文档库 最新最全的文档下载
当前位置:文档库 › 第5课时—— 余弦定理(2)(配套作业)

第5课时—— 余弦定理(2)(配套作业)

第5课时—— 余弦定理(2)(配套作业)

第5课时 余弦定理(2)

分层训练

1.在△ABC 中,若3a =2b sin A ,则B 为 ( ) A.

3π B. 6π C. 3π或32π D. 6

π或65π

2.△ABC 中,∠A 、∠B 的对边分别为a 、b ,

5,4a b ==,且∠A=60°,那么满足条件的

△ABC ( )

A .有一个解

B .有两个解

C .无解

D .不能确定 3.△ABC 的内角A 满足

,0sin tan ,0cos sin <->+A A A A 且则A 的

取值范围是( )

A .(0,4π)

B .(

4π,2π

) C .(2π,π4

3)

D .(34

π,π)

4.关于x 的方程22cos cos cos 02

C

x x A B -??-=有一个根为1,则△ABC 一定是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等腰三角形

5.在ABC ?中,

如果

4sin 2cos 1,2sin 4cos A B B A +=+=则C ∠的大小为( )

.A 030 .B 0150 .C 0

30或0

150 .D 60或0

120

6.已知

AB

P AC BC ACB ABC 是中,4,3,90,==?=∠?的动点,则点P 到BC AC ,距离的乘积的最大值_____________。 7.在ABC ?中,若

C B A C B sin sin sin sin sin 222+=+,且

4=?AB AC ,则ABC ?的面积等于

___________________.

8.在?ABC 中,有下列关系:

①B A sin sin > ②B A cos cos < ③

B A 2sin 2sin > ④B A 2cos 2cos < 其中可作为B A >充要条件的是___________________(把正确的序号都填上)

拓展延伸

9.自动卸货汽车的车箱采用液压机构,设计时

需要计算油泵顶杆BC的长度(如图).已知车箱的最大仰角为60°,油泵顶点B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角为6°20′,AC长为1.40m,试计算BC的长(精确到0.01m).

10.如图,我炮兵阵地位于A处,两观察所分别设于C,D,已知△ACD为边长等于a的正三角形.当目标出现于B时,测得∠CDB=45°,∠BCD=75°,试求炮击目标的距离AB.

【师生互动】

2018年必修五《正弦定理》教案

§1.1.2 正弦定理 一、知识与技能 1会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题 2通过三角函数、正弦定理等多处知识间联系来体现事物之间的普遍联系与辩证统一. 3.在问题解决中,培养学生的自主学习和自主探索能力. 二、过程与方法 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 三、教学重点与难点: 重点:正弦定理的探索及其基本应用。 难点:已知两边和其中一边的对角解三角形时判断解的个数。 【授课类型】:习题拔高课 四、教学过程 一、知识回顾 1正弦定理的内容是什么? 二、例题讲解 例 1试推导在三角形中 A a s i n =B b sin =C c sin =2R 其中R 是外接圆半径. 证明 如图所示,∠A =∠D ∴R CD D a A a 2sin sin === 同理B b sin R 2=,C c sin R 2= ∴ A a sin = B b sin =C c sin =2R a b c O B C A D

例2 在C A a c B b ABC ,,1,60,30和求中,===? 解:∵213 60sin 1sin sin ,sin sin 0=?==∴=b B c C C c B b ,C B C B c b ,,60,0<∴=> 为锐角, 0090,30==∴B C ∴222=+=c b a 例3 C B b a A c ABC ,,2,45,60和求中,===? 解2 3245sin 6sin sin ,sin sin 0=?==∴=a A c C C c A a 0012060,sin 或=∴<

余弦定理教案完美版

《余弦定理》教案 (一)教学目标 1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。 2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题, 3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。 (二)教学重、难点 重点:余弦定理的发现和证明过程及其基本应用; 难点:勾股定理在余弦定理的发现和证明过程中的作用。 (三)学法与教学用具 学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角 教学用具:直尺、投影仪、计算器 (四)教学设想 [创设情景] C 如图1.1-4,在?ABC 中,设BC=a,AC=b,AB=c, 已知a,b 和∠C ,求边c b a (图1.1-4) [探索研究] 联系已经学过的知识和方法,可用什么途径来解决这个问题 用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图1.1-5,设CB a =u u r r ,CA b =u u r r ,AB c =u u r r ,那么c a b =-r r r ,则 b r c r ()()222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-?r r r r r r r r r r r r r r r r r C a r B 从而 2222cos c a b ab C =+- (图1.1-5) 同理可证 2222cos a b c bc A =+- 2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 2222cos a b c bc A =+-

必修五正弦定理和余弦定理

必修五第一讲 正弦定理 知识梳理 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C . 2.解三角形:一般地,把三角形的三个角A 、B 、C 和它们的对边a 、b 、c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形. 题型分析 [例1] 在△ABC 中,已知a [解] A =180°-(B +C )=180°-(60°+75°)=45°.由 b sin B =a sin A 得,b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A = c sin C 得, c =a sin C sin A =8×sin 75°sin 45°=8×2+642 2=4(3+1).∴A =45°,b =46,c =4(3+1). [变式训练]在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. 解:∵A =45°,C =30°,∴B =180°-(A +C )=105°.由 a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=10 2. 由 b sin B = c sin C 得b =c sin B sin C =10×sin 105°sin 30°=20sin 75°,∵sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45° =2+64,∴b =20×2+64 =52+5 6. [例2] 在△ABC [解] ∵a sin A =c sin C ,∴sin C =c sin A a =6×sin 45°2=32,∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b = c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°. [变式训练]在△ABC 中,若c =6,C =π3 ,a =2,求A ,B ,b . 解:由a sin A =c sin C ,得sin A =a sin C c =22.∴A =π4或A =34π.又∵c >a ,∴C >A ,∴只能取A =π4 , ∴B =π-π3-π4=5π12,b =c sin B sin C =6·sin 5π12sin π3=3+1.

苏教版数学必修五:1.1正弦定理(二)【教师版】

课题:§1.1 正弦定理(二) 总第____课时 班级_______________ 姓名_______________ 【学习目标】 掌握正弦定理的内容及其等价形式;会运用正弦定理、内角和定理与三角形的面积公式解决一些与测量和几何计算与证明有关的实际问题. 【重点难点】 学习重点:正弦定理的等价形式及其基本应用. 学习难点:已知两边和其中一边的对角解三角形时判断解的个数. 【学习过程】 一、自主学习与交流反馈: 问题1:对于任意的三角形若已知两边及夹角怎样求三角形的面积? 问题2:正弦定理还有哪些等价的变形形式? 二、知识建构与应用: 例1 在ΔABC 中,已知 C c B b A a cos cos cos ==,试判断ΔABC 的形状. 例2 在ΔABC 中,AD 是∠BAC 的平分线,如图,用正弦定理证明: DC BD AC AB =. 例 3 某登山队在山脚处测得山顶的仰角为,沿倾斜角为的斜坡前进A B 35?20?1000180?-βαβαD C B A

米后到达处,又测得山顶的仰角为,求山的高度. 例4 判断下列三角形解的情况: (1)已知; (2)已知; (3)已知. 四、巩固练习 D 65?060,12,11 ===B c b 0 110,3,7===A b a 045,9,6===B c b

1.在ΔABC 中,已知,150,3,2o ===C b a 则=?ABC S . 2.在中,_________,sin 23==B A b a 则. 3.在中,若,60,3?==A a 那么的外接圆的周长为____ ____. 4.在中,若,则 . 5. 在中, ______,cos cos 的形状为则ABC B C b c ?=. ABC ?ABC ?ABC ?ABC ?3,600==a A _______sin sin sin =++++C B A c b a ABC ?

高中数学人教A版必修第二册课时作业6.4.3 第1课时 余弦定理

课时作业12 余弦定理 时间:45分钟 ——基础巩固类—— 一、选择题 1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =13,b =3,A =60°,则c =( C ) A .1 B .2 C .4 D .6 解析:由余弦定理,得a 2=b 2+c 2-2bc cos A ,即13=9+c 2-3c ,即c 2-3c -4=0,解得c =4(负值舍去). 2.在△ABC 中,若a =7,b =8,cos C =13 14,则最大角的余弦值是( C ) A .-15 B .-16 C .-17 D .-18 解析:由余弦定理知c 2=a 2+b 2-2ab cos C =9, 所以c =3.根据三边的长度知角B 为最大角, 故cos B = 49+9-642×7×3 =-1 7. 所以cos B =-1 7. 3.在△ABC 中,B =60°,b 2=ac ,则△ABC 是( D ) A .锐角三角形 B .钝角三角形 C .等腰三角形 D .等边三角形 解析:由余弦定理,得b 2=a 2+c 2-2ac cos B ,即ac =a 2+c 2-ac , 所以(a -c )2=0,即a =c .

又因为B =60°,所以△ABC 为等边三角形. 4.(多选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(a +b ) (a +c ) (b +c )=9 10 11,则下列结论正确的是 ( ACD ) A .a b c =4 5 6 B .△AB C 是钝角三角形 C .△ABC 的最大内角是最小内角的2倍 D .若c =6,则tan B =579 解析:因为(a +b )(a +c )(b +c )=910 11. 所以可设:???? ? a + b =9x a + c =10x b + c =11x (其中x >0), 解得:a =4x ,b =5x ,c =6x . 所以a b c =4 5 6,所以A 正确. 由上可知:c 边最大,所以三角形中C 角最大, 又cos C =a 2+b 2-c 22ab =(4x )2+(5x )2-(6x )22×4x ×5x =1 8>0, 所以C 角为锐角,所以B 错误; 由上可知:a 边最小,所以三角形中A 角最小, 又cos A =c 2+b 2-a 22cb =(6x )2+(5x )2-(4x )22×6x ×5x =3 4, 所以cos2A =2cos 2 A -1=1 8,所以cos2A =cos C , 由三角形中C 角最大且C 角为锐角可得:2A ∈(0,π),C ∈(0,π 2), 所以2A =C ,所以C 正确; 若c =6,则a =4,b =5,cos B =42+62-522×4×6 =916,sin B =1-cos 2B

全国高中数学优质课 余弦定理教学设计

《余弦定理》教学设计 一、教学内容解析 本节内容选自普通高中课程标准实验教科书人教A版《数学》必修5第一章《解三角形》第一节正弦定理和余弦定理。第一节约4课时,2课时通过探究证明正弦定理,应用正弦定理解三角形;2课时通过探究证明余弦定理,应用余弦定理解三角形。本节课是余弦定理的第一课时,属于定理教学课。 正余弦定理是定量研究三角形边角关系的基础,它们为解三角形提供了基本方法,为后续解决测量等实际问题提供了理论基础和操作工具。余弦定理是继正弦定理之后的解三角形又一有力工具,完善了解三角形体系,为解决三角形的边角关系提供了新的方法;是对任意三角形“边、角、边”和“边、边、边”问题进行量化分析的结果,将两种判定三角形全等的定性定理转化为可计算的公式。 纵观余弦定理的发展史,它的雏形出现公元前3世纪。在欧几里得《几何原本》卷二对钝角三角形和锐角三角形三边关系的阐述中,利用勾股定理将余弦定理的几何形式进行了证明。1593年,法国数学家韦达首次将欧几里得的几何命题写成了我们今天熟悉的余弦定理的三角形式,直到20世纪,三角形式的余弦定理才一统天下。“余弦定理是作为勾股定理的推广而诞生的,以几何定理的身份出现,直到1951年,美国数学家荷尔莫斯在其《三角学》中才真正采用解析几何的方法证明了余弦定理,至于向量方法的出现,更是晚近的事了。” 从新旧教材的内容设计对比来看,无论是问题的提出,定理的证明,简单应用都呈现出变化。旧教材数学第二册(下)中,余弦定理被安排在第五章《平面向量》的第二节解斜三角形中。基于特殊到一般的数学思想,从直角三角形

切入,提出问题后,直接用向量的方法推导定理。新教材将余弦定理安排在独立章节《解三角形》中,首先给出探究:如果已知一个三角形的两边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形,从量化的角度研究这个问题,也为余弦定理解三角形的类型做了铺垫。在定理的推导过程中,同样用了向量方法,但在推导前提出思考:联系已经学过的知识,我们从什么途径来解决这个问题?新教材还结合余弦定理和余弦函数的性质,分别对三种形状的三角形进行了量化分析,旧教材没有涉及此内容。 从余弦定理的发展史和教材的设置变化来看,欧式几何依据基本的逻辑原理,建立几何关系,论证严谨,但思维量大,需要分类讨论。而作为沟通代数、几何与三角函数的工具——向量引入后,欧式几何中的平行、相似、垂直都可以转化成向量的加减、数乘、数量积的运量,从而把图形的基本性质转化成向量的运算体系,由此开创了研究几何问题的新方法。而且在证明之后还提出问题:用坐标方法怎样怎样证明余弦定理?还有其他的方法吗? 教材的编排,就是希望学生了解可以从向量、解析方法和三角方法等多种途径证明余弦定理,另外对向量工具性作用有所体会和认识。 基于以上分析,本节课的教学重点是: 通过对三角形边角关系的探索,发现并证明余弦定理。 二、教学目标设置 结合《课程标准》和教材编排,本节课的教学目标确定为: 1.发现并掌握余弦定理及其推论,利用余弦定理能够解决一些与三角形边角有关的计算问题。 2.通过对三角形边角关系的探索,能证明余弦定理,了解可以从向量、解析方法和三角方法等多种途径证明余弦定理。

苏教版高中数学必修五正弦定理教案

第 1 课时: §1.1 正弦定理(1) 【三维目标】: 一、知识与技能 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容和推导过程; 2.能解决一些简单的三角形度量问题(会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题);能够运用正弦定理解决一些与测量和几何计算有关的实际问题; 3.通过三角函数、正弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一. 4.在问题解决中,培养学生的自主学习和自主探索能力. 二、过程与方法 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 三、情感、态度与价值观 1.培养学生在方程思想指导下处理解三角形问题的运算能力; 2.培养学生合情推理探索数学规律的数学思想能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 【教学重点与难点】: 重点:正弦定理的探索和证明及其基本应用。 难点:已知两边和其中一边的对角解三角形时判断解的个数。 【学法与教学用具】: 1. 学法:引导学生首先从直角三角形中揭示边角关系: sin sin sin a b c A B C == ,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。 2. 教学用具:多媒体、实物投影仪、直尺、计算器 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 1.在直角三角形中的边角关系是怎样的? 2.这种关系在任意三角形中也成立吗? 3.介绍其它的证明方法 二、研探新知 1.正弦定理的推导 (1)在直角三角形中:c a A = sin ,1sin ,sin ==C C B B , 即 =c A a sin ,=c B b sin ,=c C c sin ∴A a sin =B b sin =C c sin 能否推广到斜三角形? (2)斜三角形中 证明一:(等积法,利用三角形的面积转换)在任意斜△ABC 中,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111 sin sin sin 222 ABC S ab C ac B bc A ?= ==,每项

高三数学一轮复习课时作业27 正弦定理和余弦定理B 文 北师大版

[时间:35分钟 分值:80分] 基础热身 1.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( ) A .75° B.60° C.45° D.30° 2.在△ABC 中,若2sin A sin B

余弦定理教学设计

数学:1.1《正弦定理与余弦定理》教案(新人教版必修5)(原创) 余弦定理 一、教材依据:人民教育出版社(A版)数学必修5第一章第二节 二、设计思想: 1、教材分析:余弦定理是初中“勾股定理”内容的直接延拓,是解三角形这一章知识的一个重要定理,揭示了任意三角形边角之间的关系,是解三角形的重要工具,余弦定理与平面几何知识、向量、三角形有着密切的联系。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。 2、学情分析:这节课是在学生已经学习了正弦定理及有关知识的基础上,转入对余弦定理的学习,此时学生已经熟悉了探索新知识的数学教学过程,具备了一定的分析能力。 3、设计理念:由于余弦定理有较强的实践性,所以在设计本节课时,创设了一些数学情景,让学生从已有的几何知识出发,自己去分析、探索和证明。激发学生浓厚的学习兴趣,提高学生的创新思维能力。 4、教学指导思想:根据当前学生的学习实际和本节课的内容特点,我采用的是“问题教学法”,精心设计教学内容,提出探究性问

题,经过启发、引导,从不同的途径让学生自己去分析、探索,从而找到解决问题的方法。 三、教学目标: 1、知识与技能: 理解并掌握余弦定理的内容,会用向量法证明余弦定理,能用余弦定理解决一些简单的三角度量问题 2.过程与方法: 通过实例,体会余弦定理的内容,经历并体验使用余弦定理求解三角形的过程与方法,发展用数学工具解答现实生活问题的能力。 3.情感、态度与价值观: 探索利用直观图形理解抽象概念,体会“数形结合”的思想。通过余弦定理的应用,感受余弦定理在解决现实生活问题中的意义。 四、教学重点: 通过对三角形边角关系的探索,证明余弦定理及其推论,并能应用它们解三角形及求解有关问题。 五、教学难点:余弦定理的灵活应用 六、教学流程: (一)创设情境,课题导入: 1、复习:已知A=0 45,b=16解三角形。(可以让学生板练) 30,C=0 2、若将条件C=045改成c=8如何解三角形? 设计意图:把研究余弦定理的问题和平面几何中三角形全等判定的方法建立联系,沟通新旧知识的联系,引导学生体会量化

高考数学一轮复习课时作业24正弦定理、余弦定理理(含解析)新人教版

高考数学一轮复习课时作业24正弦定理、余弦定理理(含解析) 新人教版 课时作业24 正弦定理、余弦定理 一、选择题 1.△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,若cos A =7 8,c -a =2,b =3,则a =( A ) A .2 B.5 2 C .3 D.7 2 解析:由题意可得c =a +2,b =3,cos A =78,由余弦定理,得cos A =12·b 2 +c 2 -a 2 bc , 代入数据,得78=9+a +22 -a 2 2×3a +2 ,解方程可得a =2. 2.(2019·湖北黄冈质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a = 5 2 b ,A =2B ,则cos B =( B ) A.53 B.54 C. 55 D.56 解析:由正弦定理,得sin A =5 2 sin B ,又A =2B ,所以sin A =sin2B =2sin B cos B ,所以cos B = 54 . 3.(2019·成都诊断性检测)已知锐角△ABC 的三个内角分别为A ,B ,C ,则“sin A >sin B ”是“tan A >tan B ”的( C ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析:在锐角△ABC 中,根据正弦定理a sin A =b sin B ,知sin A >sin B ?a >b ?A >B ,而正切 函数y =tan x 在(0,π 2 )上单调递增,所以A >B ?tan A >tan B .故选C. 4.(2019·武汉调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c b

b8版高中数学必修5正弦定理2

本文为自本人珍藏 版权所有 仅供参考 正弦定理 教学目标 (1)要求学生掌握正弦定理及其证明; (2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点 正弦定理的推导及其证明过程. 教学过程 一.问题情境 在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢? 探索1 我们前面学习过直角三角形中的边角关系,在R t A B C ?中,设90C =?,则 sin a A c = , sin b B c = , sin 1C =, 即:sin a c A = , sin b c B = , sin c c C = , sin sin sin a b c A B C = = . 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动 学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学 探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法 1 若C 为锐角(图(1)),过点A 作A D B C ⊥于D ,此时有 sin A D B c = , sin A D C b = ,所以sin sin c B b C =,即sin sin b c B C = .同理可得sin sin a c A C = ,

(完整word版)人教版高中余弦定理教案

《余弦定理》教案 一、教材分析 《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。 余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。 二、教学目标 知识与技能:1、理解并掌握余弦定理和余弦定理的推论。 2、掌握余弦定理的推导、证明过程。 3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。 过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。 2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。 3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际 问题的能力。 情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验 解决问题的成功喜悦。 2、感受数学一般规律的美感,培养数学学习的兴趣。 三、教学重难点 重点:余弦定理及其推论和余弦定理的运用。 难点:余弦定理的发现和推导过程以及多解情况的判断。 四、教学用具 普通教学工具、多媒体工具 (以上均为命题教学的准备)

远处的空旷处选一点A,测量出AB,AC的距 离以及A ∠,就可以求出BC的距离了。】 求知欲,充分调动学生学 习的积极性。 分 析 问 题 、 探 究 定 理 1、回顾正弦定理以及正弦定理能解决的解三角 形问题的类型。 【正弦定理: C c B b A a sin sin sin = = 正弦定理能解决的问题类型: (1)已知两个角和一条边 (2)已知两条边和一边的对角】 2、简化问题,假设A ∠为直角。从最特殊的直 角三角形入手,运用勾股定理解决问题。 【记c AB b AC a BC= = =, ,,运用勾股定理 2 2 2c b a+ =,解得a即可。】 3、回归一般三角形,让学生思考如何求解。直 角三角形中可以运用勾股定理,没有直角那就 构造直角来求解。(以锐角三角形为例,钝角 三角形类似) D C A B 【2 2 2BD CD BC+ =, A AC CD sin =,A AC AD cos =,AD AB BD- =, ()()2 2 2cos sin A AC AB A AC BC? - + ? =, A AB AC AB AC BC cos 2 2 2 2? ? - + =】 4、根据以上探究过程,得到余弦定理: A bc c b a cos 2 2 2 2? - + =, B ac c a b cos 2 2 2 2? - + =, 用正弦定理来尝试解释技 术人员的方案,学生发现 还是解决不了问题。将学 生带入困境,激发学生的 创造思维。 用勾股定理解决问题,给 学生解决一般三角形的问 题提供参考。

(完整版)必修五;正弦定理与余弦定理

必修五:正弦定理和余弦定理 一:正弦定理 1:定理内容:在一个三角形中,各边的长和它所对角的正弦的比相等,即 R C c B b A a 2sin sin sin ===(R 是三角形外接圆半径) 2:公式变形 (1)R A a C B A c b a 2sin sin sin sin ==++++ (2)?? ???C R c B R b A R a sin 2sin 2sin 2===或R c C R b B R a A 2sin ,2sin ,2sin === (3)?? ???B c C b A c C a A b B a sin sin sin sin sin sin === (4)R abc A bc B ac C ab S ABC 4sin 21sin 21sin 21====? 以下是ABC ?内的边角关系:熟记 (5)B A B A b a >?>?>sin sin (大边对大角) (6)B A B A cos cos (7)?? ???+=+=+=)sin(sin )sin(sin )sin(sin B A C C A B C B A 思考A cos 与)cos(C B +的关系 (8)2 cos 2sin C B A += (9)若AD 是ABC ?的角平分线,则 AC DC AB DB = 思考题: 1:若B A sin sin =,则B A ,有什么关系? 2:若B A 2sin 2sin =,则B A ,有什么关系? 3:若B A cos cos =,则B A ,有什么关系? 4:若2 1sin > A ,则角A 的范围是什么?

解三角形:已知三角形的几个元素,求其他元素的过程叫做解三角形. 例1:已知ABC ?,根据下列条件,解三角形. (1)10,45,60=?=∠?=∠a B A . (2)?=∠==120,4,3A b a . (3)?=∠==30,4,6A b a . (4)?=∠==30,16,8A b a . (5)?=∠==30,4,3A b a . 思考:在已知“边边角”的情况下,如何判断三角形多解的情况 判断方法:(1)用正弦定理:比较正弦值与1的关系 (2)作图法:用已知角所对的高与已知角所对的边长比较. 练习:(1)若?=∠==45,12,6A b a ,则符合条件的ABC ?有几个? (2)若?=∠==30,12,6A b a ,则符合条件的ABC ?有几个? (3)若?=∠==45,12,9A b a ,则符合条件的ABC ?有几个? 例2:根据下列条件,判断三角形形状. (1)C B A 2 22sin sin sin =+. (2)C B A cos sin 2sin = (3)B b A a cos cos = (4)A b B a tan tan 22=

【新教材】新人教A版必修一 两角差的余弦公式 课时作业

2019-2020学年新人教A 版必修一 两角差的余弦公式 课时作业 一、选择题 1.cos (-75°)的值是( ) A 。错误!B.错误! C.6-24 D 。错误! 答案:C 解析:cos(-75°)=cos (45°-120°)=cos45°·cos120°+sin45°sin120°=错误!×错误!+错误!×错误!=错误!,故选C 。 2.已知α为锐角,β为第三象限角,且cos α=错误!,sin β=-错误!,则cos(α-β)的值为( ) A .-6365 B .-错误! C 。错误! D 。错误! 答案:A 解析:∵α为锐角,且cos α=错误!,∴sin α=错误!=错误!.∵β为第三象限角,且sin β=-错误!,∴cos β=-错误!=-错误!,∴cos (α-β)=cos αcos β+sin αsin β=错误!×错误!+错误!×错误!=-错误!.故选A. 3.已知锐角α,β满足cos α=错误!,cos (α+β)=-错误!,则cos (2π-β)的值为( ) A 。错误!B .-错误! C 。错误! D .-错误! 答案:A 解析:∵α,β为锐角,cos α=35 ,cos(α+β)=-错误!,∴sin α=错误!,sin(α+β)=错误!,∴cos (2π-β)=cos β=cos[(α+β)-α]=cos(α+β)·cos α+sin(α+β)·sin α=-错误!×错误!+错误!×错误!=错误!。 4.在△ABC 中,若sin A sin B

余弦定理教学设计经典

1.1.2余弦定理教学设计 一、教学目标 认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形; 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题;情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。 二、教学重难点 重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。 难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。 探究和证明余弦定理过程既是本节课的重点,也是本节课的难点。学生已经具备了勾股02220定理的知识,即当∠C=90时,有c=a+b。作为一般的情况,当∠C≠90时,三角形的三边满足什么关系呢?学生一时很难找到思路。最容易想到的思路就是构造直角三角形,尝试应用勾股定理去探究这个三角形的边角关系;用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合。因而教师在授课时可以适当的点拨、启发,鼓励学生大胆的探索。在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加强学生对余弦定理的理解,又能培养学生形成良好的思维习惯,激发学生学习兴趣,这是本节课教学的重点,也是难点。 三、学情分析和教学内容分析 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了“已知三角形的两边和夹角,无法用正弦定理去解三角形”,进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。 在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。

人教A版高中数学必修五正弦定理(一)

高中数学学习材料 金戈铁骑整理制作 正弦定理(一) ●作业导航 掌握正弦定理,会利用正弦定理求已知两角和任意一边或两边和一边对角的三角形问题. 一、选择题(本大题共5小题,每小题3分,共15分) 1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60° D .60°或120° 2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( ) A .9 B .18 C .93 D .18 3 3.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于( ) A .1∶2∶3 B .2∶3∶1 C .1∶3∶2 D .3∶1∶2 4.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为( ) A .(2,+∞) B .(-∞,0) C .(-2 1,0) D .(2 1,+∞) 5.在△ABC 中,sin A >sin B 是A >B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 二、填空题(本大题共5小题,每小题3分,共15分) 1.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________. 2.在△ABC 中,若b =2c sin B ,则∠C =________. 3.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________. 4.已知△ABC 的面积为2 3 ,且b =2,c = 3,则∠A =________. 5.在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为________. 三、解答题(本大题共5小题,每小题6分,共30分) 1.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16.

垂径定理教学设计

垂径定理(第一课时)教学设计 兰甲明 【教学内容】§7.3垂径定理(初三《几何》课本P 76~P 78) 【教学目标】 1.知识目标:①通过观察实验,使学生理解圆的轴对称性; ②掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题; ③掌握辅助线的作法——过圆心作一条与弦垂直的线段。 2.能力目标:①通过定理探究,培养学生观察、分析、逻辑思维和归纳概括能力; ②向学生渗透“由特殊到一般,再由一般到特殊”的基本思想方法。 3.情感目标:①结合本课教学特点,向学生进行爱国主义教育和美育渗透; ②激发学生探究、发现数学问题的兴趣和欲望。 【教学重点】垂径定理及其应用。 【教学难点】垂径定理的证明。 【教学方法】探究发现法。 【教具准备】自制的教具、自制课件、实物投影仪、电脑、三角板、圆规。 【教学设计】 一、实例导入,激疑引趣 1.实例:同学们都学过《中国石拱桥》这篇课文(初二语文第三册第一课·茅以 升),其中介绍了我国隋代工匠李春建造的赵州桥 (如图)。因它位于现在的历史文化名城河北省赵 县(古称赵州)而得名,是世界上现存最早、保存 最好的巨大石拱桥,距今已有1400多年历史,被 誉为“华北四宝之一”,它的结构是当时世界桥梁 界的首创,这充分显示了我国古代劳动人民的创造智慧。 2.导入:赵州桥的桥拱呈圆弧形的(如图1),它的跨度(弧所对的弦长)为37.4 米,拱高(弧的中点到弦AB 的距离, 也叫弓高)为7.2米。请问:桥拱的 半径(即AB 所在圆的半径)是多少? 通过本节课的学习,我们将能很容易解决这一问题。 (图1) ⌒

二、尝试诱导,发现定理 1.复习过渡: ①如图2(a),弦AB 将⊙O 分成几部分?各部分的名称是什么? ②如图2(b),将弦AB 变成直径,⊙O 被分成的两部分各叫什么? ③在图2(b)中,若将⊙O 沿直径AB 对折,两部分是否重合? (a) (b) (a) (b) (c) (图2) (图3) 2.实验验证: 让学生将准备好的一张圆形纸片沿任一直径对折,观察两部分是否重合;教师用电脑演示重叠的过程。从而得到圆的一条基本性质—— 圆是轴对称图形,过圆心的任意一条直线(或直径所在的直线)都是它的对称轴。 3.运动变换: ①如图3(a),AB 、CD 是⊙O 的两条直径,图中有哪些相等的线段和相等的弧? ②如图3(b),当AB ⊥CD 时,图中又有哪些相等的线段和相等的弧? ③如图3(c),当AB 向下平移,变成非直径的弦时,图中还有哪些相等的线段和相等的弧?此外,还有其他的相等关系吗? 4.提出猜想:根据以上的研究和图3(c),我们可以大胆提出这样的猜想—— (板书) ?????===????⊥BD AD BC AC BD AE CD E AB,CD O 垂足为弦的直径是圆 5.验证猜想:教师用电脑课件演示图3(c)中沿直径CD 对折,这条特殊直径两侧的图形能够完全重合,并给这条特殊的直径命名为——垂直于弦的直径。 三、引导探究,证明定理 1.引导证明: 猜想是否正确,还有待于证明。引导学生从以下两方面寻找证明思路。 ①证明“AE=BE ”,可通过连结OA 、OB 来实现,利用等腰三角形性质证明。 ②证明“弧相等”,就是要证明它们“能够完全重合”,可利用圆的对称性证明。 B B B ⌒ ⌒ ⌒ ⌒

相关文档