文档库 最新最全的文档下载
当前位置:文档库 › 金属钝化曲线测定

金属钝化曲线测定

金属钝化曲线测定
金属钝化曲线测定

金属钝化原理

金属钝化原理与应用 机械与汽车工程学院 材料成型及控制工程

金属钝化原理及应用 (材料成型及控制工程) 摘要:金属经氧化性介质处理后,其腐蚀速度比原来未处理前有显著下降的现象称金属的钝化。其钝化机理主要可用薄膜理论来解释,即认为钝化是由于金属与氧化性介质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、能坚固地附在金属表面上的钝化膜。这层膜成独立相存在,通常是氧和金属的化合物。它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质直接接触,从而使金属基本停止溶解形成钝态达到防止腐蚀的效果。 关键词:表面处理、钝化、铬酸盐、酸洗钝化 一、概述 钝化现象早在十八世纪30年代即被发现,自此得到了广泛的研究。 钝化现象——通常,电极电位愈正,金属溶解速度愈大。而实际中,常有电位超过一定数值后,电流突然减少,这种现象成为钝化现象。 金属在介质中具有极低的溶解速度的性质称为“钝性”。金属在介质中强烈溶解的性质叫做“活性”。活态向钝态的转变叫做钝化,能够使金属发生钝化的物质被称为钝化剂。钝化现象发生通常与氧化介质有关。有时在非氧化性介质中也可以发生钝化,如镁在氢氟酸中、钼和铌在盐酸中、汞和银在氯离子作用下等。 金属钝化的定义:在一定条件下,当金属的电位由于外加阳极电流或局部阳极电流而移向正方向时,原来活泼地溶解着的金属表面状态会发生某种突变,同时金属的溶解速度急速下降,这种表面状态的突变过程叫做钝化[1]。 金属钝化的两个必要标志:腐蚀速度大幅度下降、电位强烈正移。

金属钝化的特征[2]: ①金属的电极电位朝正值方向移动; ②腐蚀速度明显降低; ③钝化只发生在金属表面; ④金属钝化以后,即使外界条件改变了,也可能在相当程度上保持钝态。 钝化的分类 化学钝化:金属与钝化剂自然作用产生(如:Cr,Al,Ti等金属在含氧溶液中)又称自钝化。 电化学钝化(阳极钝化):外电流使金属阳极钝化,使其溶解速度大幅降低,并且能够保持高度的稳定性。 阳极钝化和化学钝化的实质是一样的。 机械钝化:在一定环境下金属表面沉积出一层较厚的,但不同程度稀松的盐层,实际上起了机械隔离反应物的作用。 研究金属钝化的意义 金属的钝化现象具有极大的重要性。提高金属材料的钝化性能,促使金属材料在使用环境中钝化,是腐蚀控制的最有效控制之一。 二、铬酸盐钝化[3] 1.概述 生产中最常用的钝化方法就是铬酸盐处理,这种方法能够使金属表面转化成以铬酸盐为主要组成的膜以实现钝化处理。金属进行铬酸盐处理的目的如下: ①提高金属或金属镀层的抗腐蚀性能。对于金属镀层来说,在其上的铬酸盐膜不但可以延缓镀层出现腐蚀的时间,而且是镀层对基底金属做到更有效的防护。 ②避免金属表面受到手触的污染。 ③提高金属同漆层或其他有机涂料的粘附能力。 ④获得带色的装饰外观。 2.基本原理 按照一般的见解,金属在含有能起活作用的添加物的铬酸盐溶液中形成铬酸盐转化膜[4]的过程,大致是: ①表面金属被氧化并以离子的形式转入溶液,与此同时氢在表面析出;

金属钝化的基本原理是什么

1、金属钝化的基本原理是什么? 常温下,Fe或者Al遇到浓H2SO4或者浓HNO3都发生钝化。因为表面被氧化成一层致密的氧化膜,使金属不再被氧化。 我们知道,铁、铝在稀HNO3或稀H2SO4中能很快溶解,但在浓HNO3或浓H2SO4中溶解现象几乎完全停止了,碳钢通常很容易生锈,若在钢中加入适量的Ni、Cr,就成为不锈钢了。金属或合金受一些因素影响,化学稳定性明显增强的现象,称为钝化。由某些钝化剂(化学药品)所引起的金属钝化现象,称为化学钝化。如浓HNO3、浓H2SO4、HClO3、K2Cr2O7、KMnO4等氧化剂都可使金属钝化。金属钝化后,其电极电势向正方向移动,使其失去了原有的特性,如钝化了的铁在铜盐中不能将铜置换出。此外,用电化学方法也可使金属钝化,如将Fe置于H2SO4溶液中作为阳极,用外加电流使阳极极化,采用一定仪器使铁电位升高一定程度,Fe就钝化了。由阳极极化引起的金属钝化现象,叫阳极钝化或电化学钝化。 金属处于钝化状态能保护金属防止腐蚀,但有时为了保证金属能正常参与反应而溶解,又必须防止钝化,如电镀和化学电源等。 金属是如何钝化的呢?其钝化机理是怎样的?首先要清楚,钝化现象是金属相和溶液相所引起的,还是由界面现象所引起的。有人曾研究过机械性刮磨对处在钝化状态的金属的影响。实验表明,测量时不断刮磨金属表面,则金属的电势剧烈向负方向移动,也就是修整金属表面可引起处在钝态金属的活化。即证明钝化现象是一种界面现象。它是在一定条件下,金属与介质相互接触的界面上发生变化的。电化学钝化是阳极极化时,金属的电位发生变化而在电极表面上形成金属氧化物或盐类。这些物质紧密地覆盖在金属表面上成为钝化膜而导致金属钝化,化学钝化则是像浓HNO3等氧化剂直接对金属的作用而在表面形成氧化膜,或加入易钝化的金属如Cr、Ni等而引起的。化学钝化时,加入的氧化剂浓度还不应小于某一临界值,不然不但不会导致钝态,反将引起金属更快的溶解。 金属表面的钝化膜是什么结构,是独立相膜还是吸附性膜呢?目前主要有两种学说,即成相膜理论和吸附理论。成相膜理论认为,当金属溶解时,处在钝化条件下,在表面生成紧密的、复盖性良好的固态物质,这种物质形成独立的相,称为钝化膜或称成相膜,此膜将金属表面和溶液机械地隔离开,使金属的溶解速度大大降低,而呈钝态。实验证据是在某些钝化的金属表面上,可看到成相膜的存在,并能测其厚度和组成。如采用某种能够溶解金属而与氧化膜不起作用的试剂,小心地溶解除去膜下的金属,就可分离出能看见的钝化膜,钝化膜是怎样形 成的?当金属阳极溶解时,其周围附近的溶液层成分发生了变化。一方面,溶解下来的金属离子因扩散速度不够快(溶解速度快)而有所积累。另一方面,界面层中的氢离子也要向阴极迁移,溶液中的负离子(包括OH-)向阳极迁移。结果,阳极附近有OH-离子和其他负离子富集。随着电解反应的延续,处于紧邻阳极界 面的溶液层中,电解质浓度有可能发展到饱和或过饱和状态。于是,溶度积较小的金属氢氧化物或某种盐类就要沉积在金属表面并形成一层不溶性膜,这膜往往很疏松,它还不足以直接导致金属的钝化,而只能阻碍金属的溶解,但电极表面被它覆盖了,溶液和金属的接触面积大为缩小。于是,就要增大电极的电流密度,电极的电位会变得更正。这就有可能引起OH-离子在电极上放电,其产物(如OH)又和电极表面上的金属原子反应而生成钝化膜。分析得知大多数钝化膜由金属氧化物组成(如铁之Fe2O3),但少数也有由氢氧化物、铬酸盐、磷酸盐、硅酸盐及难溶硫酸盐和氯化物等组成。

第五章 金属修理件的保护处理

第五章金属修理件的保护处理PROTECTIVE TREATMENT OF METALLIC REPAIR PARTS 一、General Information about Protective Treatments保护处理概述 1. When you do a repair or rework procedure that breaks the surface of an initial structure, you must apply a protective treatment to the surface. The treatment makes a base for the paint and inhibits corrosion when you apply it before the installation of the repair parts. 当修理破坏原始结构表面的时候,应进行表面保护处理。在安装部件前,保护层附着在材料表面抵抗腐蚀。 2. Bare aluminum and magnesium alloys in initial structure need a subsequent chemical conversion coating if you use a repair process that will cause the area to corrode. 对裸铝和镁合金进行可能导致腐蚀的修理时,应进行后续化学处理。 3. Bare aluminum alloy and the chamfered edges of clad aluminum alloy repair parts need a protective treatment before you apply a primer. 裸铝和有倒角的包铝合金修理件在涂底漆前需要保护处理。 4. All steel parts need cadmium plating. 所有钢件都需要镀镉。 5. If you use BMS 10-20 primer, then prepare the surface with the Alodine 600 chemical conversion coating. Do not use Alodine 1000 or Alodine 1200S in areas where you use BMS 10-20 primer material. 涂BMS 10-20底漆前要用Alodine 600处理,不能用Alodine 1000 或

金属曲线的测定

实验16 金属极化曲线的测定 一、实验目的 1. 了解测定金属极化曲线的意义和方法。 2. 了解自腐蚀电势、自腐蚀电流和钝化电势、钝化电流等概念以及它们的测定方法。 3. 了解电化学保护的概念、种类及其意义。 4. 了解CHI电化学工作站基本工作原理,掌握其使用方法。 二、基本原理 将一种金属(电极)浸在电解液中,在金属与溶液之间就会形成电位,这种电位称为该金属在该溶液中的电极电位。当有外加电流通过此电极(电解)时,其电极电位会发生变化,这种现象称为电极的极化。如果电极为阳极,则电极电位将向正方向偏移,称为阳极极化;对于阴极,电极电位将向负方向偏移,称为阴极极化。令: (16.1) 图16.1 典型的阴、阳极极化曲线 对于可逆电极,即为平衡电极电位; 对于不可逆电极,为系统达到稳态时的电 极电位,即稳态电极电位,或称自腐蚀电位。习惯上将电极电流密度为i 时对应的电极电位 与平衡电极电位之差定义为在该电流密度时的过电位,用符号表示。并规定阴、阳极的过电位均为正。根据上述定义,可以分别写出阴、阳极的过电位计算公式为: 过电位是一个很重要的电化学参量。例如在金属电沉积中,析出金属的过电位越小,消耗的电能也就越少。在电解提纯工艺中,往往借助改变析出金属的过电位,来改变金属的析出顺序,从而获得所需的金属,达到提纯的目的。 如前所述,过电位的大小与流经电极的电流密度有关,电极电位(或过电位)与电流密度的关系曲线称为极化曲线。图16.1是一种典型的极化曲线。 随着电流密度的增加,电极电位将越来越偏离平衡电位,亦即过电位将越来越大。极化曲线还常用半对数座标表示,如图16.2 所示。考察图16.2 可知,当电流密度较大时,过电位与电流密度的对数成线性关系,即:

极化曲线的测定

实验九极化曲线的测定 【目的要求】 1. 掌握稳态恒电位法测定金属极化曲线的基本原理和测试方法. 2. 了解极化曲线的意义和应用. 3. 掌握恒电位仪的使用方法. 【实验原理】 1. 极化现象与极化曲线 为了探索电极过程机理及影响电极过程的各种因素,必须对电极过程进行研究,其中极化曲线的测定是重要方法之一.我们知道在研究可逆电池的电动势和电池反应时,电极上几乎没有电流通过,每个电极反应都是在接近于平衡状态下进行的,因此电极反应是可逆的.但当有电流明显地通过电池时,电极的平衡状态被破坏,电极电势偏离平衡值,电极反应处于不可逆状态,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大.由于电流通过电极而导致电极电势偏离平衡值的现象称为电极的极化,描述电流密度与电极电势之间关系的曲线称作极化曲线,如图2-19-1所示. 图2-19-1 极化曲线 A-B:活性溶解区;B:临界钝化点B-C:过渡钝化区;C-D:稳定钝化区D-E:超(过)钝化区 金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示: M→Mn++ne 此过程只有在电极电势正于其热力学电势时才能发生.阳极的溶解速度随电位变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象.图2-19-1 中曲线表明,从A点开始,随着电位向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜.B点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流.电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE段称为过钝化区. 2. 极化曲线的测定 (1) 恒电位法 恒电位法就是将研究电极依次恒定在不同的数值上,然后测量对应于各电位下的电流.极化曲线的测量应尽可能接近体系稳态.稳态体系指被研究体系的极化电流,电极电势,电极表面状态等基本上不随时间而改变.在实际测量中,常用的控制电位测量方法有以下两种: 静态法:将电极电势恒定在某一数值,测定相应的稳定电流值,如此逐点地测量一系列各个电极电势下的稳定电流值,以获得完整的极化曲线.对某些体系,达到稳态可能需要很长时间,为节省时间,提高测量重现性,往往人们自行规定每次电势恒定的时间. 动态法:控制电极电势以较慢的速度连续地改变(扫描),并测量对应电位下的瞬时电流值,以瞬时电流与对应的电极电势作图,获得整个的极化曲线.一般来说,电极表面建立稳态的速度愈慢,则电位扫描速度也应愈慢.因此对不同的电极体系,扫描速度也不相同.为测得稳态极化曲线,人们通常依次减小扫描速度测定若干条极化曲线,当测至极化曲线不再明显变化时,可确定此扫描速度下测得的极化曲线即为稳态极化曲线.同样,为节省时间,对于那些只是为了比较不同因素对电极过程影响的极化曲线,则选取适当的扫描速度绘

极化曲线的测定

极化曲线的测定 一、实验目的 掌握恒电位测定极化曲线的方法,测定碳钢(圆型钢筋)在碱性溶液中的恒电位阳极极化曲线及其极化电位。 二、实验原理 实际的电化学过程并不是在热力学可逆条件下进行的。在电流通过电极时,电极电位会偏离其平衡值,这种现象称为极化。在外电流的作用下,阴极电位会偏离其平衡位置向负的方向移动,称为阴极极化;而阳极电位会偏离其平衡位置向正的方向移动,称为阳极极化。在电化学研究中,常常测定极化曲线,即电极电位与电流密度的关系。铁在硫酸溶液中典型的阳极极化曲线如图23.1所示,该曲线分为四个区域: 电 流 密 度 i 阳极电位φ + 图23.1 阳极极化曲线 1.从点a 到点b 的电位范围称金属活化区。此区域内的ab 线段是金属的正常阳极溶解,以铁电极为例,此时铁以二价形式进入溶液,即Fe → Fe 2+ + 2e-。a 点即为金属的自然腐蚀电位。 2.从b 点到c 点称为钝化过渡区。bc 线是由活化态到钝化态的转变过程,b 点所对应的电位称为致钝电位,其对应的电流密度ib 称为致钝电流密度,此时Fe 2+离子与溶液中的-24 SO 离子形成4FeSO 沉淀层, 阻碍了阳极反应进行,导致电流密度开始下降。由于+H 不容易到达4FeSO 沉淀层的内部,因此铁表面的pH 逐步增大。 3.从c 点到d 点的电位范围称为钝化区。由于金属表面状态发生变化,阳极溶解过程的过

电位升高,金属的溶解速率急剧下降。在此区域内的电流密度很小,基本上不随电位的变化而改变。此时的电流密度称为维持钝化电流密度i m 。对铁电极而言,此时32O Fe 在铁表面生成,形成致密的氧化膜,极大地阻碍了铁的溶解,出现钝化现象。 4.de 段的电位范围称为过钝化区。在此区阳极电流密度又重新随电位增大而增大,金属的溶解速度又开始增大,这种在一定电位下使钝化了的金属又重新溶解的现象叫做过钝化。电流密度增大的原因可能是产生了高价离子(如,铁以高价转入溶液),或者达到了氧的析出电位,析出氧气。 测定极化曲线实际上是测定有电流流过电极时电极电位与电流的关系,极化曲线的测定可以用恒电流和恒电位两种方法。恒电流法是控制通过电极的电流(或电流密度),测定各电流密度时的电极电位,从而得到极化曲线。恒电位法是将研究电极的电位恒定地维持在所需的数值,然后测定相应的电流密度,从而得到极化曲线。由于在同一电流密度下可能对应多个不同的电极电位,因此用恒电流法不能完整的描述出电流密度与电位间的全部复杂关系。 本实验采用控制电极电位的恒电位法测定碳钢在碱性溶液中的阳极极化曲线。碳钢常用作建筑钢筋,是大量使用的建筑材料。混凝土凝结过程中会析出氢氧化钙等碱性物质,并在钢筋表面形成保护膜,阻止钢筋的腐蚀。同时,渗入混凝土内部的雨水等外来物质会带入2CO 、 Cl 等,改变钢筋表面的pH 值和腐蚀电位。本实验模拟钢筋在混凝土中所处的碱性环境,通过恒电位法测定其极化曲线,了解影响钢筋腐蚀的各种因素。 三、仪器与试剂 HDY-I 型恒电位仪(南京桑力电子设备厂),三电极池及支架,碳钢电极,铂电极,饱和甘汞电极,34HCO NH 饱和溶液,浓3NH 水,1%(体积比)硫酸溶液,丙酮,金相砂纸。烧杯(100ml )2只,量筒(50或100ml )1只。 恒电位仪前面板如图23.2所示,以功能作用划分为14个区: 图23.2 前面板示意图

金属钝化原理

金属钝化原理与应用机械与汽车工程学院 材料成型及控制工程

金属钝化原理及应用 (材料成型及控制工程) 摘要:金属经氧化性介质处理后,其腐蚀速度比原来未处理前有显着下降的现象称金属的钝化。其钝化机理主要可用薄膜理论来解释,即认为钝化是由于金属与氧化性介质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、能坚固地附在金属表面上的钝化膜。这层膜成独立相存在,通常是氧和金属的化合物。它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质直接接触,从而使金属基本停止溶解形成钝态达到防止腐蚀的效果。 关键词:表面处理、钝化、铬酸盐、酸洗钝化 一、概述 钝化现象早在十八世纪30年代即被发现,自此得到了广泛的研究。 钝化现象——通常,电极电位愈正,金属溶解速度愈大。而实际中,常有电位超过一定数值后,电流突然减少,这种现象成为钝化现象。 金属在介质中具有极低的溶解速度的性质称为“钝性”。金属在介质中强烈溶解的性质叫做“活性”。活态向钝态的转变叫做钝化,能够使金属发生钝化的物质被称为钝化剂。钝化现象发生通常与氧化介质有关。有时在非氧化性介质中也可以发生钝化,如镁在氢氟酸中、钼和铌在盐酸中、汞和银在氯离子作用下等。 金属钝化的定义:在一定条件下,当金属的电位由于外加阳极电流或局部阳极电流而移向正方向时,原来活泼地溶解着的金属表面状态会发生某种突变,同时金属的溶解速度急速下降,这种表面状态的突变过程叫做钝化[1]。 金属钝化的两个必要标志:腐蚀速度大幅度下降、电位强烈正移。 金属钝化的特征[2]:

①金属的电极电位朝正值方向移动; ②腐蚀速度明显降低; ③钝化只发生在金属表面; ④金属钝化以后,即使外界条件改变了,也可能在相当程度上保持钝态。 钝化的分类 化学钝化:金属与钝化剂自然作用产生(如:Cr,Al,Ti等金属在含氧溶液中)又称自钝化。 电化学钝化(阳极钝化):外电流使金属阳极钝化,使其溶解速度大幅降低,并且能够保持高度的稳定性。 阳极钝化和化学钝化的实质是一样的。 机械钝化:在一定环境下金属表面沉积出一层较厚的,但不同程度稀松的盐层,实际上起了机械隔离反应物的作用。 研究金属钝化的意义 金属的钝化现象具有极大的重要性。提高金属材料的钝化性能,促使金属材料在使用环境中钝化,是腐蚀控制的最有效控制之一。 二、铬酸盐钝化[3] 1.概述 生产中最常用的钝化方法就是铬酸盐处理,这种方法能够使金属表面转化成以铬酸盐为主要组成的膜以实现钝化处理。金属进行铬酸盐处理的目的如下: ①提高金属或金属镀层的抗腐蚀性能。对于金属镀层来说,在其上的

实验报告-极化曲线测量金属的腐蚀速度

课程 实 验 者 名 称 页数( ) 专业 年级、班 同组者姓名 级别 姓 名 实验 日 期 年 月 日 一、目的和要求 1、 掌握恒电位法测定电极极化曲线的原理和实验技术。通过测定Fe 在NaCl 溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流 2、论极化曲线在金属腐蚀与防护中的应用 二、基本原理 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。在本实验中,镁合金和钢分别与0.5mol/L 的NaCl 溶液构成腐蚀体系。 镁合金与NaCl 溶液构成腐蚀体系的电化学反应式为: 阳极: Mg= Mg 2++2e 阴极: 2H 2O+2e=H 2+2OH - 钢与NaCl 溶液构成腐蚀体系的电化学反应式为: 阳极: Fe= Fe 2++2e 阴极: 2H 2O+2e=H 2+2OH - 腐蚀体系进行电化学反应时的阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。根据法拉第定律,即在电解过程中,阴极上还原物质析出的量与所通过的电流强度和通电时间成正比,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。金属处于自腐蚀状态时,外测电流为零。 极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。在活化极化控制下,金属腐蚀速度的一般方程式为: 其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别 为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。 令?E 称为腐蚀金属电极的极化值,?E =0时,I =0;?E>0时,是阳极极化,I>0,体系通过阳极电流。?E<0时,I<0, 体系通过的是阴极电流,此时是对腐蚀金属电极进行阴极极化。因此外测电流密度也称为极化电流密度 测定腐蚀速度的塔菲尔直线外推法:当对电极进行阳极极化,在强极化区,阴极分支电流i k =0, )]ex p()[ex p(k c a c corr k a i i i I β??β??---=-=c E ??-=?)]ex p()[ex p(k a corr E E i I ββ?--?=)ex p(a corr a E i i I β?==

金属钝化处理

钝化处理 什么叫钝化处理? 使金属表面转化为不易被氧化的状态,而延缓金属的腐蚀速度的方法。 一种活性金属或合金,其中化学活性大大降低,而成为贵金属状态的现象,叫钝化。金属由于介质的作用生成的腐蚀产物如果具有致密的结构,形成了一层薄膜(往往是看不见的),紧密覆盖在金属的表面,则改变了金属的表面状态,使金属的电极电位大大向正方向跃变,而成为耐蚀的钝态。如Fe→Fe++时标准电位为-0.44V,钝化后跃变到+0.5~1V,而显示出耐腐蚀的贵金属性能,这层薄膜就叫钝化膜。金属的钝化也可能是自发的过程(如在金属的表面生成一层难溶解的化合物,即氧化物膜)。在工业上是用钝化剂(主要是氧化剂)对金属进行钝化处理,形成一层保护膜。不锈钢钝化处理 一般指的是不锈钢焊接口的钝化处理。如果是焊条焊接的话,先清理掉药皮,氩弧焊的话就不用了;均匀的将“云清”牌不锈钢钝化膏涂于焊口,等待5分钟用抹布用力擦拭,待擦至露出不锈钢原色后,用水将残留物清洗干净。注意操作时一定带防护手套,钝化膏有很强的腐蚀性! 钝化是将金属置于亚硝酸盐、硝酸盐、铬酸盐或重铬酸盐溶液中处理,使金属表面生成一层铬酸盐钝化膜的过程。常作为锌、镉镀层的后处理,提高镀层的耐蚀性;有色金属的防护;提高漆膜的附着力等。

铁、铝在稀HNO3或稀H2SO4中能很快溶解,但在浓HNO3或浓H2SO4中溶解现象几乎完全停止了,碳钢通常很容易生锈,若在钢中加入适量的Ni、Cr,就成为不锈钢了。金属或合金受一些因素影响,化学稳定性明显增强的现象,称为钝化。由某些钝化剂(化学药品)所引起的金属钝化现象,称为化学钝化。如浓HNO3、浓H2SO4、HClO3、K2Cr2O7、KMnO4等氧化剂都可使金属钝化。金属钝化后,其电极电势向正方向移动,使其失去了原有的特性,如钝化了的铁在铜盐中不能将铜置换出。此外,用电化学方法也可使金属钝化,如将Fe置于H2SO4溶液中作为阳极,用外加电流使阳极极化,采用一定仪器使铁电位升高一定程度,Fe就钝化了。由阳极极化引起的金属钝化现象,叫阳极钝化或电化学钝化。 金属处于钝化状态能保护金属防止腐蚀,但有时为了保证金属能正常参与反应而溶解,又必须防止钝化,如电镀和化学电源等。 金属是如何钝化的呢?其钝化机理是怎样的?首先要清楚,钝化现象是金属相和溶液相所引起的,还是由界面现象所引起的。有人曾研究过机械性刮磨对处在钝化状态的金属的影响。实验表明,测量时不断刮磨金属表面,则金属的电势剧烈向负方向移动,也就是修整金属表面可引起处在钝态金属的活化。即证明钝化现象是一种界面现象。它是在一定条件下,金属与介质相互接触的界面上发生变化的。电化学钝化是阳极极化时,金属的电位发生变化而在电极表面上形成金属氧化物或盐类。这些物质紧密地覆盖在金属表面上成为钝化膜而导致金属钝化,化学钝化则是像浓HNO3等氧化剂直接对金属的作用而在表面形成氧化膜,或加入易钝化的金属如Cr、Ni等而引起的。化学钝化时,加入的氧化剂浓度还不应小于某一临界值,不然不但不会导致钝态,反将引起金属更快的溶解。

实验2金属Zn阳极极化曲线的测量

实验2:金属Zn阳极极化曲线的测量 一、实验目的 1.掌握阳极极化曲线测试的基本原理和方法; 2.测定Zn电极在1M KOH溶液和1M ZnCl2溶液中的阳极极化曲线; 3.通过实验理解金属电极钝化与活化过程。 二、实验原理 线性电位扫描法是指控制电极电位在一定的电位范围内,以一定的速度均匀连续的变化,同时记录下各电位下反应的电流密度,从而得到电位-电流密度曲线,即稳态电流密度与电位之间的函数关系:i= f(ψ)。 特别适用于测量电极表面状态有特殊变化的极化曲线。如下:如阳极钝化行为的阳极极化曲线。 阳极极化:金属作为阳极时在一定的外电势下发生的阳极溶解过程叫做阳极极化,金属 的钝化现象:阳极的溶解速度随电位变正而逐渐增大。这是正常的阳极溶出。但当阳极电位正到某一数值时,其溶解速度达到一最大值。此后阳极溶解速度随着电位变正,反而大幅度的降低,这种现象称为金属的钝化现象。线性电位扫描法不但可以测定阴极极化曲线,也可以测定阳极极化曲线,特别适用于测定电极表面状态有特殊变化的极化曲线,如测定具有阳极钝 化行为的阳极极化曲线,用线性电位扫描法测得的阳极极化曲线,如下图所示

?AB段-----称为活性溶解区;此时金属进行正常的阳极溶解,阳极电流随电位改变服Tafel 公式的半对数关系。 ?BC段-----称为钝化过渡区;此时是由于金属开始发生钝化,随着电极电位的正移,金属的溶解速度反而减小了。 ?CD段-----称为钝化稳定区;在该区域中金属的溶解速度基本上不随电位二改变; ?DE段-----称为过度钝化区;此时金属溶解速度重新随电位的正移而增大,为氧的析出或者高价金属离子的生成。 从阳极极化曲线上可以得到下列参数:c点对应的电位---临界钝化电位;c点对应的电流—临界钝化电流密度;而这些参数恒电流法是测不出来的。 影响金属钝化的因素很多,包括溶液的组成、金属的组成和结构以及外界条件。 三、仪器与试剂 CHI电化学工作站、锌电极、Hg/HgO电极、甘汞电极、铂电极、三口电解槽、 1M KOH溶液250ml、1M ZnCl2溶液250ml 金属Zn是中性锌锰电池、碱性锌锰电池和锌-空气电池等的负极材料,其电化学行为受到广泛的研究。本实验应用线性电位扫描法测量金属Zn电极在1M KOH和1M ZnCl2 中阳极极化曲线。

第五章不锈钢抗腐蚀性能

第五章不锈钢抗腐蚀性能 不锈钢的一般特性 表面美观,可使用性能多样性; 耐腐蚀性能好,可用于弱腐蚀及各种介质环境较强腐蚀; 强度硬度广泛,使用各种性能要求; 耐高温、低温性能好,使用温度适用范围大; 加工性能好; 可焊性好。 但从不锈钢定义可以看出,不锈钢与其他钢的区别就是不锈性,耐腐蚀性,所以我们研究一下它为什么不锈。 金属的腐蚀类型 金属的腐蚀,是金属与周围介质发生化学或电化学反应而发生破坏的现象。金属的抗腐蚀或耐腐蚀性是指金属抵抗腐蚀作用的能力。 化学腐蚀 化学腐蚀是指金属与周围介质直接发生化学反应而产生的腐蚀,例如钢在高温下氧化,就是一种典型的化学腐蚀,其产物沉积在金属表面上,也有人把这种腐蚀叫干腐蚀。 如果金属表面形成的腐蚀产物非常致密,则金属与腐蚀介质就会隔离,腐蚀就会阻滞,例如钢铁零件的蒸汽处理,法兰(黑)处理,就是使零件表面生成一层致密的Fe3O4薄膜,零件不再与周围介质发生接触,防止其化学反应的进行,零件便被保护起来了。 电化学腐蚀

电化学腐蚀是金属与周围介质接触,由于电化学作用而引起表面腐蚀的现象。例如钢在室温下的生锈主要是电化学腐蚀,在电化学腐蚀过程中有电流产生,电化学腐蚀是由于不同的金属之间或同种金属的各相之间存在不同的电极电位,且相互碰撞,并存在于同一种电解溶液中构成分数电池而引起的。如图5-1。 碳素钢在退火或正火状态下的组织是由铁素体和渗碳体组成的,并相互接触。渗碳体的电极电位一般比铁素体高,两相之间存在着电位差,当钢表面有水膜时,加上空气中O2等气体的溶解,在铁素体和渗碳体之间构成一微电池,电极电位低的铁素体称为阳极而被腐蚀引起钢的破坏。如果将钢件放在酸、碱、盐等水溶液中,电化学腐蚀作用更快。钢中的碳化物、夹杂物等,各部分组织和成分不均,内部应力不均,都促使各部分在电解质中促使相互间形成电极位差。这种电极位差愈大,微阳极与微阴极间的电流强度愈大,钢的腐蚀速度也愈大。 有人把电化学腐蚀称为湿 腐蚀,电化学腐蚀能否进行, 取决于金属能否被离子化, 金属离子化的趋势,可以用 金属的标准电极电位(εσ) 来说明。定性的说,金属标 准电极电位越负,则越容易图5-1 碳素钢在潮湿空 离子化。气中产生电化学腐蚀示意图

金属钝化

金属的钝化 在现代工业生产中,我们常常会遇到金属钝化现象。一些较活泼的金属,在某些特定的环境介质中,会呈现惰性状态。如金属的电极电位因外加阳极电流或局部阳极电流而向正方向移动,当超过一定数值后,金属的溶解速度反而剧烈地减小了,铁和不锈钢在硫酸中进行阳极极化时便观察到此现象。金属阳极溶解过程中的这种“反常”现象称为金属的钝化过程。 §1-1钝化现象及其分类 一、钝化现象及定义 如果在室温时试验铁片在硝酸中的反应速率以及和硝酸浓度的关系,我们将会发现铁的反应速率,最初是随硝酸浓度增大而增大的。当硝酸浓度增加到30%~40%时,溶解度达到最大值,若继续增大硝酸的浓度(>40%),铁的溶解度却突然成万倍下降,并使表面处于一种特殊的 状态。这时即使把它转移到硫酸中去,也 不会再受到酸的浸蚀。也就是说当硝酸 增大到一定程度时,它的反应速率迅速减 小,继续增大浓度时,它的反应速率更小, 最后不再起反应,即铁变得“稳定”了, 或者像一般说的,铁发生“钝化”了。 除了铁之外,其他一些金属也可以发 生钝化。例如,Cr、Ni、Co、Mo,Al、Ta、Nb和W等,其中最容易钝化的金属是Cr、Al、Mo,Ni、Fe,称作自钝化金属,能在空气中发生自钝化。不仅硝酸,其他强氧化剂如浓硫酸、氯酸、碘酸、重铬酸钾、高锰酸钾等,都可以引起金属钝化。但是钝化现象的发生虽然通常和氧化性介质作用有关,但是有些金属却可在非氧化性介质中钝化。例如镁可以在氢氟酸中钝化,钼和铌可以在盐酸中钝化,汞和银可以在氯离子的作用下发生钝化,不锈钢在硝酸中钝化等等。 金属钝化的定义:在一定条件下,当金属的电位由于外加阳极电流或局部阳极电流而移向正方向时,原来活泼地溶解着的金属表面状态会发生某种突变,同时金属的溶解速度急速下降,这种表面状态的突变过程叫做钝化。 二、金属钝化的几种类型 金属钝化可以分为三种类型:化学钝化、阳极钝化、机械钝化 1.化学钝化又称自动钝化(autopassivation)。金属与钝化剂的自然作用而产生的钝化现象。如铬、铝、钛等金属在空气和很多种含氧的溶液中,都易于被氧所钝化,故这些金属称为自钝化金属。利用它可以使某些金属达到减缓腐蚀的目的。如一般钢铁常采用硝酸、重铬酸钾、亚硝酸钠等溶液进行钝化处理;在铁中加入

金属钝化处理

什么是“钝化处理”? 来源:浏览次数:740 发布日期:2009-03-04 英文表示Passivation 使金属表面转化为不易被氧化的状态,而延缓金属的腐蚀速度的方法。 一种活性金属或合金,其中化学活性大大降低,而成为贵金属状态的现象,叫钝化。 金属由于介质的作用生成的腐蚀产物如果具有致密的结构,形成了一层薄膜(往往是看不见的),紧密覆盖在金属的表面,则改变了金属的表面状态,使金属的电极电位大大向正方向跃变,而成为耐蚀的钝态。如Fe→Fe++时标准电位为-0.44V,钝化后跃变到+0.5~1V,而显示出耐腐蚀的贵金属性能,这层薄膜就叫钝化膜。 金属的钝化也可能是自发的过程(如在金属的表面生成一层难溶解的化合物,即氧化物膜)。在工业上是用钝化剂(主要是氧化剂)对金属进行钝化处理,形成一层保护膜。 钝化的机理:我们知道,铁、铝在稀HNO3或稀H2SO4中能很快溶解,但在浓HNO3或浓H2SO4中溶解现象几乎完全停止了,碳钢通常很容易生锈,若在钢中加入适量的Ni、Cr,就成为不锈钢了。金属或合金受一些因素影响,化学稳定性明显增强的现象,称为钝化。由某些钝化剂(化学药品)所引起的金属钝化现象,称为化学钝化。如浓HNO3、浓H2SO4、HClO3、K2Cr2O7、KMnO4等氧化剂都可使金属钝化。金属钝化后,其电极电势向正方向移动,使其失去了原有的特性,如钝化了的铁在铜盐中不能将铜置换出。此外,用电化学方法也可使金属钝化,如将Fe置于H2SO4溶液中作为阳极,用外加电流使阳极极化,采用一定仪器使铁电位升高一定程度,Fe就钝化了。由阳极极化引起的金属钝化现象,叫阳极钝化或电化学钝化。 金属处于钝化状态能保护金属防止腐蚀,但有时为了保证金属能正常参与反应而溶解,

5 铁的极化和钝化曲线的测定

实验4 铁的极化和钝化曲线的测定 一、实验目的 1.理解和掌握极化曲线测定的原理和实验方法。 2.学会用恒电位仪测定极化曲线的方法。 二、实验原理 在研究可逆电池的电池反应和电动势的时候,电极处于平衡状态,与之相对应的电势是平衡电势φ平,随着电极上电流密度的增加,电极的不可逆程度愈来愈大,其电势值对平衡电势值的偏离也愈来愈大,在有电流通过电极时,电极电势偏离于平衡值的现象称为电极的极化。根据实验测出的数据来描述电流密度与电极电势之间的关系曲线称为极化曲线。通过极化曲线的测绘,可使我们对电极极化过程以及金属的腐蚀与保护等加深认识和理解。 在金属做阳极的电解池中通过电流时,通常发生阳极的电化学溶解过程,如下式所示: M=M n++ne 阳极极化不大时,阳极溶解速度随电位变正而逐渐增大,这是金属正常的阳极溶解。但在某些化学介质中,当阳极电位正移到某一数值时,阳极溶解速度随电位变正而大幅度降低,这种现象称为阳极的钝化。处于钝化状态的金属的溶解速度是很小的,这是因为在金属表面生成了一层电阻高、耐腐蚀的钝化膜,这在金属防护以及作为电镀的不溶性阳极时,正是人们所需要的。利用阳极的钝化,使金属表面生成了一种耐腐蚀的钝化膜来防止金属腐蚀的方法,叫做阳极的保护。 金属的钝化现象是常见的,人们已对它进行了大量的研究工作。影响金属钝化过程及钝化性质的因素,可归纳为以下几点: 1. 溶液的组成 溶液中存在的氢离子、卤素离子以及某些具有氧化性的阴离子,对金属的钝化现象起着颇为显著的影响。在中性溶液中,金属一般比较容易钝化,而在酸性或者某些碱性的溶液中,钝化则困难的多,这与阳极反应产物的溶解度有关。卤素离子,特别是氯离子的存在,则明显的阻止了金属的钝化过程,已经钝化了的金属也容易被它破坏(活化),而使金属的阳极溶解速度重新增大。溶液中存在某些具有氧化性的阴离子(如CrO42-)则可以促进金属的钝化。

极化曲线的测定

实验八 极化曲线的测定 一、实验目的 1、掌握稳态恒电势法测定金属极化曲线的基本原理和测试方法。 2、了解极化曲线的意义和应用。 3、掌握恒电势仪的使用方法。 二、实验原理 1、极化现象与极化曲线 当电极处于平衡状态,电极上无电流通过时,这时的电极电势称为平衡电势。当有电流明显地通过电极时,电极的平衡状态被破坏,电极电势偏离平衡值,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大,电极电势将越来越偏离平衡电势。这种由于有电流存在而造成电极电势偏离平衡电极电势的现象称为电极的极化。 在某一电流密度下,实际发生电解的电极电势与平衡电极电势之间的差值称为超电势。阳极上由于超电势使电极电势变大,阴极上由于超电势使电极电势变小。超电势的大小与流经电极的电流密度有关,电极电势(或超电势)与电流密度的关系曲线称为极化曲线,极化曲线的形状和变化规律反映了电化学过程的动力学特征。除电流密度外,影响超电势的因素还有很多,如电极材料,电极的表面状态,温度,电解质的性质、浓度及溶液中的杂质等。 金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示: M →M n++n e 此过程只有在电极电势正于其热力学电势时才能发生。阳极的溶解速度(用电流密度表示)随电势变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变 正反而大幅度降低,这种现象称为金属的钝化现 象。 图3-8-1为钢在硫酸溶液中的阳极极化曲 线。图中曲线表明,从A 点开始,随着电势向 正方向移动,电流密度也随之增加,电势超过B 点后,电流密度随电势增加迅速减至最小,这是 因为在金属表面生产了一层电阻高,耐腐蚀的钝 化膜。B 点对应的电势称为临界钝化电势,对应 的电流称为临界钝化电流。电势到达C 点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到 电势升到D 点,电流才有随着电势的上升而增 大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE 段称为过钝化区。 2、极化曲线的测定 (1) 恒电势法 恒电势法就是将研究电极依次恒定在不同的数值上,然后测量对应于各电势下的电流。极化曲线的测量应尽可能接近体系稳态。稳态体系指被研究体系的极化电流、电极电势、电 图3-8-1 极化曲线 A -B :活性溶解区;B :临界钝化点B -C :过渡钝化区;C -D :稳定钝化区;D -E :超(过)钝化区

镍等金属钝化曲线的测定及腐蚀行为评价

物理化学实验报告镍等金属钝化曲线的测定及腐蚀行 为评价 学院: 班级: 学号: 姓名: 指导教师:

一、实验目的 (1)掌握用线性电位扫描法测定镍在硫酸溶液中的阳极极化曲线和钝化行为。 (2)了解金属钝化行为的原理和测量方法。 (3)测定C1-浓度对Ni钝化的影响。 二、实验原理 (一)金属的钝化 金属处于阳极过程时会发生电化学溶解,其反应式为: M →Mn+ + ne- 在金属的阳极溶解过程中,其电极电势必须大于其热力学电势,电极过程才能发生。这种电极电势偏离其热力学电势的行为称为极化。当阳极极化不大时,阳极过程的速率(即溶解电流密度)随着电势变正而逐渐增大,这是金属的正常溶解。但当电极电势正到某一数值时,其溶解速率达到最大,而后,阳极溶解速率随着电势变正,反而大幅度降低,这种现象称为金属的钝化。 金属钝化一般可分为:化学钝化和电化学钝化。 金属之所以由活化状态转变为钝化状态,目前对此问题有着不同看法: (1)氧化膜理论:在钝化状态下,溶解速度的剧烈下降,是由于在金属表面上形成了具有保护性的致密氧化物膜的缘故。 (2)吸附理论:这是由于表面吸附了氧,形成氧吸附层或含氧化物吸附层,因而抑制了腐蚀的进行。

(3)连续模型理论:开始是氧的吸附,随后金属从基底迁移至氧吸附膜中,然后发展为无定形的金属-氧基结构。各种金属在不同介质或相同介质中的钝化原因不尽相同,因此很难简单地用单一理论予以概括。 (二)影响金属钝化过程的几个因素 (1)溶液的组成 溶液中存在的H+、卤素离子以及某些具有氧化性的阴离子对金属钝化现象起着显著的影响。在中性溶液中,金属一般是比较容易钝化的,而在酸性或某些碱性溶液中要困难得多。 (2)金属的化学组成和结构 各种纯金属的钝化能力均不相同,以Fe、Ni、Cr种金属为例,易钝化的顺序Cr>Ni>Fe。 (3)外界因素 当温度升高或加剧搅拌,都可以推迟或防止钝化过程的发生。这显然是与离子的扩散有关。在进行测量前,对研究电极活化处理的方式及其程度也将影响金属的钝化过程。 (三)研究金属钝化的方法 电化学研究金属钝化通常有两种方法:恒电流法和恒电势法。由于恒电势法能测得完整的阳极极化曲线,因此,在金属钝化研究中比恒电流法更能反映电极的实际过程。用恒电势法测量金属钝化可有下列两种方法。 (1)静态法

无缝钢管钝化处理

钢工表面钝化处理的方法2006-5-25 钢工件表面钝化处理的方法是在常温下,将配制好的钝化液,用毛刷刷到钢工件需要钝化处理的部分,按钢工件需要在通风条件下存放时间来控制存入或取出。使钢工件表面生成一层有氧化 铁组成的钝化膜,因为氧化层有一定的厚度,就使钢工件表面成为钢——氧化铁复合材料,用来 降低钢工件在运动或受热挤压时的温升;缓解钢工件的热疲劳性粘结、剥落。 本发明工艺所使用的主要材料为空气中的氧气,以往由于没掌握对钢氧化进行控制的方法,很少使用。而本工艺解决了钢工件表面氧化的速度和钢氧化层厚度的控制,所以有广泛的应用范 围。 成都无缝钢管厂1982年初为解决周期式轧辊常期粘钢的问题,成立了热腐蚀和冷腐蚀攻关小组,我在11月摸索出简易的钝化处理方法,立即应用于生产。作了总结,当时两个车间使用,年 节约天然气72000方、经济效益为270余万元。1985年2月发表论文。1994年后三两个车间使用 累计节约天然气200万方、经济效益为7000万元,现申请了专利。 由于工厂采用钝化处理的方法在钢工件表面生成氧化铁,替代在了热腐蚀和冷腐蚀获得成功,它象人们长期使用的渗碳、渗氮一样,以氧化铁、氮化铁、碳化铁来隔离两运动的钢工件表面直 接接触,避免同类金属在高温、高压下发生粘结。它克服了原钢工件表面的淬火层发生退火,发 生钢工件的热疲劳性粘结、剥落。 本发明工艺可替代常使用的淬火、调质处理、渗碳、渗氮按现有的处理规模,有20%用本工艺替代,年可节约标煤几十万吨;本发明工艺可开发高强度的轴瓦、轴套替代现正大量使用的铜 瓦、铜套和粉末冶金瓦、粉末冶金套。本工艺还可以节约铜和稀有金属,同时可以使国家钢产量 过剩得到缓解。 钝化处理 钝化处理是化学清洗中最后一个工艺步骤,是关键一步。锅炉经酸洗、水冲洗、漂洗后,金属表面很清洁,非常活化,很容易遭受腐蚀,所以必须立即进行钝化处理,使清洗 后的金属表面生成保护膜,减缓腐蚀。

相关文档