文档库 最新最全的文档下载
当前位置:文档库 › 7UT612差动保护装置中文帮助

7UT612差动保护装置中文帮助

7UT612差动保护装置中文帮助
7UT612差动保护装置中文帮助

7UT612差动保护装置中文帮助

7UT612差动保护装置中文帮助

7UT612差动保护装置中文帮助

一、装置菜单中文注释(以7UT6125-5EB20-1AA0 V4.0为例)

MAIN MENU 主菜单:

Annunciation →1事件记录

Measurement →2测量值

Control →3控制

Settings →4参数设置

Test/Diagnose →5硬件测试

1.Annunciation 事件记录:

Event Log →01运行和操作记录

Trip Log →02跳闸记录

Statistics →04开关开合次数

Set/Reset →11复位(清除事件记录)

2.Measurement 测量值:

Operation. Pri →01一次测量值

Operation. Sec →11二次测量值

Angles →12相角

Percent →21百分比测量值

User Define →51自定义测量值

Energy →61电量

Set Point(MV)→71用户定义整定点

Reset →81复位测量值

Idiff/IRest →92差动/制动电流

3.Control 控制:

Breaker/Switch →1开关、刀闸

Tagging →2标记命令

Interlock →3内部联锁

Control Auth. →4控制权限

Control Mode. →5控制模式

4.Settings 参数设置:

Device Config. →01功能配置

Masking (I/O) →02输入输出配置矩阵

P. System Data1 →03电力系统数据1

Group A →04定值组A

Osc. Fault Rec. →09故障录波设置

Setup/Extras →10装置系统设置

General Setting →11故障显示触发条件

4.1 Device Config. 功能配置

0103 Grp Chge OPTION 定值组切换功能

Disabled 不启用

Enabled 启用

0105 PROT. OBJECT 保护对象

3 phase Transformer 三相变压器

1 phase Transformer 单相变压器

Autotransformer 自耦变压器

Generator/Motor 发电机/电动机

3 phase Busbar 三相母线

1 phase Busbar 单相母线

0106 NUMBER OF SIDES 多相保护对象的绕组数目

0107 NUMBER OF ENDS 单相母线的出线数目

0108 I7-CT CONNECT. I7连接到哪一侧

not used 不用

Side 1 用于1侧

Side 2 用于2侧

0112 DIFF. PROT. 差动保护

Disabled 不启用

Enabled 启用

0117 Coldload Pickup 冷负荷启动

Disabled 不启用

Enabled 启用

0120 DMT/IDMT Phase 定时限/反时限相过流保护

Disabled 不启用

Side 1 用于1侧

Side 2 用于2侧

0121 DMT/IDMT PH. CH 定时限/反时限相过流保护特性

Definite Time only 仅定时限

Time Overcurrent Curve IEC IEC反时限过流曲线

Time Overcurrent Curve ANSI ANSI反时限过流曲线

User Defined Pickup Curve 用户自定义起动曲线

User Defined Pickup and Reset Curve 用户自定义起动和复位曲线0122 DMT/IDMT 3I0 定时限/反时限零序过流保护(3I0)

Disabled 不启用

Side 1 用于1侧

Side 2 用于2侧

0123 DMT/IDMT 3I0 CH 定时限/反时限零序过流保护特性(3I0)Definite Time only 仅定时限

Time Overcurrent Curve IEC IEC反时限过流曲线

Time Overcurrent Curve ANSI ANSI反时限过流曲线

User Defined Pickup Curve 用户自定义起动曲线

User Defined Pickup and Reset Curve 用户自定义起动和复位曲线0124 DMT/IDMT Earth 定时限/反时限接地过流保护

Disabled 不启用

Unsensitive Current Transformer I7 不灵敏的电流互感器I7

0125 DMT/IDMT E CHR. 定时限/反时限接地过流保护特性

Definite Time only 仅定时限

Time Overcurrent Curve IEC IEC反时限过流曲线

Time Overcurrent Curve ANSI ANSI反时限过流曲线

User Defined Pickup Curve 用户自定义起动曲线

User Defined Pickup and Reset Curve 用户自定义起动和复位曲线0142 Therm. Overload 热过负荷保护

Disabled 不启用

Side 1 用于1侧

Side 2 用于2侧

0143 Therm. O/L CHR. 热过负荷保护特性

classical (according IEC60255) 采用热复制(根据IEC60255)

according IEC354 根据IEC354

0181 M. V. SUPERV 测量值监视

Disabled 不启用

Enabled 启用

0186 EXT. TRIP1 外部跳闸功能1

Disabled 不启用

Enabled 启用

0187 EXT. TRIP2 外部跳闸功能2

Disabled 不启用

Enabled 启用

4.2 Masking (I/O) 输入输出配置

Binary Input 二进制输入

Binary Input 1 二进制输入1

Binary Input 2 二进制输入2

Binary Input 3 二进制输入3

LED 灯

LED 1 灯1

LED 2 灯2

LED 3 灯3

LED 4 灯4

LED 5 灯5

LED 6 灯6

LED 7 灯7

Binary Output 二进制输出

Relay 1 二进制输出1

Relay 2 二进制输出2

Relay 3 二进制输出3

Relay 4 二进制输出4

4.3 P. System Data 1 电力系统数据1

0270 Rated Frequency 额定频率

50Hz

60Hz

16 2/3Hz

0271 PHASE SEQ. 相序

L1 L2 L3 ABC相序

L1 L3 L2 ACB相序

0276 TEMP. UNIT 温度测量单位

Degree Celsius 摄氏度

Degree Fahrenheit 华氏度

0240 UN-PRI SIDE 1 1侧绕组额定一次电压

0241 STARPNT SIDE 1 1侧绕组星形中性点接地方式

Solid Earthed 可靠接地

Isolated 绝缘(不接地)

0242 CONNECTION S1 变压器1侧绕组的连接方式

Y(Wye)星形

D(Delta)三角形

Z(Zig-Zeg)Z形

0243 UN-PRI SIDE 2 2侧绕组额定一次电压

0244 STARPNT SIDE 2 2侧绕组星形中性点接地方式

Solid Earthed 可靠接地

Isolated 绝缘(不接地)

0245 CONNECTION S2 变压器2侧绕组的连接方式

Y(Wye)星形

D(Delta)三角形

Z(Zig-Zeg)Z形

0246 VECTOR GRP S2 2侧绕组的接线组别

0~11 0~11点

0249 SN TRANSFORMER 变压器额定视在功率

0201 STRPNT ->OBJ S1 1侧CT的星形中性点是否指向被保护对象0202 IN-PRI CT S1 1侧CT一次额定电流

0203 IN-SEC CT S1 1侧CT二次额定电流

0206 STRPNT ->OBJ S2 2侧CT的星形中性点是否指向被保护对象0207 IN-PRI CT S2 2侧CT一次额定电流

0208 IN-SEC CT S2 2侧CT二次额定电流

0230 EARTH. ELECTROD 接地端极性指向

Terminal Q7 端子Q7

Terminal Q8 端子Q8

0232 IN-PRI CT I7 I7的CT一次额定电流

0233 IN-SEC CT I7 I7的CT二次额定电流

0235 Factor I8 I8的一次电流相对匹配因子

0283 Breaker S1 I> S1侧断路器视为合闸的最小门槛电流0284 Breaker S2 I> S2侧断路器视为合闸的最小门槛电流0285 Breaker I7 I> I7侧断路器视为合闸的最小门槛电流

4.4 Group A 定值组A

Diff. Prot. →12差动保护

Coldload Pickup →17冷负荷启动

Phase O/C →20相间过流

3I0 O/C →22相间过流

Earth O/C →24接地过流

49 Thermal Overload →42热过负荷

Meas. Setup →76测量值设置

MeasValSuper →81测量值监视

Ext. Trp Func →86外部跳闸功能

4.4.1 Diff. Prot. 差动保护

1201 DIFF. PROT. 差动保护

OFF 关闭

ON 开放

Block Relay for trip commands 闭锁出口继电器1205 INC. CHAR. START 起动期间动作特性的提高

OFF 关闭

ON 开放

1206 INRUSH 2.HARM 二次谐波制动

OFF 关闭

ON 开放

1207 RESTR. n. HARM n次谐波制动

OFF 关闭

3. Harmonic 三次谐波

5. Harmonic 五次谐波

1221 I-DIFF> 差动电流的起动门槛

1231 I-DIFF>> 差动速断起动值

1253 T START MAX 最大的允许起动时间

1261 2. Harmonic 二次谐波制动比

1271 n. Harmonic n次谐波制动比

4.4.2 Coldload Pickup 冷负荷启动

1701 COLDLOAD PICKUP 冷负荷启动功能

OFF 关闭

ON 开放

1702 Start CLP Phase 相过流保护的冷负荷起动条件No Current 无电流

Breaker Contact 断路器位置接点

1703 Start CLP 3I0 零序过流保护的冷负荷起动条件

No Current 无电流

Breaker Contact 断路器位置接点

1704 Start CLP Earth 接地过流保护的冷负荷起动条件No Current 无电流

Breaker Contact 断路器位置接点

1711 CB Open Time 断路器打开时间

1712 Active Time 激活时间

1713 Stop Time 停滞时间

4.4.3 Phase O/C 相过流保护

2001 Phase O/C 相过流保护

OFF 关闭

ON 开放

2002 InRushRest. Ph 相过流的涌流制动

OFF 关闭

ON 开放

2011 I>> I>>段的起动值

2012 T I>> I>>段的延时

2013 I> I>段的起动值

2014 T I> I>段的延时

2111 I>> 冷负荷起动时I>>段的起动值

2112 T I>> 冷负荷起动时I>>段的延时

2113 I> 冷负荷起动时I>段的起动值

2114 T I> 冷负荷起动时I>段的延时

2041 2. HARM. Phase 相过流的二次谐波(基波的百分比)2042 I Max InRr. Ph. 相过流涌流制动的最大电流

2043 CROSS BLK. Phase 相过流保护交叉闭锁

2044 T CROSS BLK. Ph 相过流的交叉闭锁时间

4.4.4 3I0 O/C 零序过流保护

2201 3I0 O/C 零序过流保护

OFF 关闭

ON 开放

2202 InRushRest. 3I0 零序过流涌流制动(3I0)

OFF 关闭

ON 开放

2211 3I0>> 3I0>>段的起动值

2212 T 3I0>> 3I0>>段的延时

2213 3I0> 3I0>段的起动值

2214 T 3I0> 3I0>段的延时

2311 3I0>> 冷负荷起动时3I0>>段的起动值

2312 T 3I0>> 冷负荷起动时3I0>>段的延时

2313 3I0> 冷负荷起动时3I0>段的起动值

2314 T 3I0> 冷负荷起动时3I0>段的延时

2241 2. HARM. 3I0 零序过流的二次谐波(基波的百分比)2242 I Max InRr. 3I0 零序过流涌流制动的最大电流

4.4.5 Earth O/C 接地过流保护

2401 EARTH O/C 接地过流保护

OFF 关闭

ON 开放

2402 InRushRestEarth 接地过流的涌流制动

OFF 关闭

ON 开放

2411 IE>> IE >>段的起动值

2412 T IE >> IE >>段的延时

2413 IE > IE >段的起动值

2414 T IE > IE >段的延时

2511 IE >> 冷负荷起动时IE >>段的起动值

2512 T IE >> 冷负荷起动时IE >>段的延时

2513 IE > 冷负荷起动时IE >段的起动值

2514 T IE > 冷负荷起动时IE >段的延时

2441 2. HARM. 3I0 接地过流的二次谐波(基波的百分比)2442 I Max InRr. 3I0 接地过流涌流制动的最大电流

4.4.6 Thermal Overload 热过负荷

4201 Ther. OVERLOAD 热过负荷保护

OFF 关闭

ON 开放

4202 K-FACTOR K因子

4203 TIME CONSTANT 时间常数

4204 ⊙ALARM 热告警段

4205 I ALARM 电流过负荷告警段

4.4.7 Meas. Setup 测量值设置

7601 POWER CALCUL. 功率计算

with V setting 用整定电压

with V measuring 用测量电压

4.4.8 MeasValSuper 测量值监视

8101 BALANCE I 电流平衡监视

OFF 关闭

ON 开放

8102 PHASE ROTATION 相旋转监视

OFF 关闭

ON 开放

8111 BAL. I LIMIT S1 1侧绕组电流平衡度监视的起动门槛8112 BAL. FACT. I S1 1侧绕组电流监视的平衡因子

8121 BAL. I LIMIT S2 2侧绕组电流平衡度监视的起动门槛8122 BAL. FACT. I S2 2侧绕组电流监视的平衡因子

4.4.9 Ext. Trp Func 外部跳闸功能

8601 EXTERN TRIP1 外部跳闸功能1

OFF 关闭

ON 开放

8602 T DELAY 外部跳闸功能1延时

8701 EXTERN TRIP2 外部跳闸功能2

OFF 关闭

ON 开放

8702 T DELAY 外部跳闸功能2延时

4.5 Osc. Fault Rec. 故障录波设置

0401 WAVEFORM TRIGGER 录波方式

Save with Pickup 由启动开始存储

Save with Trip 由跳闸开始存储

Start with Trip 由跳闸开始起动

0403 MAX. LENGTH 录波的最大长度

0404 PRE. TRIG. TIME 录波的预触发时间

0405 POST REC. TIME 录波的复位时间

0406 BinIn CAPT. TIME 通过二进制输入触发的录波时间

4.6 Setup/Extras 装置系统设置

Date/Time →1日期时间

Clock Setup →2对时设置

Serial Ports →3串口设置

Device-ID →4装置ID号

MLFB/Version →5订货号和版本

Contrast →6液晶对比度

4.7 General Setting 故障显示触发条件

7110 FltDisp.LED/LCD LED/LCD的故障显示

Display Targets on every Pickup 每次起动时显示

Display Targets on TRIP only 仅跳闸时显示

5.Test/Diagnose 测试诊断:

Device Reset →01复位装置

Test Enable →02测试开放

Blk Data Trans →03限制数据传输

Hardware Test →04硬件测试

Set/Reset →11复位事件记录

SIEMENS Intern →12西门子内部测试

注1:上述所有装置参数按照7UT612 V4.0版。因订货号或版本的不同,部分参数可能会有所差异

注2:装置内的定值组切换功能(Grp Chge OPTION)如果开放的话,在Settings菜单下还有GroupB、Group C、Group D以及Change Group子项。GroupB~D内可共设置的参数与GroupA内完全一致,在此就没有一一列出

二、装置前面板操作简要说明

本说明简要介绍用面板上的MENU↑↓← →键查看信号、测量值和修改定值的方法,下文路径中出现MENU↑↓← →等符号,则表示按7UT612装置面板上的相应按键。

1.查看信号

路径:MENU(菜单)—Anunciation(信号)→ Event log →

(事件记录)

Trip log

(跳闸记录) →

事件记录:记录7UT612运行过程中的一般信号,最多200条。

跳闸记录:记录电力系统故障,最多8次。

有关“详细信息”,请参阅《7UT612 V4.0技术说明书》P198信息总表。

2.查看测量值

路径:MENU —Anunciation

Measurement → Operation.pri(一次值)→

(测量)↓

Operation.sec(二次值)→

……

有关一次值、二次值的详细信息以及测量子菜单中的其它项目请参阅《7UT612 V4.0技术说明书》P96运行测量值表等。

3.查看、修改定值

路径:MENU —Anunciation

Measurement

Control

Settings → Device Config

(整定值)↓

Masking (I/O)

P.System Data1

Group A → P.System Data2

(定值组A) ↓

Diff. Prot.

(差动)

Cold Load Pickup

(冷负荷)

Phase O/C

(相过流)

下面举例说明Group A(定值组A)下面的Diff. Prot.和Phase O/C两项内容。

(1)Diff. Prot.(差动功能)

Diff. Prot. → 1201Diff. Prot. 差动功能投退,投入ON,退出OFF

1205 INC. CHAR. START 起动时动作特性的提高(ON/OFF)

1206 INRUSH 2.HARM 二次谐波制动(ON/OFF)

1207 RESTR. n. HARM n次谐波制动(3/5/OFF)

1221 I-DIFF> 差动电流的起动门槛

1231 I-DIFF>> 差动速断起动值

(2)Phase O/C (相过流保护)

Phase O/C →2001 Phase O/C 相过流保护功能投退, 投入ON,退出OFF

2002 InRushRest. Ph 相过流的涌流制动(ON/OFF)

2011 I>> I>>段的起动值

2012 T I>> I>>段的延时

2013 I> I>段的起动值

2014 T I> I>段的延时

用户仅需要掌握以上所列项目,其余详细说明可参阅《7UT612 V4.0技术说明书》。

修改定值方法为:在光标选中所需修改项目后,按Enter键,输入密码(出厂设置为6个“0”),按Enter键,定值被显示在一个虚线框中。直接用数字键修改,按Enter键确认。可连续修改多个项目,修改完后按ESC退出Group A,退出Group A时7UT612装置提示是否需保存新定值,按Enter键确认后定值即被修改。关于修改定值的详细说明可参阅《7UT612

V4.0技术说明书》。(对于投运中的装置,修改定值请慎重!)说明:(由于图纸无法复制,请在ZIP下打开)

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

PST-1200差动保护试验方法

差动保护平衡系数的作用: 通常变压器各侧的额定二次电流是不同的,但是为了差动保护的需要,我们要把变压器正常工作时高低压侧的二次电流转换成是一样的,这里就需要引入一个平衡系数,举例说明:设变压器高压侧额定二次电流为4.6A(设已经过Y/△变化),低压侧额定二次电流为3.8安,选择高压侧为基本侧,则高压侧的平衡系数为Kph=4.6/4.6=1,低压侧的平衡系数为Kpl=4.6/3.8=1.21,经过平衡折算后,差动保护内部计算各侧额定二次电流分别为:高压侧=4.6*Kph=4.6A,低压侧=3.8*Kpl=4.6A,可见经过 平衡折算后,保护内部计算用变压器两侧额定二次电流相等,都等于基本侧的额定二次电流。 平衡系数其实就是一个比例系数 (二)PST-1200数字式变压器保护 相关保护参数定值:CT额定电流:5A; 差动动作电流:2A; 速断动作电流:20A; 高压侧额定电流:3A; 高压侧额定电压:220kV; 高压侧CT变比:200; 中压侧额定电压:110kV; 中压侧CT变比:600; 低压侧额定电压:10kV; 低压侧CT变比:2000; 相关保护设置:制动方程:Ir=max{│Ih│,│Im│,│Il│},比率制动特性曲线:第一个拐点电流Izd=高压侧额定电流值,在此定值中为3A,斜率K1=0.5;第二个拐点电流3Izd,在此定值中为3×3=9A,斜率K2=0.7。 1、三相测试仪 (1)保护控制字:0C10,内转角方式;三相测试仪;同时做三侧。 测试仪:测试对象选择3圈变,Y/Y/D-11接线方式,CT外转角。 电流接线方法:测试仪Ia→高压侧(Y侧),电流从A相极性端进入,非极性端流出; 测试仪Ic→中压侧(Y侧),电流从A相极性端进入,非极性端流 出;测试仪Ib→低压侧(D侧),电流从A相极性端进入,非极性 端流出后进入C相非极性端,由C相极性端流回测试仪。 平衡系数的设置:高压侧 1/3=0.577; 中压侧(MCT×MDY)/(HCT×HDY×3)=(600×110)/(200×220×3)=0.866; 低压侧(LCT×LDY)/(HCT×HDY)=(2000×10)/(200×220)=0.455。 (2)保护控制字:0C13,外转角方式;三相测试仪;同时做三侧。

差动保护试验

谈差动保护试验 差动保护在电力系统中被广泛采用在变压器、母线、短线路保护中。差动保护模拟试验起来比较难,主要有以下原因:第一,差动保护的电流回路比较多,两卷变压器需要高、低压两侧电流,三卷变压器需要高、中、低压三侧电流,母线保护需要更多;第二、差动保护的核心是提供给差动继电器或自动化系统差动保护单元差电流, 要求各电流回路的极性一定要正确,否则极性接错即变成和电流; 第三,差动保护的特性测试比较难。 传统的检验极性的方法是做六角图,但新投运的变压器负荷一般较小,做六角图有难度,还有,即便是六角图对也不能保证保护屏内接就正确(笔者曾发现过屏内配线错误,做六角图时,保护动作不正确)。曾经看到用人为加大变压器负荷的方法来准确地做出六角图的文章.如用投电容器来人为加大主变负荷,还有用两台变比不同的主变并列后产生环流来人为加大主变负荷。笔者认为以上方法与有关运行规程有矛盾:变压器并列变比相同,负载轻时不许投电容器都是运行规程明确规定的,就是试验没问题,在与运行人员的工作协调中也有难度。因此,以上方法不便采用。下面介绍我们的经验,我们只在二次回路上试验,不必人为加大主变负荷即可全面、系统地验证差动保护的正确性。

一、用试验箱从保护屏端子排加电流,检查保护屏内及保护单元的接线正确性 变压器的差动保护电流互感器接线,传统上都是和变压器绕组接线相对应的,即变压器绕组接成星形,相应电流互感器接成角形; 变压器绕组接成角形,相应电流互感器接成星形。这样,变压器各侧电流回路正好反相。现在的自动化系统差动保护单元有的继承了原来的接法,有的为了简化接线则要求各侧均为星形,这样对一般Y,D-11接线的变压器高压侧电流超前低压侧150°,接线系数为√3,这些差异由计算机来处理,最后差电流为零。 上面讨论了电流互感器接线类型,下面就做对保护屏加模拟电流来验证其接线是否正确的试验。如果为传统的接线方式,可以加反相的两路模拟电流(从一侧头进尾出后从另一侧尾进头出即可实现),如果各侧均是星接,则加高压侧超前低压侧150°的电流来模拟。现在的自动化系统差动保护单元都有差动电流显示,根据显示数据即可判定其接线正确性——若为两电流有效值之差则接线正确,若为两电流有效值之和电流则有极性接反,若为两电流和与差之间的数值则相位处理有错误。如果无差电流显示则只能靠动作与否来判断接线正确与否了,即不动作为正确,动作为不正确,试验时一定要吃透图纸,注意接线极性,可规定从某相(头)流入保护屏,从地(尾)流出保护屏为正方向。这样A、B、

电动机差动保护装置

WDZ-5231电动机差动保护装置 1装置功能 WDZ-5231电动机差动保护装置主要用于10KV及以下2000KW及以上三相异步电动机的差动保护,与配套的WDZ-5232电动机保护测控装置共同构成大型电动机的全套保护。 WDZ-5200系列电动机保护装置还包括WDZ-5232电动机保护测控装置、WDZ-5233电动机综合保护测控装置,三者在保护、测控功能的区别见下表所示。 2保护功能及原理 2.1电动机状态 电动机按照运行状态,有停机态、起动态、运行态之分。 如果I max<0.125I e,电动机处于停机态; 电动机原本处于停机态,检测到I max>0.125 I e:如果I max>1.125 I e,认为电动机进入起动

态;如果I max ≤1.125 I e ,则认为电动机起动结束,直接进入运行态。 如果电动机处于起动态,检测I max ,如果0.125 I e I cdsd I dc >I cdsd I db >I cdsd 2.4.2 保护动作判据 cdsd I DI >max 式中,I cdsd :差动速断保护动作电流整定值(A ) 2.5 比率差动保护 装置采用三折线比率差动原理,其动作曲线如下图所示,第3折线斜率固定为1。比率差动保护必须在电动机不在停机态时,方才有效。

实验五变压器差动保护实验指导书(完,11.12)

实验五 变压器差动保护实验 (一)实验目的 1 .熟悉变压器纵差保护的组成原理及整定值的调整方法。 2 .了解 Y ∕Δ接线的变压器,其电流互感器二次接线方式对减少不平衡电 流的影响。 3 .了解差动保护制动特性的特点。 (二)变压器纵联差动保护的基本原理 1 .变压器保护的配置 变压器是十分重要和贵重的电力设备, 电力部门中使用相当普遍。 变压器如 发生故障将给供电的可靠性带来严重的后果, 因此在变压器上应装设灵敏、快 速、可靠和选择性好的保护装置。 变压器上装设的保护一般有两类:一种为主保护,如瓦斯保护,差动保护; 另一种称后备保护,如过电流保护、低电压起动的过流保护等。 本试验台的主保护采用二次谐波制动原理的比率制动差动保护 2.变压器纵联差动保护基本原理 如图 7-1 所示为双绕组纵联差动保 护的单 相原理说明图,元件两侧的电流 互感 器的接线应使在正常和外部故障时 流 入继电器的电流为两侧电流之差,其 值接近于零,继电器不动作;内部故障 时流入继电器的电流为两侧电流之和, 其值为短路电流,继电器动作。但是, 由于变压器高压侧和低压侧的额定电流 不同,为了保证正常和外部故障时, 变压器两侧的两个电流相等, 从而使流入继 电器的电流为零。即: 式中: K TAY 、 K TA △——分别为变压器 Y 侧和△侧电流互感器变比; KT ——变压器变比。 显然要使正常和外部故障时流入继电器的电流为零, 就必须适当选择两侧互感器 的变比, 使其比值等于变压器变比。 但是, 实际上正常或外部故障时流入继电器 的电流不会为零,即有不平衡电流出现。原因是: (1)各侧电流互感器的磁化特性不可能一致。 (2)为满足( 7-1 )式要求,计算出的电流互感器的变比,与选用的标准化变 比不可能相同; (3)当采用带负荷调压的变压器时,由于运行的需要为维持电压水平,常常 变化变比 KT ,从而使( 7-1 )式不能得到满足。

变压器差动保护试验方法

我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电XX自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该XX小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1

最新DMP322微机变压器差动保护装置汇总

D M P322微机变压器差 动保护装置

1 适用范围 DMP322微机变压器差动保护装置适用于两圈变压器,可集中组屏,也可分散于开关柜。 2 主要功能 2.1保护功能 ①差动速断保护 ②二次谐波制动的比率差动保护 ③CT断线闭锁比率差动保护并告警 ④差流告警 ⑤过负荷告警 ⑥过载启动风冷 ⑦过载闭锁有载调压 ⑧本体保护信号 以上各种保护均有软件开关,可分别投入和退出。 2.2远动功能 主变一侧开关位置遥信及开关事件遥信。 主变本体信号如下:本体轻重瓦斯信号、有载轻重瓦斯信号、超温告警信号、超温跳闸信号、压力释放信号、风扇故障、油位过高、油位异常、油位过低。 主变一侧开关遥控。 2.3录波功能 装置具有故障录波功能,记忆最新8套故障波形,记录故障前10个周波,故障后10个周波,返回前10个周波,返回后5个周波,可在装置上查看、显示故障波形,进行故障分析,也可上传当地监控或调度。 3 技术指标 3.1额定数据 交流电流 5A、1A 交流电压 100V 交流频率 50HZ

直流电压 220V、110V 3.2功率消耗 交流电流回路 IN=5A 每相不大于0.5VA 交流电压回路 U=UN 每相不大于0.2VA 直流电源回路正常工作不大于10W 保护动作不大于20W 3.3过载能力 交流电流回路 2倍额定电流连续工作 10倍额定电流允许10S 40倍额定电流允许1S 交流电压回路 1.2倍额定电压连续工作 直流电源回路 80%—110%额定电压连续工作 3.4测量误差 测量电流电压不大于±0.3% 有(无)功功率不大于±0.5% 保护电流不大于±3% 3.5温度影响 正常工作温度: -10℃~ 55℃ 极限工作温度: -25℃~ 75℃ 装置在-10℃~55℃温度下动作值因温度变化而引起的变差不大于±1%。 3.6安全与电磁兼容 ①脉冲干扰试验 能承受频率为1MHZ及100KHZ电压幅值共模2500V,差模1000V的衰减震荡波脉冲干扰试验. ②静电放电抗扰度测试 能承受IEC61000-4-2标准Ⅳ级、试验电压8KV的静电接触放电试验。 ③射频电磁场辐射抗扰度测试 能承受IEC61000-4-3标准Ⅲ级、干扰场强10V/M的幅射电磁场干扰试验。 ④电快速瞬变脉冲群抗扰度测试 能承受IEC61000-4-4标准Ⅳ级的快速瞬变干扰试验。 ⑤浪涌(冲击) 抗扰度试验 能承受IEC61000-4-5标准Ⅳ级、开路试验电压4KV的浪涌干扰试验。

微机发电机差动保护装置使用说明书概论

微机发电机差动保护装置使用说明书

目录 1.使用范围及特点 (1) 1.1基本保护配置 (1) 1.2保护装置主要特点 (1) 2.主要技术数据 (1) 2.1额定参数 (1) 2.2功率消耗 (2) 2.3过载能力 (2) 2.4工频耐压及抗干扰性能 (2) 2.5工作条件 (2) 2.6输出接点 (3) 3.硬件结构说明 (3) 3.1机箱外观视图 (3) 3.2装置端子图 (5) 4.保护功能原理 (8) 4.1基本保护功能原理 (8) 4.2其他功能 (9) 5.使用操作指南 (11) 5.1前面板配置及各部件功能 (11) 5.2运行状态下的信息及各键功能 (11) 6.使用维护及故障处理 (19) 6.1装置投运前的检查 (19) 6.2故障处理 (19) 6.3标志、包装、运输、贮存 (19) 7.装置安装说明 (20) 7.1接线原理图 (20) 7.2装置接线方式图 (20) 7.3安装尺寸 (21)

1.使用范围及特点 本装置适合用于100MW以下发电机的主保护,具有发电机的差动保护、差流越限告警。本装置提供通信接口,可以和其他保护、自动化设备一起,通过通信接口组成自动化系统。 1.1基本保护配置 ?二段式比率制动差动保护 ?差流速断保护 ?差流越限告警 1.2保护装置主要特点 ?处理器采用32位浮点DSP,具有处理速度快、多级流水线操作、快速中断处 理等优点,电量采集采用14位A/D转换芯片,具有测量精度高等优点; ?中文图形液晶显示,人机界面清晰友好,调试方便,操作简单; ?具有完善的自诊断和监视功能,对故障具体定位,方便调试; ?具有完整的的动作记录、录波记录,所有信息掉电保持; ?具有保护模拟量的采集功能; ?支持RS485、RS232通讯方式; ?可支持远方对时、远方参数修改、远方投退保护、传送记录信息; ?装置可以通过组合键恢复到参数的出厂默认设置; ?具有GPS对时功能,满足现场的时间要求; ?具有现地\远方打印功能,具有定值打印功能。 2.主要技术数据 2.1额定参数 1)额定频率:50Hz; 2)输入额定电流:5A; 3)电源额定电压:DC220V/AC220V。 武汉华工电气自动化有限责任公司 1

弧光保护单元试验报告

电弧光保护装置测试报告 一、参数: 变电站:CB-10kv开闭所测试时间:2015.1.20 型号:BPR342ARC 操作电压:DC220V 保护跳闸电流:1.2I e 保护跳闸条件设定:弧光及电流 额定电流I e:5A 出厂日期:2014.10 生产厂家:弘毅电器有限公司 二、测试内容: 上电前: 1.主单元 (1)单元固定安装是否正确、牢固———————□是□否(2)主单元接线是否按图纸接正确无误—————□是□否(3)主单元设置是否按现场要求设置正确————□是□否2.辅助单元 (1)辅助单元安装是否正确、牢固———————□是□否(2)辅助单元地址等设置是否正确,合乎要求——□是□否(3)辅助单元到主单元之间连接是否正确————□是□否(4)辅助单元与传感器之间连接是否正确————□是□否3.通讯电缆 通讯电缆是否有损坏或压伤————————□是□否 上电后:

1.主单元显示是否正常———————————□是□否 2.辅助单元显示是否正常——————————□是□否 3.主单元上显示的辅助单元数量是否正确———□是□否 4.主单元上显示的传感器数量是否正确————□是□否 5.定值整定: (1)主单元保护定值是否按现场要求设置———————□是□否(2)电流达到定值主单元是否能反映出来———————□是□否(3)实际电流值___6_A___主单元显示值___6.01A___ 6.测试传感器: (1)传感器线是否有损伤或压伤———————————□是□否(2)传感器安装是否正确,牢固———————————□是□否 7.模拟弧光: (1)传感器传到辅助单元的地址是否正确———————□是□否(2)传感器传到主单元显示的地址是否正确——————□是□否(3)在6I e下打开弧光发射器,保护动作是否正常———□是□否

差动保护试验方法

差动保护试验方法 国测GCT-100/102差动保护装置采用的是减极性判据,即规定各侧均已流出母线侧为正方向,从而构成180度接线形式。 1. 用继保测试仪差动动作门槛实验: 投入“比率差动”软压板,其他压板退出,依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流0.90A ,步长+0.01A ,观察差流,缓慢加至差动保护动作,记录动作值。 说明: 注意CT 接线形式对试验的影响。 若CT 接为“Y-△,△-Y 型”,则在系统信息——变压器参数项目下选择“Y/D-11”,此时高侧动作值为:定值×√3,即1.73动作,低测动作值为定值,即1.00动作 若CT 接为“Y-Y 型”,则在系统信息——变压器参数项目下选择“无校正”,此时高低侧动作值均为定值,即1.00动作 2. 用继保测试仪做比率差动试验: 分别作A ,B ,C 相比率差动,其他相查动方法与此类似。 以A 相为例,做比率差动试验的方法:在高,低两侧A 相同时加电流(测试仪的A 相电流接装置的高压侧A 相,B 相电流接装置的低压侧A 相),高压侧假如固定电流,角度为0度,低压侧幅值初值设为x ,角度为180度,以0.02A 为步长增减,找到保护动作的临界点,然后将x 代入下列公式进行验证。 0Ir Ir Id Id k --= 其中: Id :差动电流,等于高侧电流减低侧电流 Id0:差动电流定值 Ir :制动电流,等于各侧电流中最大值 Ir0:制动电流定值 K :制动系数 例如: 定值:Id0=1(A ); Ir0=1(A ); K =0.15 接线:测试仪的Ia 接装置的高压侧A 相,Ib 接装置的低压侧A 相 输入:Ia =∠0 o5A Ib =∠180 o5A 步长Ib =0.02A 试验:逐步减小Ib 电流,当Ib=3.4A 时装置动作。 验证:Id =5-3.4=1.6A Id0=1A Ir =5A Ir0=1A 15.04 6.0151)4.35(==---=k 3. 用继保测试仪做差动速断试验 投入“差动速断”压板,其他压板退出。依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流9.8A ,每次以0.01A 为步长缓慢增加电流值至动作,记录动作值。 例如:

什么是差动保护

差动保护 [1]电流差动保护是中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是 A 超前C,C超前B各是120度。有功方向变反只是和电流的之间的角加上180度,就是反相功率,而不是逆相序。 差动保护是根据“电路中流入电流的总和等于零”原理制成的。 差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,保护动作,将被保护设备的各侧跳开,使故障设备断开电源。 差动保护原理 差动保护 差动保护是利用电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动不动作。当时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于,差动继电器动作。 差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护。另外差动保护还有线路差动保护、差动保护等等。 变压器差动保护是防止变压器内部故障的主保护。其接线方式,按原理,把变压器两侧电流互感器二次线圈接成环流,变压器正常运行或外部故障,如果忽略,在两个互感器的二次回路臂上没有差电流流入继电器,即:iJ=ibp=iI-iII=0。 如果内部故障,如图ZD点短路,流入继电器的电流等于短路点的总电流。即:iJ=ibp=iI2+iII2。当流入继电器的电流大于,保护动作断路器跳闸。 技术参数 1.环境条件 正常温度: -10℃~55℃ 极限温度: -30℃~70℃ 存储温度: -40℃~85℃ 相对湿度:≤95%,不凝露 大气压力: 80~110kPa 2.工作电源 电压范围: 85~265V(AC或DC) 正常功耗:<10W 最大功耗:<20W 电源跌落:200ms 上电冲击:4A 隔离耐压:3kV

E发电机差动保护装置技术及使用说明书

AE-6051 发电机差动保护装置技术及使用说明书

1. 概述 AE-6051 发电机差动保护装置(以下简称装置),主要适应于50MW以下发电机的差动保护,6051发电机差动保护与6052发电机后备保护一起构成发电机成套保护测控系统。 主要功能 保护功能: a) 差动速断保护 b) 比率差动保护 c) CT断线 遥测功能: 首端侧电流、尾端侧电流 遥控功能: 装置信号复归,保护软压板投退 遥信功能: 8路遥信开入量 其它: 网络对时和手动对时功能 全隔离RS-485通讯接口,国际标准ModBUS-RTU通讯协议 2.技术数据

AC输入电流 额定5A:15A连续;短时250A 1秒 极限动态范围:625A持续1周波(正弦波) 功耗:5A 时0.16V A,15A时1.15V A 额定1A:3A连续;短时100A 1秒 极限动态范围:250A 持续1周波(正弦波) 功耗:1A 时0.06V A,3A时1.18V A 输出接点 符合IEC 255-0-20:1974,采用简单评估法 5A持续 30A接通符合IEEC C37.90:1989 100A持续1秒 启动/返回时间:<5ms 分断能力(L/R = 40ms): 24V 0.75A 10,000次 48V 0.50A 10,000次 125V 0.30A 10,000次 250V 0.20A 10,000次 循环能力(L/R = 40ms): 24V 0.75A 每秒2.5次 48V 0.50A 每秒2.5次 125V 0.30A 每秒2.5次

250V 0.20A 每秒2.5次 光隔输入 在额定控制电压下,每个光隔输入的电流为5mA。 额定电源 110伏:88 - 132Vdc或88 – 121Vac 220伏: 176 - 264Vdc或176 - 242Vac 额定5.5瓦, 最大8.5瓦 例行绝缘 试验电流输入端:500Vac 60秒不小于10M 电源、光隔输入及输出接点:500Vac 60秒不小于10M 带CE标志的装置进行下列IEC255-5:1977绝缘测试; 模拟输入:500Vac 60秒不小于10M 电源、光隔输入及输出接点:500Vac 60秒不小于10M 工作温度-10℃~+55℃(+14°F~+131°F)。 老化从室温到+75℃(+167℉)每次48小时以上。一共二十(20)次温度循环。 装置重量 2.5kg(5磅8盎司)。 型式试验及标准 IEEE C37.90.1:1989 IEEE保护继电器及继电器系统抗冲击性能 (SWC)试验标准。 IEEE C37.90.2:1987 继电器系统抗电磁辐射干扰试验试用标准 IEC 68-2-30:1985 基本环境试验程序Part 2:试验,试验Db和导则:

电力系统继电保护实验实验报告

网络高等教育《电力系统继电保护》实验报告 学习中心:奥鹏学习中心 层次:专科起点本科 专业:电气工程及其自动化 年级: 学号: 学生:

实验一电磁型电流继电器和电压继电器实验 一、实验目的 1. 熟悉DL型电流继电器和DY型电压继电器的的实际结构,工 作原理、基本特性; 2. 学习动作电流、动作电压参数的整定方法。 二、实验电路 1.过流继电器实验接线图 过流继电器实验接线图 2.低压继电器实验接线图 低压继电器实验接线图

三、预习题 1.过流继电器线圈采用_串联_接法时,电流动作值可由转动刻度盘上的指针所对应的电流值读出;低压继电器线圈采用__并联 _接法时,电压动作值可由转动刻度盘上的指针所对应的电压值读出。(串联,并联) 2. 动作电流(压),返回电流(压)和返回系数的定义是什么? 答:1.使继电器返回的最小电压称为返回电压;使继电器动作的最大电压称为动作电压;返回电压与动作电压之比称为返回系数。 2.使继电器动作的最小电流称为动作电流;使继电器返回的最大电流称为返回电流;返回电流与动作电流之比称为返回系数。 四、实验容 1.电流继电器的动作电流和返回电流测试 表一过流继电器实验结果记录表

2.低压继电器的动作电压和返回电压测试 表二低压继电器实验结果记录表 五、实验仪器设备

六、问题与思考 1.电流继电器的返回系数为什么恒小于1? 答:由于摩擦力矩和剩余力矩的存在,使得返回量小于动作量。根据返回力矩的定义,返回系数恒小于1. 2.返回系数在设计继电保护装置中有何重要用途? 答:返回系数是确保保护选择性的重要指标,让不该动作的继电器及时返回,使正常运行的部分系数不被切除。 3. 实验的体会和建议 电流保护的动作电流是按躲开最大负荷电流整定的,一般能保护相邻线路。在下一条相邻线路或其他线路短路时,电流继电器将启动,但当外部故障切除后,母线上的电动机自启动,有比较大的启动电流,此时要求电流继电器必须可靠返回,否则会出现误跳闸。所以过电流保护在整定计算时必须考虑返回系数和自起动系数,以保证在上述情况下,保护能在大的启动电流情况下可靠返回。电流速断的保护的动作电流是按躲开线路末端最大短路电流整定的,一般只能保护线路首端。在下一条相邻线路短路时,电流继电器不启动,当外部故障切除后,不存在大的启动电流情况下可靠返回问题

差动保护试验方法

变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT 变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1 而微机保护要求接入保护装置的各侧CT均为Y型接线,显而易见移相是通过软件来完成的,下面来分析一下微机软件移相原理。ND300系列变压器差动保护软件移相均是移

发电机差动保护原理

发电机差动保护原理

5.1 发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: I op ≥ I op.0 ( I res ≤ I res.0 时) I op ≥ I op.0 + S(I res – I res.0) ( I res > I res.0 时) 式中:I op 为差动电流,I op.0为差动最小动作电流整定值,I res 为制动电流,I res.0为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发电机为正方向,见图5.1.1。 差动电流: N T op I I I ? ?+= 制动电流: 2 N T res I I I ??-= 式中:I T ,I N 分别为机端、中性点电流互感器(TA)二次侧的电流,TA 的极性见图5.1.1。 图5.1.1 电流极性接线示意图 (根据工程需要,也可将TA 极性端均定义为靠近发电机侧) 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下列条件认为TA 断线: a. 本侧三相电流中至少一相电流为零; b. 本侧三相电流中至少一相电流不变; c. 最大相电流小于1.2倍的额定电流。 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情况,可选择以下方案中的一种: 5.2.1故障分量负序方向(ΔP 2) 匝间保护

该方案不需引入发电机纵向零序电压。 故障分量负序方向(ΔP 2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障时,在故障点出现负序源。故障分量负序方向元件的2.U ?和2. I ?分别取自机端TV 、TA ,其TA 极性图见图5.2.1.1,则故障分量负序功率?P 2为: ??????????=?-Λ?2.2223sen j e e I U R P ? 式中2Λ?I 为2??I 的共轭相量,?sen 。2为故障分量负序方向继电器的最大灵敏角。一般取60?~80?(2.I ?滞后2. U ?的角度)。 故障分量负序方向保护的动作判据可表示为: P e I U R ε>?????????Λ?22' 2.22'sen j e I I ?-ΛΛ?=? 实际应用动作判据综合为: u U ε>??2 i I ε>??2 ? P 2 = ? U 2r ? ? I ’2r + ? U 2i ? ? I ’2i > εP (εu 、εi 、εP 为动作门槛) 保护逻辑框图见图5.2.1.2。 图5.2.1.1 故障分量负序方向保

浅谈差动保护的试验

龙源期刊网 https://www.wendangku.net/doc/5415600222.html, 浅谈差动保护的试验 作者:王娟平 来源:《科学与财富》2016年第13期 摘要:牵引变压器的主保护是瓦斯保护和差动保护,瓦斯保护是非电量保护,直观易懂 且出错可能性不大;差动保护是电量保护,且涉及3到5个电流互感器,对极性要求很严,二次接线复杂难懂,很容易出错。对于新牵引变电所、综合自动化改造、更换110KV电流互感器后的差动保护试验非常重要,本文主要讨论通过差动保护试验确保其运行的正确性。 关键词:牵引变压器;差动保护;比率差动;差动速断;试验 引言:对保护装置进行试验就是人为的加电流、电压量,使得保护装置动作,从而看装置动作值与整定值之间存在哪些误差,根据此误差可以对保护装置进行改进或将整定值进行重新核定,这样可使用保护装置满足可靠供电的要求。试验方法过简会使一些参数未能得到验证,试验方法过于复杂,又大大增加了工作量,因此科学的办法才是既能准确的了解装置性能又大大地节省人力物力。 一、牵引变电所差动保护 定义:差动保护(包括差动速断和比率差动)是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。 动作原理:差动保护是由变压器两侧的电流互感器二次绕组串联形成环路,差动继电器并接在环路上,因此,根据基尔霍夫电流定律,流入差动继电器的电流等于两侧电流互感器二次绕组电流之差。在正常情况或差动保护范围外发生故障时,两侧电流互感器二次绕组电流大小相等,相位相同,因此流经继电器的差动电流为零,但如果在差动保护区内发生短路故障,流经继电器的差动电流大于零,继电器动作,使断路器跳闸,从而起到保护作用。 差动保护接线方式:差动保护的接线是根据牵引变压器的不同接线方式和保护装置的厂家不同而变化,综合目前在牵引变电所中使用的差动保护接线方式主要有以下六种: 二、差动保护流互极性试验 1.电流互感器 电流互感器按精度要求不同,分为不同的等级:①0.2 级:指一次电流在额定电流附近时,二次绕组电流误差不超过2%,用于计量;②0.5 级:指一次电流在额定电流附近时,二次绕组电流误差不超过5%,用于测量;③P级:指一次电流为额定电流的30倍时,二次绕组的电流误差不超过5% 用于保护。

继电保护试验报告标准格式

C S L101B线路保护全部定期检验调试报告 1.绝缘试验 以开路电压为1000V的摇表按下表对各回路进行绝缘试验,绝缘电阻应不小于10兆欧。试验结果填入表1。 2.直流稳压电源检查 2.1 经检查,本装置电源的自启动性能良好,失电告警继电器工作正常()。 2.2各级输出电压值测试结果见表2。 4.经检查,本装置CPU及MMI所使用的软件版本号正确(),记录见附表1。 5.经检查,本装置主网1、主网2及本装置所附带的打印卡、打印电缆线全部完好,打印功能正常()。 6.开入量检查 6.1 保护压板开入量检查全部正确(),记录于表3。

7.开出传动试验 a. 保护开出传动试验 对CPU1、CPU2、CPU3进行开出传动试验,注意观察灯光信号应指示正确,并在装置端子上用万用表检查相应接点的通断(),试验结果记录于表5 。

b. 重合闸开出传动试验 对CPU4进行开出传动试验(),结果记录于表6。 c. 经检查,起动元件三取二闭锁功能正确()。

8.1 零漂调整打印结果记录于附表4,要求允许范围为±0.1()。 8.2 电流、电压刻度调整打印结果记录于附表5,要求误差小于±2%()。 8.3 经检查,电流、电压回路极性完全正确()。 9.模拟短路试验 9.1 各保护动作值检验 a.经检查,高频距离保护在0.95倍定值时可靠动作,在1.05倍定值时 可靠不动作(); b.经检查,高频零序保护在0.95倍定值时可靠不动作,在1.05倍定值 时可靠动作(); c.经检查,相间、接地距离I段保护在0.95倍定值时可靠动作,在1.05 倍定值时可靠不动作(); d.经检查,相间、接地距离II段、III段保护在0.95倍定值时可靠动 作,在1.05倍定值时可靠不动作(); e.经检查,零序I段保护在0.95倍定值时可靠不动作,在1.05倍定值 时可靠动作(); f. 经检查,零序II段、III段、IV段保护在0.95倍定值时可靠不动 作,在1.05倍定值时可靠动作(); g. 经检查,保护装置在单相接地短路和两相短路时可靠不动作,在三相

比率差动试验方法

比率差动保护实验方法 汉川供电公司石巍 主题词比率差动实验方法 随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法。 一、比率差动原理简介: 差动动作方程如下: Id>Icd (IrIcd+k*(Ir-Ird) (Ir>Ird) 式中:Id——差动电流 Ir——制动电流 Icd——差动门槛定值(最小动作值) Ird——拐点电流定值 k——比率制动系数 多数厂家采用以下公式计算差动电流; Id=︱?h+?l︱(1)

制动电流的公式较多,有以下几种: Ir=︱?h-?l︱/2 (2) Ir=︱?h-?l︱(3) Ir=max{︱?1︱,︱?2︱,︱?3︱…︱?n︱}(4) 为方便起见,以下就采用比较简单常用的公式(3)。 由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/?,Y/Y/?,Y/?/?,Y形接线的二次电流与?形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:?A=(?A’—?B’)/1.732/K hp ?B=(?B’—?C’)/1.732/K hp ?C=(?C’—?A’)/1.732/K hp 其中?A、?B、?C为补偿后的二次电流(即保护装置实时显示的电流),?A’、?B’、?C’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流。K hp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1。 这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A、C两相电流;加入B相电流,则保护同时测到B、A两相电流;加入C相电流,则保护同时测到C、B两相电流。 对于绕组为?形接线的二次电流就不需要软件补偿相位,只要对由于CT变比不同引起的二次电流系数进行补偿了,电流计算公式为: ?a=?a’ /K lp ?a’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流;?a为补偿后的二次电流(即保护装置实时显示的电流)。唯一要注意的是保护装置要求低压侧电流与高压侧电流反相位输入,高压侧的A相与低压侧的A相间应相差150度。K lp为低压的平衡系数(有的保护装置采用的是乘上平衡系数),与保护用的CT

发电机差动保护原理

发电机差动保护原理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: I op ? ( I res ? 时) I op ? + S(I res – ( I res > 时) 式中:I op 为差动电流,为差动最小动作电流整定值,I res 为制动电流,为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发电机为正方向,见图5.1.1。 差动电流: N T op I I I ? ?+= 制动电流: 2 N T res I I I ??-= 式中:I T ,I N 分别为机端、中性点电流互感器(TA)二次侧的电流,TA 的极性见图 5.1.1。 图5.1.1 电流极性接线示意图 (根据工程需要,也可将TA 极性端均定义为靠近发电机侧) 5.1.1.2 TA 断线判别 当任一相差动电流大于倍的额定电流时启动TA 断线判别程序,满足下列条件认为TA 断线: a. 本侧三相电流中至少一相电流为零;

b. 本侧三相电流中至少一相电流不变; c. 最大相电流小于倍的额定电流。 发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情况,可选择以下方案中的一种: 5.2.1故障分量负序方向(ΔP 2) 匝间保护 该方案不需引入发电机纵向零序电压。 故障分量负序方向(ΔP 2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障时,在故障点出现负序源。故障分量负序方向元件的2.U ?和2. I ?分别取自机端TV 、TA ,其TA 极性图见图5.2.1.1,则故障分量负序功率?P 2为: 式中2Λ?I 为2??I 的共轭相量,?sen 。2为故障分量负序方向继电器的最大灵敏角。一般取60?~80?(2.I ?滞后2.U ?的角度)。 故障分量负序方向保护的动作判据可表示为: 实际应用动作判据综合为: ? P 2 = ? U 2r ? ? I ’2r + ? U 2i ? ? I ’2i > ?P (?u 、?i 、?P 为动作门槛) 保护逻辑框图见图5.2.1.2。 图5.2.1.1 故障分量负序方向保护极性图 图5.2.1.2 故障分量负序方向保护逻辑框图 5.2.2发电机纵向零序过电压及故障分量负序方向型匝间保护 本保护不仅作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及

相关文档