文档库 最新最全的文档下载
当前位置:文档库 › 涡轮分子泵参数化设计软件_钟亮

涡轮分子泵参数化设计软件_钟亮

涡轮分子泵参数化设计软件_钟亮
涡轮分子泵参数化设计软件_钟亮

机械设计课程设计蜗轮蜗杆传动

目录 第一章总论......................................................... - 2 - 一、机械设计课程设计的容......................................... - 2 - 二、设计任务..................................................... - 2 - 三、设计要求..................................................... - 3 - 第二章机械传动装置总体设计......................................... - 3 - 一、电动机的选择................................................. - 4 - 二、传动比及其分配............................................... - 4 - 三、校核转速..................................................... - 5 - 四、传动装置各参数的计算......................................... - 5 - 第三章传动零件—蜗杆蜗轮传动的设计计算............................. - 5 - 一、蜗轮蜗杆材料及类型选择....................................... - 6 - 二、设计计算..................................................... - 6 - 第四章轴的结构设计及计算.......................................... - 10 - 一、安装蜗轮的轴设计计算........................................ - 10 - 二、蜗杆轴设计计算.............................................. - 15 - 第五章滚动轴承计算................................................ - 17 - 一、安装蜗轮的轴的轴承计算...................................... - 18 - 二、蜗杆轴轴承的校核............................................ - 18 - 第六章键的选择计算................................................ - 19 - 第七章联轴器...................................................... - 20 - 第八章润滑及密封说明.............................................. - 20 - 第九章拆装和调整的说明............................................ - 20 - 第十章减速箱体的附件说明.......................................... - 20 - 课程设计小结........................................................ - 21 - 参考文献............................................................ - 22 -

涡轮分子泵工作方法

涡轮分子泵工作方法 涡轮分子泵抽气系统的基本操作方法: 一个装有单独粗抽管路的涡轮分子泵抽气系统的操作方法与扩散泵抽气系统相似。在开始粗抽以前,高真空阀和粗抽阀是关着的,而前级管道阀是打开的。 1、首先关闭前级阀,启动粗抽泵(兼前级泵),打开粗抽阀开始对真空室进行抽气。在真空室内的压力降到150~100Pa时关闭粗抽阀,打开前级管道阀, 2、再启动涡轮分子泵(需先接通冷却系统)。如果分子泵入口处装有液氮冷阱,则应在泵加速到额定转速后(一般需5~10min)加注液氮。粗抽系统的配置随真空室的容积的大小而有所不同。对500L/s或更小的涡轮分子泵来说,可采用一台双级旋片泵;1000L/s以上的涡轮分子泵则采用以机械泵为前级泵的罗茨泵机组。在压力为100到150Pa时关闭粗抽阀,把真空室切换到涡轮分子泵上。对某些泵,这样做会引起轻微而滞后的瞬时减速,但这对抽气并无影响。正如扩散泵抽气系统那样,涡轮分子泵系统中的最主要的物质是水蒸气,其抽气时间将受液氮冷阱抽速的支配。如果不用液氮冷阱,那么这个系统抽除水蒸气的速度就会比同样抽速的无冷阱扩散泵略慢一些。在高真空抽气过程的起始阶段,泵的很大的未经烘烤的内表面会吸附水,然后再在较低的压力下重新释放出来。这种效应在无阀门的系统中更为明显,因为它可能比未暴露在压力高于150Pa的空气环境的有阀门的系统吸附更多的水蒸气。 3、系统停机时,先关闭高真空阀,如果有液氮冷阱的话,还要将冷阱加热。在冷阱达到平衡温度后,关掉前级管道阀,再切断涡轮分子泵电动机的电源使分子泵的转子减速。一般来说,到泵转子完全停止需要十分钟或更长的时间。在分子泵转子减速期间,来自前级管道的碳氢化合物和涡轮分子泵的润滑油蒸气会迅速地向泵的进气口上方区域扩散。为了防止机械泵油蒸气和涡轮分子泵润滑油蒸气的返流,在切断涡轮分子泵电动机的电源后,要用一股干燥的反向气流对分子泵进行放气。例如,应该在泵转子速度下降到最大转速的50%左右时,在泵进气口上方的某处或在转子组件上部连续充入氩气或氮气,直到泵内压力达到大气压。通过从阀门3(见图1)充入气体就可适当地完成这一操作。当涡轮分子泵以额定速度运转时,不应经常充入压力为大气压的气流。这样做对轴的寿命是不利的。当前级管道阀关闭后,即可关掉机械泵系统,并用放气阀对机械泵内进行放气。停机后应立即关掉冷却水以防止内部冷凝。在正常工作时,可把水温调节到略高于露点来消除泵体外部可能形成的冷凝物。启动系统要先接通冷却水流,打开前级管道阀门,再同时启动机械泵和涡轮分子泵。在泵加速到额定转速(一般为5到10min)后,就可加注液氮冷阱。此后就可按上节所介绍的步骤对真空室进行抽气。 4、下面一种所给出的是不用高真空阀门的抽气系统的操作要比有阀门的抽气系统简便得多。操作时:先打开冷却水和前级管道阀,并同时启动机械泵和涡轮分子泵。如粗抽泵选择得当使真空室的粗抽时间等于加速时间,那么真空系统就能在没有泵油蒸气返流的情况下把真空室抽到其本底压力。 5、无阀门系统在放气和停机: 1)首先关闭前级管道阀,等泵转速下降到最大转速的50%时再在泵的上方充入干燥气体。当系统充到大气压时应关闭放气阀门,否则会造成真空室过压。 2)然后按上述介绍的方法关掉机械泵并停掉冷却水。没有单设粗抽管路的涡轮分子泵系统的操

产品设计的数字化

上海大学20 13 ~20 14 学年 冬 季学期课程考试 (课程收获体会 ) 课程名称: 产品设计的数字化 课程编号: 0900L3001000 论文题目: 浅谈产品设计的数字化 学生姓名: 徐广浩 学 号: 12120626 教师评语: 成 绩: 任课教师: 评阅日期: 一 □ 二 □

产品设计的数字化顾名思义就是用数字化的技术来设计产品,首先我们先来了解一下何为数字化。 数字化是指一种纯技术的转换过程,就是将许多复杂多变的信息转变为可以度量的数字、数据,再以这些数字、数据建立起适当的数字化模型,把它们转变为一系列二进制代码,引入计算机内部,进行统一处理。简单地说,所谓数字化就是指把所有的信息都用0和1进行编码表达。因此以现实世界不同的是,在数字化的网络世界中,一切都是由0和1来代表的,就是一些信息变得非常简单,易于处理。随着计算机和软件技术的发展,如今的数字化已经远远超过了0和1的比特组合,不再是一种静态的符号意义,已不能将数字化简单地理解为是物理、电子世界或是机械的数学是的纯逻程序或纯比特的堆积,它已经使我们超越物理时空界限,超越现实社会,拓展出人类实践活动的全新领域,衍生出诸多全新的时间方式。数字化已不再是单纯的网络信息技术概念,而是包括现代科技、社会经济和文化的综合性概念。数字化从根本上改变了信息的获取。传递、处理方式、将人类社会推向信息时代。 什么是设计? 设计作为人类生物性与社会性的生存方式,其渊源是伴随制造工具的人的产生而产生的。设计就是设想、运筹、划算与预算,它是人类为实现某种特定目的而进行的创造性活动。 因此产品设计的数字化,就是用数字化的技术进行产品设计。以前科技不发达时,先辈们就应经设计出来许多美丽的产品,如陶瓷,雕塑……但是传统的设计只能依靠手工操作来完成,设计思想在设计人员的大脑中表现为三维模型,但传统的设计方法是将设计思想表达为二维工程图,这带来了许多的弊端,如表达不清晰、更改费时费工、使用报关不便等。同时,二维工程图对于零部件的性能分析、零部件的装配、结构的优化等帮助不大。随着世界科技与经济的发展,尤其是计算机技术的发展和广泛应用带来了信息革命,使人们的设计思想有了一次飞跃,应用计算机辅助技术设计和计算机辅助工程,将设计思想表达为计算机的三维模型彻底摆脱了传统设计的缺点。利用计算机进行三维建模,吧机械零部件的结构全部用三维实体描述出来,并把各种技术要求、设计说明、材料公差等非几何信息以及各结构之间的相对位置表示清楚,在此基础上进行虚拟准备,检查零部件之间是否发生干涉以及他们之间的间隙,在产品的开发设计阶段就对其生命周期全过程中的各种因素考虑周全,排除某些设计的不合理性,最终形成数字样机。数字样机作为制造一句,能够实现精确设计,最大限度地减少了工程更改,节省了大量汞装模具和生产准备时间。很显然,与传统的设计方法相比,采用三维数字化设计不仅使设计对象几何形状得以直观显示,而且被赋予物理属性的

蜗轮蜗杆(常见普通)的规格及尺寸

例:蜗杆传动,已知模数m=4.蜗杆头数z1=1,蜗轮齿数z2=50,特性系数q=10。求传动中心距a=?变位系数0时: 中心距a=(蜗杆分度圆+蜗轮分度圆)/2=(特性系数q*模数m+蜗轮齿数Z2*模数m)/2=(10*4+50*4)/2=120 特性系数:蜗杆的分度圆直径与模数的比值称为蜗杆特性系数。 加工蜗轮时,因为是直径和形状与蜗杆相同的滚刀来切制,由上式可看出,在同一模数下由于Z1和λ0的变化,将有很多不同的蜗杆直径,也就是说需要配备很多加工蜗轮的滚刀。为了减少滚刀的数目,便于刀具标准化,不但要规定标准模数,同时还必须规定对应于一定模数的Z1/tgλ0值,这个值用q表示,称之为蜗杆特性系数。 圆柱蜗轮、蜗杆设计参数选择 蜗轮和蜗杆通常用于垂直交叉的两轴之间的传动(图1)。蜗轮和蜗杆的齿向是螺旋形的,蜗轮的轮齿顶面常制成环面。在蜗轮蜗杆传动中,蜗杆是主动件,蜗轮是从动件。蜗杆轴向剖面类是梯形螺纹的轴向剖面,有单头和多头之分。若为单头,则蜗杆转一圈蜗轮只转一个齿,因此可以得到较高速比。计算速比(i)的公式如下: i=蜗杆转速n1 蜗轮转速n2 = 蜗轮齿数z2蜗杆头数z1 1、蜗轮蜗杆主要参数与尺寸计算 主要参数有:模数(m)、蜗杆分度圆直径(d1)、导程角(r)、中心距(a)、蜗杆头数(或线数z1)、蜗轮齿数(z2)等,根据上述参数可决定蜗杆与蜗轮的基本尺寸,其中z1、z2由传动要求选定。 (1)模数m 为设计和加工方便,规定以蜗杆轴项目数mx和蜗轮的断面模数mt为标准模数。对啮合的蜗轮蜗杆,其模数应相等,及标准模数m=mx=mt。

标准模数可有表A查的,需要注意的是,蜗轮蜗杆的标准模数值与齿轮的标准模数值并不相同。 表A

数字化应用

飞机装配数字化应用 10503532 李凯 1 数字化装配协调技术 数字化协调方法也可称数字化标准工装协调方法,是一种先进的基于数字化标准工装定义的协调互换技术,将保证生产用工艺装备之间、生产工艺装备与产品之间、产品部件与组件之间的尺寸和形状协调互换。 数字量传递协调路线: (1)飞机大型结构件(与飞机外形及定位相关)如框、梁,桁、肋、接头等用NC 方式加工, (2)在飞机坐标系下,工装设计人员以产品工程数模为原始依据,进行工装的数字化设计,并且在工装与产品定位相关的零件上用N C方式加工出所有的定位元素; (3)工装在装配时利用数字标工(数据)协调,采用激光自动跟踪测量系统测量,通过坐标系拟合,定位出零件的安装位置,满足安装基准的空间坐标及精度要求; (4)飞机钣金件模具数字化设计以及用NC方式加工,钣金零件数控加工。 2 数字化装配容差分配技术 容差数值直接影响产品的质量与成本,因而根据产品技术要求,进行零、组件的容差分析和设置,可以经济合理地决定零部件的尺寸容差,保证加工精度,提高产品质量,在满足最终设计要求的同时使产品获得最佳的技术水平和经济效益。 在产品装配前仅凭以往的经验或某个方案分配给每个零件公差,装配成产品后公差能不能达到产品设计的要求,难以定论。现在可通过数理统计的方法来模拟装配过程和次数,可看到最终形成产品的公差与零件的公差、零件的装配顺序等因素有关。在零件数模的基础上,对于我们关注的关键的质量特征,设定公差

和装配顺序,通过数理统计的方法仿真,分析各种因素对质量特性的影响程度,为查找质量问题的原因和改进容差分配提供了依据,不断仿真找出最优的公差分配方案。 3 自定位与无型架定位数字化装配技术 现代的飞机设计遵循面向制造的原则,在零件设计的时候就必须考虑以后零件的加工和装配。在工艺人员的建议下,飞机设计时对主要结构件(梁、框、肋和接头等)建立装配的自定位特征,如小的突耳、装配导孔、槽口和形成定位表面等,或者在产品结构设计的同时,把用来安放光学目标的工艺定位件设计到结构件上。但这些零件的自定位特征需要用数控方式精确加工,在实际装配过程中这些零件自己就能利用自定位特征定位,或应用激光跟踪仪和光学目标定位。 基于飞机产品数模和数字量尺寸协调,无型架定位数字化装配技术采用模块化、自动化的可重新配置的工装系统,大大简化了或减少了传统的复杂型架,缩短了工装设计与制造的时间,降低了工装成本,并提高了装配质量。 4 数字化装配工艺设计技术 数字化装配工艺设计技术是根据企业结构和制造流程在软件环境中构建企业的制造体系结构,包括产品、工艺和资源3个主要部分,完全可描述什么人、在什么地方、用什么工具、用什么方法、制造什么产品,当然也包含成本和时间。其中产品部分又分为EBOM、PBOM和MBOM三个分支,工艺又分为根据工艺分离面设计的工艺Process Plan和根据生产工位设计的工艺Production Plan,资源分为结构化的资源,包括工厂,车间、工段、工位、设备、工装、工具和人。资源又分为资源规划Resource Plan(又称制造概念)。其中成本包含在产品里,时间包含在工艺里,设备利用率包含在资源规划里。 利用设计部门发放的产品三维数模和EBOM,在三维可视环境下进行产品的装配工艺规划及工艺设计。将三维数模数据(属性)导入产品节点,并将三维数模数图形的路径关联到每个零件上,在编制工艺的任何时候都可预览零件和组件的三维图形,直观地反映装配状态。 在产品工艺分离面划分的基础上,对每个工艺大部件进行初步装配流程设

突然断电对分子蜗轮泵的影响讨论

我们使用的分子蜗轮泵一直都很好,我想问下如果质谱的UPS不工作了,断电后分子涡轮泵会不会有问题? 断电对分子涡轮泵的影响当然是非常巨大的了,处于高速运转的叶片突然失去动力停下来,很容易并打碎的。尽量避免突然断电吧! 断电没什么大问题,不会引起大的气流冲击,所以叶片不会爆炸。 没你说的恐怖吧,那停机时也是供分子涡轮泵电源断掉瞬间挺得阿,不是电压一点一点变小的。 停电时分子涡轮泵不会立即停下,也是慢慢的转速变慢的。 停机时,先停分子涡轮泵,等它停止运转后,相应的风扇等辅助系统然后才停止。 正常关机时你可以看到不管是GC/MS或者LC/MS,真空泵都是花了一定时间停下来的,慢慢的降低它的转速,而且当然是保证仪器的正常供电了。否则怎么叫正常关机呢? 照你怎么说,质谱还有电压调节器之类的设备了?关机时,电压慢慢变小了。 像电风扇关掉时由于惯性,是慢慢停下来的。 质谱正常关机时,是先让分子涡轮泵停电,慢慢停下来,然后才停相应的辅助系统。保证分子涡轮泵优先。 很少有分子泵叶片爆炸的,大部分都是轴承磨损。你们谁换过润滑脂,分子泵每工作5,000~10,000小时(一年)就要专门做一次维护,你们谁做过?每工作50,000小时需要更换一次轴承,又有谁做过? 其实总的来说涡轮分子泵还是很耐用的,尽量减少停机的时间,配备稳压器和高质量的UPS,及时更换消耗品和配件能够最大限度提升其寿命 突然断电,分子涡轮泵会因无法散热,从而可能损坏分子涡轮泵的。 没问题的,镀膜线上的分子泵,每10分钟就要加速减速一次,而且使用的是可怕的电机反转减速。。。都没事。 我们一旦停电后,就立即把电源关掉,个人理解突然停电应该问题不大,怕的是突然又来电(此时涡轮分子泵正在减速,叶片运转正处于不稳定状态,泵来电起动可能会让叶片的偏移加剧而发生碰撞)。 突然断电对离子源、四级杆,质量检测器影响不是太大,只是突然断电后的突然来电对电子元件会有较大冲击,还有就是可能会使涡轮分子泵的运转出现异常(涡轮分子泵的关闭和重新打开之间一定要充分的时间间隔)。 应该影响不大,我那个仪器都断电好几次了。重启后没什么问题。不过要防止它突然来电,所以我们在电源上另安装了控制电箱,断电后只有人工启动才能通电。 真空系统开机和关机 对于质谱仪而言,真空系统是价格昂贵的组成部分。维护好质谱的真空系统对工作安全和降低使用成本是非常重要的。 Edit 打开真空系统 Edit 检查 1. 机械泵的温度小于50摄氏度; 2. 机械泵油色泽清亮,无浑浊、不透明和分层现象; 3. 确保分子泵的温度小于35度; 4. 如果是水冷大泵,应打开分子泵循环水,并且无漏水; Edit 启动前机泵

蜗轮蜗杆设计参数

圆柱蜗轮、蜗杆设计参数选择 蜗轮和蜗杆通常用于垂直交叉的两轴之间的传动(图1)。蜗轮和蜗杆的齿向是螺旋形的,蜗轮的轮齿顶面常制成环面。在蜗轮蜗杆传动中,蜗杆是主动件,蜗轮是从动件。蜗杆轴向剖面类是梯形螺纹的轴向剖面,有单头和多头之分。若为单头,则蜗杆转一圈蜗轮只转一个齿,因此可以得到较高速比。计算速比(i)的公式如下: i=蜗杆转速n1 蜗轮转速n2 = 蜗轮齿数z2 蜗杆头数z1 1、蜗轮蜗杆主要参数与尺寸计算 主要参数有:模数(m)、蜗杆分度圆直径(d1)、导程角(r)、中心距(a)、蜗杆头数(或线数z1)、蜗轮齿数(z2)等,根据上述参数可决定蜗杆与蜗轮的基本尺寸,其中z1、z2由传动要求选定。 模数m 为设计和加工方便,规定以蜗杆轴项目数mx和蜗轮的断面模数mt为标准模数。对啮合的蜗轮蜗杆,其模数应相等,及标准模数m=mx=mt。 标准模数可有表A查的,需要注意的是,蜗轮蜗杆的标准模数值与齿轮的标准模数值并不相同。表A 图1

图2 蜗杆分度圆直径d1 再制造蜗轮时,最理想的是用尺寸、形状与蜗杆完全相同的蜗轮滚刀来进行切削加工。但由于同一模数蜗杆,其直径可以各不相同,这就要求每一种模数对应有相当数量直径不同的滚刀,才能满足蜗轮加工需求。为了减少蜗轮滚刀数目,在规定标准模数的同时,对蜗杆分度圆直径亦实行了标准化,且与m有一定的匹配。蜗杆分度圆直径d1与轴向模数mx之比为一标准值,称蜗杆的直径系数。即 q= 蜗杆分度圆直径 模数 = d1 m d1=mq

有关标准模数m 与标准分度圆直径d1的搭配值及对应的蜗杆直径系数参照表A 蜗杆导程角r 当蜗杆的q 和z1选定后,在蜗杆圆柱上的导程角即被确定。为导程角、导程和分度圆直径的关系。 tan r= 导程分度圆周长 = 蜗杆头数x 轴向齿距分度圆周长 =z1px d1π =z1πm πm q =z1 q 相互啮合的蜗轮蜗杆,其导程角的大小与方向应相同。 中心距a 蜗轮与蜗杆两轴中心距a 与模数m 、蜗杆直径系数q 以及蜗轮齿数z2间的关系式如下: a=d1+d22 =m q (q+z2) 蜗杆各部尺寸如表B 蜗轮各部尺寸如表C 蜗轮蜗杆的画法 (1) 蜗杆的规定画法 参照图1图2 (2)蜗轮的规定画法 参照图1图2 (3)蜗轮蜗杆啮合画法 参照图1图2.

分子增压泵和涡轮分子泵工作机理简介

分子增压泵和涡轮分子泵工作机理简介 龚建华储继国 分子增压泵是基于拖动原理的高真空泵,同时具有优良的中真空抽气能力,是我国拥有独立知识产权的新一代真空泵。虽然姗姗来迟,但面对蓬勃发展的真空技术领域,正赶上了大好时机。分子增压泵的问世,使得广大的真空技术用户能在丰富多彩的泵种中增加了选择的机会。为了更好地为真空产业服务,特将该泵与有悠久传统的涡轮分子泵从工作机理的差异上做一简单介绍。 一、涡轮分子泵和分子增压泵的相同点与不同点 1.共同点: 涡轮分子泵和分子增压泵都是高真空泵,极限真空10-5Pa(10-7Pa);都工作 在很高的转速(数万转/分钟);都有很高的压缩比(N2:108),所以都可以获 得清洁真空。 2.不同点 目前国内生产的以及绝大部分国外生产的涡轮分子泵都是立式泵,而分子增 压泵是卧式泵,卧式泵对共振的控制比立式泵难度大;分子增压泵的工作压 力和排气流量均比涡轮分子泵高出很多,可以达到数百帕;涡轮分子泵的转 子是由涡轮叶片构成,而分子增压泵的转子是由平圆盘构成;涡轮分子泵工 作在分子流状态,而分子增压泵可以工作在分子流和过渡流状态。 二、涡轮分子泵和分子增压泵的工作原理 如要用通俗些的话语来说明两种泵的工作原理,可用家乐福超市的传送带式的电梯比作分子增压泵的拖动原理;而用“陷阱”(比较牵强)来形容涡轮分子泵的传输几率原理。 1.涡轮分子泵的工作原理 此处的所谓“陷阱”比喻的是一种结构,使得气体分子沿某方向容易通过,而反方向难以通过。先看生活中的一个例子,图1是捕捉黄鳝的竹篓, 这种结构使得黄鳝很容易从入口进入底部觅食,而极难从反方向逃逸,这便 是一种陷阱。再看图2,这是一个假想的隘口,由于设计成这样的构造,显然,人从两个方向通过的难易程度是不一样的,如果人平均出现在入口的任一位 置,那么从左向右,比从右向左容易通过,比例大约是5:1,这也是一种陷 阱。对于图2的模型,可以引入一个物理量——传输几率,它可以这样来理 解,以均等机会(概率相等)出现在入口任一位置的人通过隘口的可能性(概 率)。显然对于图2,从左向右的传输几率为1,即都能通过,而从右向左的 传输几率约1/5,即平均5人有1人可以通过。因此,如果起始时,隘口两边 的人数相等,随后,便慢慢地在右边逐渐增多。传输几率在气体分子的运动 中是一个非常重要的概念,比如气体分子通过一个长圆形管道,其难易程度 可用该管道的传输几率来表征。当管道的长径比(l/r)一定时,传输几率是 确定的,并且通常两个方向的传输几率也相同。

机械设计蜗杆习题与参考答案

习题与参考答案 一、选择题 1与齿轮传动相比较,不能作为蜗杆传动的优点。 A.传动平稳,噪声小 B.传动效率高 C.可产生自锁 D.传动比大 2阿基米德圆柱蜗杆与蜗轮传动的模数,应符合标准值。 A.法面 B.端面 C.中间平面 3蜗杆直径系数q=。 A.q=d l/m B.q=d l m C.q=a/d l D.q=a/m 4在蜗杆传动中,当其他条件相同时,增加蜗杆直径系数q,将使传动效率。 A.提高 B.减小 C.不变 D.增大也可能减小 5在蜗杆传动中,当其他条件相同时,增加蜗杆头数 z,则传动效率。 1 A.提高 B.降低 C.不变 D.提高,也可能降低 6在蜗杆传动中,当其他条件相同时,增加蜗杆头数 z,则滑动速度。 1 A.增大 B.减小 C.不变 D.增大也可能减小 7在蜗杆传动中,当其他条件相同时,减少蜗杆头数 z,则。 1 A.有利于蜗杆加工 B.有利于提高蜗杆刚度 C.有利于实现自锁 D.有利于提高传动效率 8起吊重物用的手动蜗杆传动,宜采用的蜗杆。 A.单头、小导程角 B.单头、大导程角 C.多头、小导程角 D.多头、大导程角 9蜗杆直径d1的标准化,是为了。 A.有利于测量 B.有利于蜗杆加工 C.有利于实现自锁 D.有利于蜗轮滚刀的标准化 10蜗杆常用材料是。 A.40Cr B.GCrl5 C.ZCuSnl0P1 D.LY12 11蜗轮常用材料是。 A.40CrB.GCrl5 C.ZCuSnl0P1 D.LYl2 12采用变位蜗杆传动时。 A.仅对蜗杆进行变位 B.仅对蜗轮进行变位 C.同时对蜗杆与蜗轮进行变位 13采用变位前后中心距不变的蜗杆传动,则变位后使传动比。 A.增大 B.减小

数字化技术与产品开发

数字化技术与产品开发复习题 1、数字化设计概念:将计算机设计用于产品设计领域,通过基于产品的数字化平台,建立数字化的模型等,在产品开发应用当中,达到减少或者是没有实物模型的一种开发技术。 优点:1、没有实物模型 2、适用于并行设计 计算机在制造业中的作用:a、对生产过程进行监控b、用计算机进行产品研发 2、各英文缩写所代表的含义: DD:数字化设计 DM:数字化制造 DB:数据库 CACD:计算机辅助概念设计 CAGM:计算机辅助几何建模CAPP:计算机辅助工艺规划 CAP:计算机辅助规划 CATD:计算机辅助刀具设计 CAE:计算机辅助工程 CAM:计算机辅助制造 PDM:产品数据管理 FE:有限元 FEM:有限元法 PLM、产品全生命周期管理 AI:人工智能 3、考题知识点: 与传统新产品开发方式比较,计算机及其相关应用技术的引入使得整个制造业在“快交付、易变型、高质量”方面取得了显著的优势,同时也大大降低了除时间以外的其他制造成本。 计算机的主要作用可以大致划分为两大方面:一是监控各种硬件设备在生产过程中正常运行;二是辅助设计人员参与产品开发周期的各个阶段。 数字化的核心是离散化,其本质是将连续的物理现象、设计过程中出现的物理量、设计过程中的几何量、设计制造环境中的不确定现象、企业可获得的各种设计资源、设计师的个人只知识及经验加以离散化。 数字化设计(DD):特指在通过数字化的手段来改造传统的产品设计方法,建立一套基于数值计算方法、计算机软硬件技术、网络传输技术、信息处理技术的专门支持产品开发和生产的全过程的设计方法和相关技术。 数字化制造(DM):是指对制造过程和设备进行数字化定义和描述、通过网络环境下的计算机控制来实现产品加工制造的过程,包括CAM(计算机辅助制造)、CAPP(计算机辅助工艺规划)、CATD、(计算机辅助刀具设计)、CAP(计算机辅助规划)等。 产品全生命周期管理(PLM):当设计师接到客户的产品订单时,客户首先是描述他们所需的产品的各种性能,想要实现什么样的功能,能够完成哪些事情。接下来就是设计师们针对客户对产品的要求、特性进行系统化的设计分析。一般情况下产品开发的过程包括以下几个

分子泵原理

第3讲真空获得⑴ 张振厚李云奇 3.1 概述 3.1.1 真空的获得方法 人们通常把能够从密闭容器中排出气体或使容器中的气体分子数目不断减少的设备称为真空获得设备或真空泵。目前在真空技术中,采用各种不同的方法,已经能够获得和测量从大气压力105Pa到10-13Pa,宽达18个数量级的压力范围。显然,只用一种真空泵,获得这样宽的低压空间的气体状态,是十分困难的。 在真空获得技术中,目前用以获得真空的技术方法有两种,一种是通过某此机构的运动把气体直接从密闭容器中排出;另一种是通过物理、化学等方法将气体分子吸附或冷凝在低温表面上。利用这两种方法所制造的各种真空泵种类较多,分类方法各异,但是,最常用的方法还是按泵的工作原理或其结构特点加以分类。这一点,我们将在下一节中介绍。 3.1.2 真空泵的分类 按真空泵的工作原理,真空泵基本上可以分为两种类型,即气体传输泵和气体捕集泵。随着真空应用技术在生产和科学研究领域中对其应用压强范围的要求越来越宽,大多需要由几种真空泵组成真空抽气系统共同抽气后才能满足生产和科学研究过程的要求,因此选用不同类型真空泵组成的真空抽气机组进行抽气

的情况较多。为了方便起见,将这些泵按其工作原理或其结构特点进行一些具体的详细的分类是必要的。现分述如下: 3.1.2.1 气体传输泵 气体传输泵是一种能使气体不断的吸入和排出,借以达到抽气目的的真空泵,这种泵基本上有两种类型: 1)变容真空泵 变容真空泵是利用泵腔容积的周期性变化来完成吸气和排气过程的一种真空泵。气体在排出前被压缩。这种泵分为往复式及旋转式两种: ⑴往复真空泵:是利用泵腔内活塞做往复运动,将气体吸入、压缩并排出。因此,又称为活塞式真空泵。 ⑵旋转真空泵:是利用泵腔内活塞做旋转运动,将气体吸入,压缩并排出。旋转真空泵又有如下几种型式: ①油封式真空泵:它是利用油类密封各运动部件之间的间隙,减少有害空间的一种旋转变容真空泵。这种泵通常带有气镇装置,故又称气镇式真空泵。按其结构特点分为如下五种型式。 a)旋片式真空泵:转子以一定的偏心距装在泵壳内并与泵壳内表面的固定面靠近,在转子槽内装有两个(或两个以上)旋片,当转子旋转时旋片能沿其径向槽往复滑动且与泵壳内壁始终接触,此旋片随转子一起旋转,可将泵腔分成几个可变容积。 b)滑阀式真空泵:在偏心转子外部装有一个滑阀,转子旋转带动滑阀沿泵壳内壁滑动和滚动,滑阀上部的滑阀杆能在可摆

蜗轮蜗杆设计

了解蜗杆传动的特点,它的适用场合。了解蜗杆传动的主要参数,如模数、压力角、螺旋头数、螺旋导程角、螺旋螺旋角、螺旋分度圆等。 ?熟悉蜗杆、蜗轮构造,蜗杆与蜗轮常用什么材料制造,那个易被损害。 ?掌握蜗杆传动效率低的机理,蜗杆传动中箱体内的润滑油温度过高有什么危害,如何降低。 第一节概述 蜗杆传动是由蜗杆和蜗轮组成的(图3-52),用于传递交错轴之间的运动和动力,通常两轴交错角为90°。在一般蜗杆传动中,都是以蜗杆为主动件。 从外形上看,蜗杆类似螺栓,蜗轮则很象斜齿圆柱齿轮。工作时,蜗轮轮齿沿着蜗杆的螺旋面作滑动和滚动。为了改善轮齿的接触情况,将蜗轮沿齿宽方向做成圆弧形,使之将蜗杆部分包住。这样蜗杆蜗轮啮合时是线接触,而不是点接触。 蜗杆传动具有以下特点: 1.传动比大,且准确。通常称蜗杆的螺旋线数为螺杆的头数,若蜗杆头数为z 1,蜗轮齿数为z2,则蜗杆传动的传动比为 2=n1/n2=z2/z1ω1/ωi=(3-60) 通常蜗杆头数很少(z1=1~4),蜗轮齿数很多(z2=30~80),所以蜗杆传动可获得很大的传动比而使机构比较紧凑。单级蜗杆传动的传动比i≤100~300;传递动力时常用i=5~83。 2.传动平稳、无噪声。因蜗杆与蜗轮齿的啮合是连续的,同时啮合的齿对较多。03.当蜗杆的螺旋升角小于啮合面的当量摩擦角时,可以实现自锁。 =0.4~0.45。η=0.82~0.92。具有自锁时,η=0.75~0.82;z1=3~4时,η=0.7~0.75;z1=2时,η4.传动效率比较低。当z1=1时,效率 5.因啮合处有较大的滑动速度,会产生较严重的摩擦磨损,引起发热,使润滑情况恶化,所以蜗轮一般常用青铜等贵重金属制造。 由于普通蜗杆传动效率较低,所以一般只适用于传递功率值在50~60kW以下的场合。一些高效率的新型蜗杆传动所传递的功率可达500kW,圆周速度可达50 m/s。 第二节蜗杆传动的主要参数和几何尺寸 本节只讨论普通圆柱蜗杆传动,或称阿基米德圆柱蜗杆传动(在垂直于蜗杆轴线的剖面中,齿廓线是一条阿基米德螺旋线,故称为阿基米德螺杆)。 =40°;而蜗轮的齿廓为渐开线,即在主平面内,蜗杆与蜗轮的啮合如同齿条与齿轮的啮合一样。α如图3-53所示,通过蜗杆轴线并垂直于蜗轮轴线的平面为主平面。在主平面上,蜗杆的齿廓与齿条相同,两侧边为直线,夹角2因此,蜗杆传动的主要参数和几何尺寸计算大致与齿轮传动相同,并且在设计、制造中皆以主平面上的参数和尺寸为基准。普通圆柱蜗杆传动参数已标准化。 (一)蜗杆传动的主要参数 α 1.模数m和压力角 为20°。α规定为标准值。圆柱蜗杆传动的标准模数见表3-21。蜗杆传动标准压力角α相等。为了制造方便,把蜗轮的端面模数m及端面压力角α因为在主平面上蜗杆传动相当于齿条与齿轮的啮合,所以,蜗杆的轴向齿距等于蜗轮的端面周节p(图3

产品数字化设计实践

产品数字化设计实践论文报告 电子科技大学 机电工程学院 任星

实现数字化设计制造的关键技术 摘要制造业是一个国家或地区经济发展的重要支柱,将数字化技术用于设计制造过程中,可大大提高制造过程的柔性和加工过程的集成性,从而提高产品生产过程的质量和效率,增强工业产品的市场竞争力。本文就数字化设计制造的意义涵和关键技术进行了阐释。并且就现在流行的两种三维设计软件进行了各自的功能阐释,以及就此对两种软件的功能进行对比,得出结论。 关键词数字化设计制造关键技术功能 一数字化设计制造的意义及涵 1.1数字化设计制造的意义 数字化设计制造是指利用计算机软硬件及网络环境,实现产品开发全过程的一种技术。即在网络和计算机辅助下通过产品数据模型,全面模拟产品的设计、分析、装配、制造等过程。数字化设计与制造不仅贯穿企业生产的全过程,而且涉及企业的设备布置、物流物料、生产计划、成本分析等多个方面。数字化设计与制造技术的应用可以大大提高企业的产品开发能力、缩短产品研制周期、降低开发成本、实现最佳设计目标和企业间的协作,使企业能在最短时间组织全球围的设计制造资源开发出新产品,大大提高企业的竞争能力。 数字化设计制造可精确地预测和评价产品的可制造性、加工时间、制造周期、生产成本、零件的加工质量、产品质量和制造系统运行性能,零件和产品的可制造性分析、生产规划与工艺规划的评价与确认。制造技术已从物质形式的制造向信息制造转变,产品中知识信息的价值占据越来越高的比例。这不但反映在产品本身,而且体现在产品的整个生命周期,特别是设计制造环节。 制造业是国民经济持续增长的发动机、国家安全的重要保障及国家综合实力的主要体现。作为先进制造技术与信息技术相结合的产物,数字化设计与制造技术已成为世界各国在科技竞争中抢占制高点的突破口。数字化信息技术是当今社会发展最快的先进技

工业产品数字化设计与制造赛项

工业产品数字化设计与 制造赛项 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

附件7: 高职装备制造大类工业产品数字化设计与制造赛项技能竞赛规程、评分标准及选手须知 一、竞赛内容 竞赛总时间为5.5小时,分为两个阶段进行。第一阶段为“数据采集、建模与创新设计”,含四个竞赛任务,本阶段竞赛时间为3.5小时。第二阶段为“创新产品加工、装配验证”,含3个竞赛任务,本阶段竞赛时间为2小时,不限制每个阶段内各项任务的完成时间。第一、二阶段成绩分别占总成绩的70%和30%。 1.第一阶段:数据采集、建模与创新设计 任务1:实物三维数据采集。参赛选手使用现场提供的三维扫描设备和辅助用品等,对给定的实物进行三维数据采集,要求扫描点云数据完整,按点云完整比例评分,并使用专业软件将扫描点云数据与标准模型进行精确度自动比对,以精确度等级进行评分。该模块主要考核选手利用三维扫描设备进行数据采集的能力。 任务2:三维建模。参赛选手根据任务1三维扫描所采集的数据,选择合适的三维建模软件,对上述产品外观面进行三维数据建模,其中包含点云数据处理和建模。该模块主要考核选手的三维建模能力,特别是曲面建模能力。 任务3:结构创新优化设计。参赛选手在完成任务2的基础上,选择合适的三维建模软件,进行结构创新优化设计:以上结构创新优化设计要求依据零件结构工艺性等机械制造知识,很好地控制成本,并适应大批量生产的需求。该模块主要考核选手应用机械综合知识进行机械创新设计的能力。 任务4a:数控编程与加工(编程)。根据任务2和任务3建立的三维数字模型和赛场所提供的机床类型、毛坯规格和刀具清单进行工艺设计,并选择合适的软件对产品进行数控编程,生成加工程序,并编制加工工艺卡。该模块主要考核选手工艺编制和程序编制方面的能力。 2.创新产品加工、装配验证 任务4b:数控编程与加工(加工)。参赛选手根据(第一阶段)制定的加工工艺方案和数控程序,并根据赛场提供的机床、刀具、毛坯等,对该产品(零件)进行数控加工(第二阶段不再提供编程软件)。主要考核选手选用刀

涡轮分子泵运转时值得注意的几个问题-技术中心----自平衡多级泵

涡轮分子泵运转时值得注意的几个问题-技术中心-中联机械 知识 1、返流涡轮分子泵具有提供超清洁、无碳氢化合物的真空环境的能力,故常被用户选用。然而,用户也偶尔会发现涡轮分子泵提供不了不含碳氢化合物的真空环境。经调查发现碳氢化合物的来源,50%是操作失误所带来的问题,如涡轮分子泵的前级泵为油封式旋片泵时,没有控制返流的安全阀,不合理的放气程序都会引起油蒸汽的返流,不合要求的安全阀也会引起油污染。为了在系统中实现无碳氢化合物这一要求,在前级泵不是干式泵的情况下,有必要了解涡轮分子泵的压缩比及如何给泵充气的一些基本知识。 2、压缩比涡轮分子泵的压缩比是指前级管道(排气口处)的压力与进气口处的压力之比。由于被抽气体的分子量不同,泵对各种气体的压缩比也不同。气体分子量M的平方根与压缩比K的关系如图6所示,泵对氢的压缩比很小,一般为1000左右,这样一来如果前级管道中氢的压力为1×10-7Torr(13.33μPa),那么进气口处氢的压力则小1000倍,即为1×10-10Torr(13.33nPa)。由于氢是超高真空系统中主要的残余气体,所以氢的压缩比是决定涡轮分子泵的极限压力的关键因素。涡轮分子泵对于大分子量的气体,如对那些碳氢化合物分子的压缩比是相当大的,一般高于1012。这个比值根据不同泵,以及不同分子量而不同,由于前级泵的不同和其它因素,涡轮分子泵的前级管道中的碳氢化合物的分压力在10-4Torr(13.33mPa)~10-6Torr(133.3μPa)之间,在这种条件下,在泵的入口处碳氢化合物的分压力将低了1012倍,即为10-16Torr(13.33fPa)或更低。这样几乎是无限小的压力,已超出了可测量的范围,即使最灵敏的质谱仪也难以测出。 3、充气措施(1)为什么要充气当涡轮分子泵关闭或运转极慢时,泵将不再有足够大的压缩比(泵内压力梯度)来阻止前级侧存在的碳氢化合物通过涡轮叶片向真空室进行返流。这种现象称作反扩散或分子返流。在静态条件下,整个系统的压力均衡时,在前级管道侧,油的分压力通常为10-4~10-6Torr(或13.33mPa~133.3μPa)最后也会波及到泵的入口处。当泵关闭时,适当地给泵内充气是控制油分子返流,保持真空室内无碳氢化合物的一种有效的措施。当停泵后,碳氢化合物返流很快通过泵进入真空室内,如果系统仍保持在真空状态下,碳氢化合物将会粘在清洁的叶片和真空室的表面上。在随后再运转该系统时,将极难抽除粘着的碳氢化合物。另一方面,在涡轮分子泵停止运转时,如果给泵充入干燥氮气或干燥空气,则该干燥气体将给暴露的表面提供一层气体保护层,而且在系统充气后,返流的碳氢化合物由于与充入的气体混合起来,从而它的粘着能力很弱,在混合气体中碳氢化合物所占比例极小,在下一次抽空时也很快就能被抽走。(2)延迟充气虽然在泵断开电源后就应给泵充气已被大家所接受,且很平常,但是,涡轮分子泵在切断电源后,泵要渐渐地减速,若延迟几秒或几分钟再充气会更好一些。在泵减速到它平时速度的30%~50%期间,此时泵仍能起到抽气和压缩作用。能有效地使真空室处在真空状态下且能防止碳氢化合物的返流。延迟充气也能使阀门有足够的时间关闭,在经常停电的情况下,延迟充气是很有用的。为了延迟充气,前级真空必须维持在1~ 1000μmHg(1×10-3mmHg~1mmHg或133.3mPa~133.3Pa)范围之内,所以在涡轮分子泵与前级泵之间必须有一个真空阀,或者在前级泵内部装一个控制阀,该阀应在电源中断时,使涡轮分子泵与前级泵隔离开来。否则,通过前级泵、前级管道被充气,并导致了油的污染。(3)在何处充气在涡轮分子泵的前级侧充气,能强制使碳氢化合物立刻通过涡轮分子泵流入真空室。另一方面,若在涡轮分子泵吸入侧充气,能达到以清洁气体覆盖表面的目的。并使气流流向涡轮分子泵(自上而下),能暂时阻止、延迟碳氢化合物的返流,也有些涡轮分子泵在压缩级之间进行中间充气,它和在吸入侧充气控制碳氢化合物返流几乎同样有效。在超高真空系统中,在压缩级充气尤其优越。因为中间充气不需要价格昂贵的金属密封的可烘烤的充气阀。(4)怎样充气如果涡轮分子泵置于一个清洁、干燥的周围环境中,就可以充室内的空气。然而充气入口的位置必须仔细选择。如果充气入口位置靠近油封式旋片泵的排气口位置之上,则充入的气体中会含有油蒸汽势必会对真空系统造成污染,而且如果空气是湿的,为了减少以后再抽气的时间,于是要充入干燥氮气或经过干燥器过滤的空气。另外也不一定总是充入大气压力下的气

(有全套图纸)蜗轮蜗杆传动减速器设计

目录 一、课程设计任务书 (2) 二、传动方案 (3) 三、选择电动机 (3) 四、计算传动装置的总传动比及其分配各级传动比 (5) 五、传动装置的运动和动力参数 (5) 六、确定蜗杆的尺寸 (6) 七、减速器轴的设计计算 (9) 八、键联接的选择与验算 (17) 九、密封和润滑 (18) 十、铸铁减速器箱主要结构尺寸 (18) 十一、减速器附件的设计 (20) 十二、小结 (23) 十三、参考文献 (23)

一、课程设计任务书 2007—2008学年第 1 学期 机械工程学院(系、部)材料成型及控制工程专业 05-1 班级课程名称:机械设计 设计题目:蜗轮蜗杆传动减速器的设计 完成期限:自 2007年 12 月 31 日至 2008年 1 月 13 日共 2 周 指导教师(签字):年月日 系(教研室)主任(签字):年月日

二、传动方案 我选择蜗轮蜗杆传动作为转动装置,传动方案装置如下: 三、选择电动机 1、电动机的类型和结构形式 按工作要求和工作条件,选用选用笼型异步电动机,封闭式结构,电压380v, Y型。 2、电动机容量 工作机所需功率 w p KW Fv p w w 30 .1 96 .0 1000 5.2 500 1000 = ? ? = = η 根据带式运输机工作机的类型,可取工作机效率96 .0 = w η。 电动机输出功率 d p η w d p p= 传动装置的总效率 4 3 3 2 2 1 η η η η η? ? ? = 式中, 2 1 η η、…为从电动机至卷筒之间的各传动机构和轴承的效率。由表10-2 KW P w 3.1 =

机械设计课程设计(蜗杆)

机械设计课程设计 计算说明书 设计题目链式运输机传动装置 专业班级 设计者 指导教师

目录 一设计任务书 (3) 二传动方案的拟定 (4) 三电动机的选择及传动装置的运动和动力参数计算 (6) 四传动零件的设计计算 (11) 1. 蜗杆及蜗轮的设计计算 (11) 2. 开式齿轮的设计计算 (15) 五蜗轮轴的设计计算及校核 (20) 六轴承及键的设计计算及校核 (28) 七箱体的设计计算 (33) 八减速器结构与附件及润滑和密封的概要说明 (35) 九设计小结 (38) 十参考文献 (39)

一.设计任务书 (1)设计题目:链式运输机传动装置 设计链式运输机的动装置,如图所示。工作条件为:链式输送机在常温下工作,负荷基本平稳,输送链工作速度V的允许误差为±5%;两班连续工作制(每班工作8h),要求减速器设计寿命为5年,每年280个工作日。 (2)原始数据 运输机牵引力 F(KN) 鼓轮圆周速度(允许误差±%5) V(m/s) 鼓轮直径D (mm) 0.95 0.31 350

二. 传动方案的拟定 (1)传动简图 (2)传动方案分析 机器一般是由原动机、传动装置和工作机三部分组成。 传动装置在原动机与工作机之间传递运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。本设计中原动机为电动机,工作机为链轮输送机。本传动方案采用了三级传动,第一级传动为单级蜗轮蜗杆减速器,第二级传动为开式齿轮传动,第三极为链轮传动。蜗轮蜗杆传动可以实现较大的传动比,结构尺寸紧凑,传动平稳,但效率较低,应布置在高速级;开式齿轮传动的工作环境较差,润滑条件不好,磨损较严重,应布置在低速级;链传动的运动不均匀,有冲击,不适于高速传动,故布置在传动的低速级。减速器的箱体采用水平剖分式结构,用HT100灰铸铁铸造而成。 该工作机采用的是原动机为Y系列三相笼型异步电动机,电压380 V,其结构简单、工作可靠、价格低廉、维护方便,另外

相关文档
相关文档 最新文档