负荷,那么图中显示了不同负荷下的裂纹情况。 由于硬度法突出的优点,人们对它进行了大量的理论和实验研究。推导出了各种半经

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

材料力学性能

《材料力学性能[焊]》课程简介 课程编号:02044014 课程名称:材料力学性能[焊] / The mechanical property of materials 学分: 2.5 学时:40(实验: 8 上机: ) 适用专业:焊接技术与工程 建议修读学期:5 开课单位:材料科学与工程学院,材料加工工程系 课程负责人:陈汪林 先修课程:工程力学、材料科学基础、材料热处理 考核方式与成绩评定标准:闭卷考试,期末考试成绩70%,平时(包括实验)成绩30%。 教材与主要参考书目: 主要教材: 1.工程材料力学性能. 束德林. 机械工业出版社, 2007 参考书目: 1.材料力学性能. 郑修麟. 西北工业大学出版社, 1991 2.金属力学性能. 黄明志. 西安交通大学出版社, 1986 3. 材料力学性能. 刘春廷. 化学工业出版社, 2009 内容概述: 《材料力学性能》是焊接技术与工程专业学生必修的专业学位课程。通过学习本课程,使学生掌握金属变形和断裂的规律,掌握各种力学性能指标的本质、意义、相互关系及变化规律,以及测试技术。了解提高力学性能的方向和途径,并为时效分析提供一定基础。强调课堂讲授与实践教学紧密结合,将最新科研成果用于课程教学和人才培养的各个环节,最终使学生能够独立地进行材料的分析和研究工作。 The mechanical property of materials is a core and basic course for the students of specialty of welding. By the study on this course, the studies should be master the deformation and fracture mechanisms of metals, and understand the essence and significance of each mechanical property of metal materials, as well as their correlations, the laws of variation and corresponding test methods of each mechanical property of materials. In addition, the studies should understand how to improve the mechanical properties of materials, and provide relevant basis for the failure analysis of materials. This course emphasizes the close combination of classroom teaching and practice teaching, and the latest research results will be applied in the course of teaching and personnel training in all aspects. Finally, this course will make the students acquired the capability on conducting research by adopting reasonable technologies by oneself.

缓冲材料力学性能的测试方法研究

缓冲材料力学性能的测试方法研究 摘要 缓冲材料一直伴随着人类社会的进步而在不断地发展着,从以前的碎纸屑、木屑、泡沫塑料发展到现在的很多绿色的缓冲包装材料,比如有蜂窝纸板、玉米秸秆缓冲材料、瓦楞纸板、纸浆模塑制品、珍珠棉以及发泡聚乙烯缓冲材料等,这些新型环保缓冲材料的出现,大大促进了包装工业的发展。 为了能在日常生活中更好的利用缓冲包装材料,所以对缓冲材料力学性能的测试是非常必要的。本文介绍了缓冲材料的主要力学性能包括:压缩性能、拉伸性能、弯曲性能、剪切性能、缓冲性能等,并对各力学性能的测试方法进行了对比分析,尤其是对正交试验、曲线拟合法、计算机仿真设计以及数字相关测量方法等等进行了详细地介绍,为现代缓冲包装材料的开发和研究提出了新的方向。 关键词:缓冲材料,力学性能,测试方法研究

BUFFER MATERIAL MECHANICS PERFORMANCE TESTING METHOD ABSTRACT Buffer material has been accompanied by the progress of human society and developing, and from the previous paper, broken wood, foam development of many green until now, for instance a cushion packaging material of honeycomb paperboard, corn straw cushioning material, corrugated, paper pulp molding products, pearl cotton and foaming polyethylene buffer material, these new environmental buffer material greatly promoted the development of packaging industry. In daily life, in order to better use and so on cushion packaging material buffer material mechanics performance test is very necessary. The paper introduces the main buffer material mechanics properties including compression performance, tensile properties, bending, cutting performance and buffering properties, and the performance of the mechanical properties test methods were analyzed, especially the orthogonal experiment, curve-fitting method of computer simulation, the design and digital correlation method etc. Carried on the detailed introduction to modern cushion packaging material, for the development and research of new direction. KEYWORDS: cushioning materials, mechanical properties, test methods

材料的力学性能.

第五章材料的力学性能 §5.1 概述 前一章讨论变形体静力学时,研究、分析与解决问题主要是利用了力的平衡条件、变形的几何协调条件和力与变形间的物理关系。物体系统处于平衡状态,则系统中任一物体均应处于平衡状态,物体中的任一部分亦应处于平衡状态。力的平衡问题,与作用在所选取研究对象上的力系有关;在弹性小变形条件下,变形对于力系中各力作用位置的影响可以不计,故力的平衡与材料无关;用第二章所讨论的平衡方程描述。变形的几何协调条件,是在材料均匀连续的假设及结构不发生破坏的前题下,结构或构件变形后所应当满足的几何关系,主要是几何分析,也不涉及材料的性能。 因此,研究变形体静力学问题,主要是要研究力与变形间的物理关系。力与变形间的物理关系显然是与材料有关的。不同的材料,在不同的载荷、环境作用下,表现出不同的力学性能(或称材料的力学行为)。前一章中,我们以最简单的线性弹性应力-应变关系—虎克定律,来描述力与变形间的物理关系,讨论了变形体力学问题的基本分析方法。这一章将对材料的力学性能进行进一步的研究。 材料的力学性能,对于工程结构和构件的设计十分重要。例如,所设计的构件必须足够“强”,而不至于在可能出现的载荷下发生破坏;还必须保持构件足够“刚硬”,不至于因变形过大而影响其正常工作。因此需要了解材料在力的作用下变形的情况,了解什么条件下会发生破坏。由力与变形直至破坏的行为研究中确定若干指标来控制设计,以保证结构和构件的安全和正常工作。 材料的力学性能是由试验确定的。试验条件(温度、湿度、环境)、试件几何(形状和尺寸)、试验装置(试验机、夹具、测量装置等)、加载方式(拉、压、扭转、弯曲;加载速率、加载持续时间、重复加载等)、试验结果的分析和描述等,都应按照规定的标准规范进行,以保证试验结果的正确性、通用性和可比性。

陶瓷力学性能

陶瓷的力学性能 newmaker 化学健大都为离子键和共价健,健合牢固并有明显的方向性,同一般的金属相比,其 杂而表面能小。因此,它的强度、硬度、弹性模量、耐磨性、耐蚀性和耐热性比金属优越,但塑性、韧性、可加工性、抗热震性及使。因此搞清陶瓷的性能特点及其控制因素,不论是对研究开发还是使用设计都具有十分重要的意义。本节主要讨论弹性、硬度、强度因素、环境因素的影响。 能 性模量 脆性材料,在室温下承载时几乎不能产生塑性变形,而在弹性变形范围内就产生断裂破坏。因此,其弹性性质就显得尤为重要。与其瓷的弹性变形可用虎克定律来描述。 变形实际上是在外力的作用下原子间里由平衡位置产生了很小位移的结果。弹性模量反映的是原子间距的微小变化所需外力的大小。在室温下的弹性模量。 性模量的影响 距和结合力随温度的变化而变化,所以弹性核量对温度变化很敏感、当温度升高时。原子间距增大,由成j变为d,(见图11.2)而该处弹性模量降低。因此,固体的弹性模量一般均随温度的升高而降低。图11.3给出一些陶瓷的弹性模量随温度的变化情况。一般来说,往往具有较高的弹性模量。

与熔点的关系 高低反映其原子间结合力的大小。一般来说,弹性模量与熔点成正比例关系。不同种类的陶瓷材料样性模量之间大体上有如下关系氧

挪<碳化物。 描述陶瓷材料弹性变形的重要参数。表11.4给出一些陶瓷材料和金属的泊松比。可以看出除BeO与MgO外大多数陶瓷材料的泊松泊松比。 与材料致密度的关系 致密度对其弹性模量影响很大。图11.5给出AL2O3陶瓷的弹性模量随气孔率的变化及某些理论计算值的比较。Fros指出弹性模量与关系 P) 。 气孔率的增加,陶瓷的弹性模量量急剧下降。

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

陶瓷材料的分类及性能

陶瓷材料的力学性能 高分子091 项淼学号17 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料 之间的主要区别在于化学键不同。 金属:金属键 高分子:共价键(主价键)+范德瓦尔键(次价键) 陶瓷:离子键和共价键。 普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能: 耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 ※玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 ※陶瓷—普通陶瓷--日用,建筑卫生,电器(绝缘),化工,多孔…… 特种陶瓷--电容器,压电,磁性,电光,高温…… 金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工…… ※玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷… 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合) 普通陶瓷(粘土,石英,长石等天然材料) 特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物) (2)坯料的成形(可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢207000MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。

材料力学性能 (1)

工程材料力学性能复习重点 选择:20 填空:20 名词解释:10 简答计算:50 一.选择题(10道从下面抽,10道英语出题) 1.材料力学性能研究的问题不涉及(物理问题)。 2.工程材料在使用过程中(弹性变形)是不可避免的。 3.工程构件生产过程(提高)塑性,(降低)强度。 4.工程构件使用过程(降低)塑性,(提高)强度。 5.断裂力学解决(含缺陷材料)抗断裂方面的问题。 6.拉伸试样直径一定,标距越长则测出的抗拉强度值(越低)。 7.拉伸试样直径一定,标距越长则测出的延伸率(越低) 8.拉伸试样直径一定,标距越长则测出的断面收缩率(不变)。 9.拉伸试样的标距长度I 0应满足关系式(I 0=5.650A 或I 0=10d 0)。 10.均匀变形阶段,金属的伸长率与截面收缩率通常满足关系式(δ=ψ/(1-ψ))。 11.长材料甲δ10=18%,短材料乙δ5=18%,则两种材料的塑性(甲>乙)。 12.表征脆性材料的力学性能的参量是(E )、(σb )。 13.在设计时用来确定构件截面大小的机械性能指标(σb ,σ0.2) 14.10mm 直径淬火钢球,加压3000kg ,保持30s ,测得布氏硬度为150的正确表达方式为(150HBS10/3000/30)。 15.(韧窝断口)是非脆性断裂。 16.裂纹体变形的最危险形式是(张开型)。 17.表示的是(持久强度)。 18.晶粒度越小,耐热性(越差)。 19.真空应力应变曲线在拉伸时位于工程应力应变曲线的(左上方)。 20.若材料的断面收缩率小于延伸率,则属于(低塑性)材料 21.材料的弹性常数是(E )、(G )、(ν)。 22.影响弹性模量最基本的原因是(点阵间距)。 23.加载速率不影响材料的(弹性)。 24.机床底座用铸铁制造的主要原因是价格(低),内耗(高),模量(大)。 25.多晶体金属塑性变形的特点是(不同时性,不均匀性,相互协调性)。 26.细晶强化不适用于(高温) 27.位错增殖理论可用于解释(屈服现象)和(形变强化)。 28.应力状态软性系数最大的是(压)。 29.工程测硬度最常用(压入法)。 30.同种材料的(布氏硬度)和(维氏硬度)可以相互参比。 26.与抗拉强度之间存在相互关系的是(布氏硬度)。 27.材料失效最危险的形式是(断裂)。 28.解理断裂是(穿晶断裂)。 29.(韧窝断口)是韧性断裂。<同13> 30.双原子模型计算出的材料理论断裂强度比实际值高出一个数量级,是因为(实际材料有缺陷)。 31.韧性材料在(增大加载速度)的条件下可能变成脆性材料。 32.在实验中不同材料的(冲击)性能指标可比性差。 a 200σ600103MP

工程材料力学性能-第 版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

聚四氟乙烯材料力学性能参数表

1.聚四氟乙烯 聚四氟乙烯是用于密封的氟塑料之一。聚四氟乙烯以碳原子为骨架,氟原子对称而均匀地分布在它的周围,构成严密的屏障,使它具有非常宝贵的综合物理机械性能(表14—9)。聚四氟乙烯对强酸、强碱、强氧化剂有很高的抗蚀性,即使温度较高,也不会发生作用,其耐腐蚀性能甚至超过玻璃、陶瓷、不锈钢以至金、铂,所以,素有“塑料王”之称。除某些芳烃化合物能使聚四氟乙烯有轻微的溶胀外,对酮类、醇类等有机溶剂均有耐蚀性。只有熔融态的碱金属及元素氟等在高温下才能对它起作用。 聚四氟乙烯的介电性能优异,绝缘强度及抗电弧性能也很突出,介质损耗角正切值很低,但抗电晕性能不好。聚四氟乙烯不吸水、不受氧气、紫外线作用、耐候性好,在户外暴露3年,抗拉强度几乎保持不变,仅伸长率有所下降。聚四氟乙烯薄膜与涂层由于有细孔,故能透过水和气体。 表14-9聚四氟乙烯性能

聚四氟乙烯在200℃以上,开始极微量的裂解,即使升温到结晶体熔点327℃,仍裂解很少,每小时失重为万分之二。但加热至400℃以上热裂解速度逐渐加快,产生有毒气体,因此,聚四氟乙烯烧结温度一般控制在375~380℃。 聚四氟乙烯分子间的范德华引力小,容易产生键间滑动,故聚四氟乙烯具有很低的摩擦系数及不粘性,摩擦系数在已知固体材料中是最低的。 聚四氟乙烯的导热系数小,该性能对其成型工艺及应用影响较大。其不但导热性差,且线膨胀系数较大,加入填充剂可适当降低线膨胀系数。在负荷下会发生蠕变现象,亦称作“冷流”,加入填充剂可减轻蠕变程度。 聚四氟乙烯可以添加不同的填充剂,选择的填充剂应基本满足下述要求:能耐380℃高温即四氟制品的烧结温度;与接触的介质不发生反应;与四氟树脂有良好的混入性;能改善四氟制品的耐磨性、冷流性、导热性及线膨胀系数等。常用 的填充剂有无碱无蜡玻璃纤维、石墨、碳纤维、MoS 2、A1 2 3 、CaF 2 、焦炭粉及各 种金属粉。如填充玻璃纤维或石墨,可提高四氟制品的耐磨、耐冷流性,填充MoS 2 可提高其润滑性,填充青铜、钼、镍、铝、银、钨、铁等,可改善导热性,填充聚酰亚胺或聚苯酯,可提高耐磨性,填充聚苯硫醚后能提高抗蠕变能力,保证尺寸稳定等。在相同的温度条件下,填充后的聚四氟乙烯其抗压强度(表 14-10)、压缩弹性模量(表14-11)、抗弯强度(表14-12)、硬度(表14-13)、摩擦系数和耐磨耗性(表14-14)、热导率(表14-15)均比纯四氟乙烯高。但抗拉强度和伸长率则有所下降,线膨胀系数(表14-15)也减小。 表14-10不同温度下加填充剂前后聚四氟乙烯的抗压强度① (Pa) ①5%变形。 表14-ll 不同温度下加填充剂前后聚四氟乙烯的压缩弹性模量 (×103 Pa)

6005铝合金材料力学性能研究

6005铝合金材料力学性能研究 采用万能材料试验机,对典型车用的6005铝合金材料进行准静态拉伸试验。输出载荷-变形量关系,获得应力-应变曲线,进而分析材料的弹性模量、极限强度、极限应变、屈服强度和延展率等力学性能。 标签:6005铝材;准静态拉伸;应力-应变曲线;力学性能 1 概述 车辆用6005铝合金属于Al-Mg-Si系中等强度铝合金。由于其优良的挤压成形性、耐腐蚀性和良好的焊接性,在国外被广泛用于高速列车、地铁列车、双层列车和客货汽车车体所需的薄壁、中空的大型铝合金壁板型材以及其它工业用结构型材。在我国,铝合金大型材已研制成功并投入生產,随着我国交通运输业的发展,6005铝合金在高速、轻型铝合金列车和地铁列车以及轻型客货汽车上的应用必将越来越多[1-3]。 6005具有较高的工艺性能。万普华等人对6005铝合金试样进行了水淬和水淬并深冷处理,来观察金相组织、抗拉强度等对6005铝合金力学性能的影响[4]。张健等人利用热塑性试验研究了6005A铝合金的热裂纹敏感性[5],张大新等人将6005铝合金铸态试样和挤压制品试样在不同温度固溶加热后淬火处理,制备金相组织,用混合酸溶液侵蚀后在金相显微镜下观察金相组织[6]。 文章主要就6005铝合金材料的力学性能性能通过万能材料试验机开展了系统的实验研究。测定试件在准静态拉伸时,材料的应力应变曲线;提取加载曲线中的屈服点、强度极限;同时,测量实验前后试件实验段(即试件的标距段)的长度变化,計算断裂伸长率和断面收缩率。 2 准静态拉伸试验 2.1 试件及仪器 运用Instron 5969标准电子万能拉伸试验机对6005铝材进行了准静态拉伸试验。试件参照GB/T228.1-2010《金属材料拉伸试验第一部分:室温试验方法》[7]制作。板状试件的尺寸示意图如图1所示。本试验采用比例试件,形状为板状,其厚度为4mm,平行长度为55mm,总长度128 mm。 2.2 试验结果 将试验试件在室温(10~35℃)环境下,试验试件及试验用夹头安装在试验机上,试件轴线应与力的作用线重合,将引伸计连接在试件上。试验机匀速进行拉伸,加载速率为10mm/min,测试试件在拉伸过程中的载荷-变形量的关系。针对横向切取和纵向切取材料,分别进行五次试验。试验过程如图2所示。

金属材料机械性能的指标及意义(优.选)

金属材料机械性能的指标及意义 材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等。 (1)强度强度是指金属材料在外力作用下对变形或断裂的抗力。强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2(国外用Re表示)和抗拉强度σb(国外用Rm表示),高温下工作时,还要考虑蠕变极限σn和持久强度σD。 (2)塑性塑性是指金属材料在断裂前发生塑性变形的能力。塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度。 (3)韧性韧性是指金属材料抵抗冲击负荷的能力。韧性常用冲击功Ak和冲击韧性值αk表示。Αk值或αk 值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化。而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性。 表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力。 (4)硬度硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 在断裂力学基础上建立起来的材料抵抗裂纹扩展断裂的韧性性能称为断裂韧性。(Kic,Gic) 常用的35CrMo在850℃油淬,550℃回火后,机械性能如下: σb≥980MPa;σs≥835 MPa;δ5≥12%;ψ≥45%;AK≥63J; 而高级优质的35CrMoA的性能应该更加优良稳定。 最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改 1 / 1word.

陶瓷材料的力学性能

第九章陶瓷材料的力学性能 §9-1 陶瓷材料 概况 陶瓷、金属、高分子材料并列为当代三大固体材料 之间的主要区别在于化学键不同。 金属:金属键 高分子:共价键(主价键)+范德瓦尔键(次价键) 陶瓷:离子键和共价键。 普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能: 耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) §9-2 陶瓷材料的力学性能 强度(高温、低温、室温)韧性、硬度、断裂韧度、疲劳等。 一、陶瓷材料的弹性变形、塑性变形与断裂(图9-23) (1)弹性 A)弹性模量大 是金属材料的2倍以上。 ∵共价键结构有较高的抗晶格畸变、阻碍位错运动的阻力。 晶体结构复杂,滑移系很少,位错运动困难。 B)弹性模量呈方向性;压缩模量高于拉伸弹性模量 结构不均匀性;缺陷 C)气孔率↑,弹性模量↓ (2)塑性变形 a)室温下,绝大多数陶瓷材料塑性变形极小。 b)1000℃以上,大多数陶瓷材料可发生塑性变形(主滑移系运动) c)陶瓷的超塑性 超细等轴晶,第二相弥散分布,晶粒间存在无定形相。 1250℃,3.5×10-2 S-1应变速率ε=400%。 利用陶瓷的超塑性,可以对陶瓷进行超塑加工(包括扩散焊接) (3)断裂

材料力学性能课后作业

材料力学性能课后作业 主编时海芳任鑫副主编胡全文高志玉北京大学出版社 第一章 1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 ②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)σp(规定非比例伸长应力)、σe(弹性极限)、σs(屈服强度)、σ0.2(屈服强度);(3)σb(抗拉强度);(4)n(加工硬化指数);(5)δ(断后伸长率)、ψ(断面收缩率) 4.常用的标准试样有5倍和10倍,其延伸率分别用δ5和δ10表示,说明为什么δ5>δ10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。 5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振材料,所以常用它做机床和动力机器的底座、支架,以达到机器稳定运转的目的。刚性好不容易变形加工工艺朱造型好易成型抗压性好耐磨损好成本低 7.什么是包申格效应?如何解释?它有什么实际意义?答:(1)金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。(2)理论解释:首先,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,背应力反作用于位错源,当背应力足够大时,可使位错源停止开动。预变形时位错运动的方向和背应力方向相反,而当反向加载时位错运动方向和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。(3)实际意义:在工程应用上,首先,材料加工成型工艺需要考虑包申格效应。例如,大型精油输气管道管线的UOE制造工艺:U阶段是将原始板材冲压弯曲成U形,O阶段是将U形板材径向压缩成O形,再进行周边焊接,最后将管子内径进行扩展,达到给定大小,即E阶段。按UOE工艺制造的管子,希望材料具有非常小的或者几乎没有包申格效应,以免管子成型后强度的损失。其次,包申格效应大的材料,内应力大。例如,铁素体+马氏体的双相钢对氢脆就比较敏感,而普通低碳钢或低合金高强度钢对氢脆不敏感,这是因为双相钢中铁素体周围有高密度位错和内应力,氢原子与长程内应力

相关文档