文档库 最新最全的文档下载
当前位置:文档库 › 氯离子腐蚀机理及防护

氯离子腐蚀机理及防护

氯离子腐蚀机理及防护
氯离子腐蚀机理及防护

氯离子腐蚀机理及防护

在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2 种观点。

2 t7 z* w9 p; v成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。

3 u5 ~: Y- ?: z( `

吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。9 g* Y& U/ S3 g0 V4 O. H

电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。" m A6 f% H4 M" c+ @2 i$ a

2 应力腐蚀失效及防护措施

( N0 z5 P7 N; l/ D' |9 G2. 1 应力腐蚀失效机理

; I+ o3 C1 F6 b# Q& c在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。应力腐蚀一般都是在特定条件下产生:

8 \ Q8 @" u. q; H①只有在拉应力的作用下。. o* j; G# x0 O( H s. Q+ B

② 产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。" |& O: \3 A* J v9 L9 a. i. G( I

③ 一般在合金、碳钢中易发生应力腐蚀。研究表明,应力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。# {9 ?+ S( Y5 z2 X

压力容器的应力来源:

* ]3 [& e$ @* t. B2 [$ H①外载荷引起的容器外表面的拉应力。

. n3 ] M" F( u5 a% G②压力容器在制造过程中产生的各种残余应力,如装配过程中产生的装配残余应力,制造过程中产生的焊接残余应力。在化工生产中,压力容器所接触的介质是多种多样的,很多介质中含有氯离子,在这些条件下,压力容器就发生应力腐蚀失效。铬镍不锈钢在含有氧的氯离子的水溶液中,首先在金属表面形成了一层氧化膜,它阻止了腐蚀的进行,使不锈钢钝化。由于压力容器本身的拉应力和保护膜增厚带来的附加应力,使局部地区的保护膜破裂,破裂处的基体金属直接暴露在腐蚀介质中,该处的电极电位比保护膜完整的部分低,形成了微电池的阳极,产生阳极溶解。因为阳极小、阴极大,所以阳极溶解速度很大,腐蚀到一定程度后,又形成新的保护膜,但在拉应力的作用下又可重新破坏,发生新的阳极溶解。在这种保护膜反复形成和反复破裂过程中,就会使某些局部地区的腐蚀加深,最后形成孔洞,而孔洞的存在又造成应力集中,更加速了孔洞表面的塑性变形和保护膜的破裂。这种拉应力与腐蚀介质的共同作用便形成了应力腐蚀裂纹。, l- O1 C& W& j+ p& g- u! M

2. 2 应力腐蚀失效的防护措施

/ H D8 f- b/ R. t1 x控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。实际情况千变万化,可按实际情况具体使用。

" Z; V6 B: q$ H0 q' w(1)选用耐应力腐蚀材料8 G) }5 j4 r! m

近年来发展了多种耐应力腐蚀的不锈钢,主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。* \, V' {% x& A- {1 \' g

(2)控制应力

v+ @+ { E+ u+ M4 ]6 n+ j/ A在压力容器装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。

1 m4 E& T* y3 U: N1 Z, k& U(3)严格遵守操作规程5 L* Y5 z; l8 b- I$ j

2 t0 B

工艺操作、工艺条件对压力容器的腐蚀有巨大的影响。因此,必须严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。

4 O6 k

5 v" ^- s D0 f( R4 c(4)维修与管理! O+ P/ B

6 b! D: t: x0 o

为保证压力容器长期安全运行,应严格执行有关压力容器方面的条例、法规,对在用压力容器中允许存在的缺陷必须进行复查,及时掌握其在运行中缺陷的发展情况,采取适当的措施,减少设备的腐蚀。" u: x& ~' s( F

3 孔蚀失效及预防措施

- X5 X1 c6 {5 D) ^, p* {. i3. 1 孔蚀失效机理

% ~* y' u8 n9 O' [在压力容器表面的局部地区,出现向深处腐蚀的小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀) 。点蚀一般在静止的介质中容易发生。具有自钝化特性的金属在含有氯离子的介质中,经常发生孔蚀。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖的动力,即向深处自动加速。含有氯离子的水溶液中,不锈钢表面的氧化膜便产生了溶解,其原因是由于氯离子能优先有选择地吸附在氧化膜上,把氧原子排掉,然后和氧化膜中的阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20μm~30μm 小蚀坑,这些小蚀坑便是孔蚀核。在外加阳极极化条件下,只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。在自然条件下的腐蚀,含氯离子的介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。氧化剂能促进阳极极化过程,使金属的腐蚀电位上升至孔蚀临界电位以上。蚀孔内的金属表面处于活化状态,电位较负,蚀孔外的金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态———钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状态。孔内主要发生阳极溶解:( n/ h1 C; r+ Z4 g c. w( W4 ~ |: L

Fe →Fe2 + + 2e ,

. V8 q: E3 R+ u0 S/ v zCr →Cr3 + + 3e ,

$ c: v) l9 ^0 z) zNi →Ni2 + + 2e 。

' s8 _. y3 z: `- [5 O介质呈中性或弱碱性时,孔外的主要反应为:6 l, Z& ^& T0 E: w O2 + H2O + 2e →2OH- 。. R, G1 O# q- P8 A

由于阴、阳两极彼此分离,二次腐蚀产物将在孔口形成,没有多大的保护作用。孔内介质相对于孔外介质呈滞流状态,溶解的金属阳离子不易往外扩散,溶解氧也不易扩散进来。由于孔内金属阳离子浓度增加,氯离子迁入以维持电中性,这样就使孔内形成金属氯化物的浓溶

液,这种浓溶液可使孔内金属表面继续维持活化状态。又由于氯化物水解的结果,孔内介质酸度增加,使阳极溶解加快,蚀孔进一步发展,孔口介质的pH值逐渐升高,水中的可溶性盐将转化为沉淀物,结果锈层、垢层一起在孔口沉积形成一个闭塞电池。闭塞电池形成后,孔内、外物质交换更加困难,使孔内金属氯化物更加浓缩,氯化物水解使介质酸度进一步增加,酸度的增加将使阳极溶解速度进一步加快,蚀孔的高速度深化,可把金属断面蚀穿。这种由闭塞电路引起的孔内酸化从而加速腐蚀的作用称为自催化酸化作用。影响孔蚀的因素很多,金属或合金的性质、表面状态,介质的性质、pH值、温度等都是影响孔蚀的主要因素。大多数的孔蚀都是在含有氯离子或氯化物的介质中发生的。具有自钝化特性的金属,孔蚀的敏感性较高,钝化能力越强,则敏感性越高。实验表明,在阳极极化条件下,介质中主要含有氯离子便可以使金属发生孔蚀,而且随着氯离子浓度的增加,孔蚀电位下降,使孔蚀容易发生,尔后又使孔蚀加速。处于静止状态的介质比处于流动状态的介质能使孔蚀加快。介质的流速对孔蚀的减缓起双重作用,加大流速(仍处于层流状态) ,一方面有利于溶解氧向金属表面输送,使氧化膜容易形成;而另一方面又减少沉淀物在金属表面沉积的机会,从而减少产生孔蚀的机会。* \! }# q. d4 L; T4 ?2 b3. 2 防止孔蚀的措施

1 `. v, p6 i+ x/ g- I(1)在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量,可获得性能良好的钢种。耐孔蚀不锈钢基本上可分为3 类:铁素体不锈钢;铁素体—奥氏体双相钢;奥氏体不锈钢。设计时应优先选用耐孔蚀材料。9 I6 D0 Y. g8 g8 _. h (2)降低氯离子在介质中的含量,操作时严防跑、冒、滴、漏等现象的发生。$ g. |& |4 e1 e8 g" J- D7 e) L u

(3)在工艺条件许可的情况下,可加入缓蚀剂。对缓蚀剂的要求是,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。例如,在10 %的FeCl3 溶液中加入3 %的NaNO2 ,可长期防止1Cr18Ni9Ti 钢的孔蚀。

& A4 W" S4 G5 `0 Y(4)采用外加阴极电流保护,抑制孔蚀。氯离子对不锈钢制压力容器的腐蚀,对压力容器的安全性有很大的影响。即使是合理的设计、精确的制造避免或减少了容器本身的缺陷,但是,在长期使用中,由于各种错综复杂因素的联合作用,容器也会受到一定的腐蚀。虽然目前对防止氯离子对不锈钢腐蚀的方法还不十分完善,但掌握一些最基本的防护措施,对保证生产的正常进行,还是十分必要的。除此之外,还应严格按照操作规程操作,加强设备管理,做好容器的定期检验,以保证容器在合理的寿命期限内安全运行。7 W8 t& |' Y) Y I1 a/ h. `

氯离子腐蚀介绍

氯离子腐蚀研究 一:氯离子可破坏金属氧化膜保护层,形成点蚀或坑蚀。对奥氏体不锈钢会出现晶间腐蚀。 曾碰到过这种问题,最后结论是没有解决办法,用别的材料成本太高效果也不见得很好没考虑,所以就正常用16MnR然后考虑点腐蚀余量。 除了衬胶,衬塑也可以呀,如果是管线,当然最好的办法还是选用钛材,只是花钱多啊! 对氯离子腐蚀,可以采用双相不锈钢。 二:这个与氯离子的浓度有关系和操作温度有关。 通常可以用碳钢,不如纯碱的盐水工段有不少设备就采用碳钢材料。当然为了增加寿命可以采用内部涂漆、衬胶等。 有条件可以采用双相钢,钛材等。 而且钢材的抗拉强度不要太高,最便宜的还是内壁衬胶,也是一个不错的方法。我们的盐酸罐就是这种方法。 当然其温度压力也有要求。 脱硫行业中会用一些254SMO,Al6XN,SAF2507,1.4529等,不重要的地方也可以衬胶

我同意六楼的观点,我们买的泵基本上是2605 三:氯离子一般都是海水里,所以要选耐海水腐蚀的钢种,通常的18-8型奥氏体不锈钢经验证,耐海水腐蚀并不好。在海水环境下不锈钢的 使用,孔蚀、间隙腐蚀的局部腐蚀有时发生。对这些局部腐蚀的抑制,已知增加Cr和Mo,奥氏体系不锈钢和双相钢,特别是添加N是 有效果的,美国研制的超级奥氏体不锈钢(牌号我记不清了),日本研制的高N奥氏体系不锈钢,因为316L,317L这类钢不抗海水腐蚀!以下钢种供参考: 高强度耐海水腐蚀马氏体时效不锈钢00Cr16Ni6Mo3Cu1N 高强度耐海水腐蚀不锈钢00Cr26Ni6Mo4CuTiAl 耐海水不锈钢Yus270(20Cr-18Ni-6Mo-0.2N) 管道中氯离子含量高是不是会对管道产生腐蚀,这个过程是怎样的是什么和什么发生反应?介绍的详细一点谢谢了 最佳答案 不一定是酸性才腐蚀,这种问题我以前碰到过——氯离子的应力腐蚀开裂,一般不锈钢对Cl离子比较敏感。建议用“不锈钢”、“ Cl离子”、“应力腐蚀”等关键词搜索获取更多资料,也可以寻找这方面的专著,讲述更清楚明白。譬如:

船舶的腐蚀与防护

船舶上材料保护研究进展作者姓名卜祥星 专业班级材研1302 指导教师姓名乔宁 学号 摘要:船舶海上腐蚀是影响其寿命的最大因素之一。因腐蚀导致结构损坏和破坏, 严重影响船舶性能和安全。本文介绍了当前船舶防腐蚀技术措施的实际应用情况。探讨在船体防腐蚀新技术的发展情况,如船体防腐涂料技术、防腐涂装技术、阴极保护功能和涂膜结合技术、防腐蚀监测新技术等方面的新技术应用。 关键词:船舶,防腐蚀新技术,阴极保护,防腐蚀检测 ABSTRACT:The ships marine corrosion is one of the biggest factors that affect its life span,The structure damage and the destruction caused by corrodes affects the ships performance and security seriously.This article introduces the practical application situation of the current ships corrosion preventing technology and methods,discusses the development situation of new hull anticorrosion technology and new technology application,such as the hull an corrosion painting technology ,the anticorrosion painting and camouflage technology ,the cathode protection function and the painting film combination technology ,the new anticorrosion monitor technology and so on. Key words: ship,new technology of corrosion protection ,catholic protection, corrosion test 目前,大多数船舶都采用金属外壳。而金属在海洋环境中,受海水温度、海水含盐度、海洋大气温度、海洋大气湿度的影响,腐蚀程度很严重,腐蚀不仅降低了船舶钢结构的强度,缩短了船舶的使用寿命,同时还会使航行阻力增加,航速降低,影响使用性能[1]。更为严重的是,一旦出现穿孔或开裂,还会导致海损事故的发生,造成惊人的损失[2]。这已引起国内外防腐专家的极大关注,并积极研究探索解决金属腐蚀的各种防护技

氯离子对不锈钢的腐蚀

氯离子对不锈钢的腐蚀 问题描述:对于奥氏体不锈钢在氯离子环境下的腐蚀,各种权威的书籍均有严格的要求,氯离子含量要小于25ppm,否则就会发生应力腐蚀、孔蚀、晶间腐蚀。但是事实上在工程应用中我们有很多高浓度的氯离子含量的情况下在使用奥氏体不锈钢,因些分析氯离子对不锈钢的腐蚀,采取预防措施,延长使用寿命,或合理选材。 不锈钢的腐蚀失效分析: 1、应力腐蚀失:不锈钢在含有氧的氯离子的腐蚀介质环境产生应力腐蚀。应力腐蚀失效所占的比例高达45 %左右。常用的防护措施:合理选材,选用耐应力腐蚀材料主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。控制应力:装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。严格遵守操作规程:严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6 以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。 2、孔蚀失效及预防措施 小孔腐蚀一般在静止的介质中容易发生。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,即向深处自动加速。,不锈钢表面的氧化膜在含有氯离子的水溶液中便产生了溶解,结果在基底金属上生成孔径为20μm~30μm小蚀坑这些小蚀坑便是孔蚀核。只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。常见预防措施:在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量。降低氯离子在介质中的含量。加入缓蚀剂,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。采用外加阴极电流保护,抑制孔蚀。 3、点腐蚀:由于任何金属材料都不同程度的存在非金属夹杂物,这些非金属化合物,在Cl 离子的腐蚀作用下将很快形成坑点腐蚀,在闭塞电池的作用,坑外的Cl离子将向坑内迁移,而带正电荷的坑内金属离子将向坑外迁移。在不锈钢材料中,加Mo的材料比不加Mo的材料在耐点腐蚀性能方面要好,Mo含量添加的越多,耐坑点腐蚀的性能越好。 4.缝隙腐蚀 缝隙腐蚀与坑点腐蚀机理一样,是由于缝隙中存在闭塞电池的作用,导致Cl离子富集而出现的腐蚀现象。这类腐蚀一般发生在法兰垫片、搭接缝、螺栓螺帽的缝隙,以及换热管与管板孔的缝隙部位,缝隙腐蚀与缝隙中静止溶液的浓缩有很大关系,一旦有了缝隙腐蚀环境,其诱导应力腐蚀的几率是很高的。 总结 1:几种不锈钢在含氯(Cl—)水溶液中的适用条件 一、板片材料的选用 (1)注:不含气体、PH值为7(即中性)、流动的含氯水溶液。 (2)奥氏体不锈钢对硫化物(SO2 、SO3)腐蚀有一定的抗力。但是,Ni含量越高,耐蚀性将降低(因生成低熔点NiS),可能引起硫化物应力腐蚀开裂。硫化物应力腐蚀开 裂同材料的硬度有关,奥氏体不锈钢的硬度应≤HB228;Ni-Mo或Ni–Mo–Cr合金的 硬度不限;碳素钢的硬度应≤HB225; 3)必须注意板片材料与垫片或胶粘剂的相容性。例如,应避免将含氯的垫片或胶粘剂(如氯丁橡胶或以其为溶质的胶粘剂)与不锈钢板片组配,或者将氟橡胶、聚四氟乙烯(PTFE)垫片与钛板板片组配;

混凝土中氯离子的危害及预防措施

混凝土中氯离子的危害及预防措施 我国新水泥标准中增加氯离子检验人手,分析了混凝土中氯离子的来源和带来途径。指出了氯离子对混凝土的影响和危害,提出了怎样才能避免混凝土中氯离子超标的几个措施,最后说明了有关各行业应研究怎样才能使混凝土中氯离子的含量最少。这应是有关的技术T 作者的一种责任。 引言 《通用硅酸盐水泥》报批稿,在2006年9月就已完成,随后经过若干次的建材生产与建一E使用的协商讨论,终于2007年底发布,国家标准 175—2007《通用硅酸盐水泥》于2008年6月1日实施,这个标准的正式实施,是我国水泥行业的大事,也是建筑施工行业的大事,它涉及到水泥产品的生产、流通、应用、科研与设计的各个方面。尤其是水泥生产企业,无论是产品品种的确定、配料方案的设计、化学分析及物理检验仪器设备的购置、校验、使用,还是生产工艺过程中的技术参数调整与控制,都必须进行必要的变更与适应,只有这样才可能满足新标准的要求,保证新标准的正常平稳过渡。 早在2002年4月1日,国家建没部和同家质检总局就联合发布实施了 500102002((混凝土结构设计规范》,其3.4耐久性规定的章节中,就对混凝土中最大氯离子的含量作了具体的规定;2004年l2月1日,两部局又联合发布实施了/T 503442004《建筑结构检测技术标准》,这个标准的附录C,对混凝土中氯离子的含量测定方法作了规范;2006年6月1日国家建设部发布实施了 522006((普通混凝土用砂、石质量

及检验方法标准》,这个标准在3.1.10条中对混凝土用砂的氯离子含量也作了规定。这些标准和规范的配套实施,必将对水泥的生产、使用和建设工程的质量提高起到积极的推动和保证作用。 1 混凝土中氯离子的来源 1.1 水泥中的氯离子 氯盐是廉价而易得的丁业原料,它在水泥生产中具有明显的经济值。它可以作为熟料煅烧的矿化剂,能够降低烧成温度,有利于节能高产;它也是有效的水泥早强剂,不仅使水泥3 d强度提高50%以上,而且可以降低混凝土中水的冰点温度,防止混凝土早期受冻。氯离子的来源主要是原料、燃料、混合材料和外加剂,但由于熟料煅烧过程中,氯离子大部分在高温下挥发而排出窑外,残留在熟料中的氯离子含培极少。如果水泥中的氯离子含量过高,其主要原冈是掺加了混合材料和外加剂(如:工业废渣、助磨剂等)。因此,在我国水泥新标准中增加了“水泥生产中允许加入≤0.5%的助磨剂和水泥中的氯离子含量必须≤O.06%”的要求,这主要是为了保证水泥不对混凝土质量产生过多负面影响。 1.2砂子中的氯离子 在天然砂中,特别是天然海砂中,因为海水中氯离子较高,使得海砂的表面吸附的氯离子也比较多,导致海砂中氯离子的含量较大,如果不加处理用在混凝土中,将会使混凝土中的氯离子含垣增多。 1.3水中的氯离子 在混凝土拌制中,水是不可缺少的原材料之一。如果用饮用的自

氯离子腐蚀及不锈钢知识

氯离子对热力机组的腐蚀危害极大,其腐蚀表现形式主要是破坏金属表面的钝化膜,进而向金属晶格里面渗透,引起金属表面性质的变化.本文分析了氯离子对金属腐蚀的机理,并针对热力系统内部氯离子的来源,提出了相应的解决措施. 岭澳核电站循环水过滤系统316L不锈钢管道点腐蚀的理论分析 Analysis of Pitting Corrosions on 316L Stainless Steel Pipes of Circulation Water Filtering System in Ling抋o Nuclear Power Station 简隆新1 ,时建华2 (1.中广核工程有限公司,广东深圳518124; 2.大亚湾核电运营管理有限公司,广东深圳518124) 简单介绍了循环水旋转滤网反冲洗系统及316L不锈钢管道的使用情况,分析了316L不锈钢的抗腐蚀性。详细介绍了点腐蚀形成的机理和影响因素,分析了316L不锈钢点腐蚀的情况,提出了对反冲洗管道可采取的防护措施。 316L不锈钢;管道;点腐蚀 Abstract: This paper gives a general introduction to the rotating drum filter back flushing system and the usage of 316L stainless steel pipes. It also analyses the characteristic of anti-corrosion of 316L stainless steel. At the same time, it gives a detailed introduction to the mechanism of forming pitting corrosion and the factors affecting its formation. The analysis of the pitting phenomena and suggestion for the pipe material selection are also discussed in this paper. Key words: 316L Stainless steel; Pipe; Pitting corrosion 1 循环水旋转滤网反冲洗系统简介 循环水过滤系统(CFI)的主要设备是旋转海水滤网,在其运行中要不断清除滤出的污物,通过反冲洗系统来实现。反冲洗的水源与主循环水一样引自旋转滤网后的海水水室,后经两级泵加压和中间过滤输至旋转滤网的特定部位冲洗污物,设计流速2.3m/s。反冲洗海水管道设计采用公称直径150mm(壁厚7.11mm)的316L不锈钢管。输送的海水含氯量为17g/L,摩尔浓度为0.48mol/L,为防止回路中海生物滋生,注入次氯酸钠溶液,使循环水入口次氯酸钠的质量分数控制在1×10-6。 2 316L不锈钢管道的使用情况 CFI系统于2000-05-17完成安装交付调试,进行单体调试及系统试运。2001年4月,1号机组管道首次出现泄漏,泄漏部位位于管道竖直段与水平段弯头焊口处,泄漏点表现为穿透性孔,孔的直径很小,但肉眼可见,管道内壁腐蚀处呈扩展状褐色锈迹,判断为典型的不锈钢点腐蚀。当时的处理措施是切除泄漏的管段,更换同材质的新管段,并在新管段底部增加了一个疏水阀,目的是在管道停运期间排空管内积水以防止腐蚀的再次发生。但在2001年9月,1号机管道又发现漏点。2001年10月电厂决定将所有反冲洗管道更换为碳钢衬胶管道。改造后运行至今未发生泄漏。 3 316L不锈钢的抗腐蚀性分析 316L不锈钢属300系列Fe-Cr-Ni合金奥氏体不锈钢,由于铬、镍含量高,是最耐腐蚀的不锈钢之一,并具有很好的机械性能。字母“L”表示低碳(碳含量被控制在0.03%以下),以避免在临界温度范围(430~900℃)内碳化铬的晶界沉淀,在焊后提供特别好的耐蚀性。但316L不锈钢抗氯离子点腐蚀的能力较差。 4 不锈钢的点腐蚀机理

船舶的腐蚀与防护

船舶上材料保护研究进展 作者姓名卜祥星 专业班级材研1302 指导教师姓名乔宁 学号2013200313

摘要:船舶海上腐蚀是影响其寿命的最大因素之一。因腐蚀导致结构损坏 和破坏,严重影响船舶性能和安全。本文介绍了当前船舶防腐蚀技术措施的实际应用情况。探讨在船体防腐蚀新技术的发展情况,如船体防腐涂料技术、防腐涂装技术、阴极保护功能和涂膜结合技术、防腐蚀监测新技术等方面的新技术应用。 关键词:船舶,防腐蚀新技术,阴极保护,防腐蚀检测 ABSTRACT:The ships marine corrosion is one of the biggest factors that affect its life span,The structure damage and the destruction caused by corrodes affects the ships performance and security seriously.This article introduces the practical application situation of the current ships corrosion preventing technology and methods,discusses the development situation of new hull anticorrosion technology and new technology application,such as the hull an corrosion painting technology ,the anticorrosion painting and camouflage technology ,the cathode protection function and the painting film combination technology ,the new anticorrosion monitor technology and so on. Key words: ship,new technology of corrosion protection ,catholic protection, corrosion test

氯离子对钢筋腐蚀

摘要 氯化物的侵入是引起混凝土中钢筋腐蚀最主要的原因之一,氯离子能破坏钢筋表面钝化膜而引起钢筋局部腐蚀,对腐蚀过程具有催化作用,然而只有混凝土中氯离子的浓度达到一定的临界值后,钢筋才会发生腐蚀。由于影响钢筋腐蚀的因素复杂众多,至今仍然难以确定统一的氯离子浓度临界值。这里本文将着重阐述钢筋腐蚀行为和氯离子的去钝化机理、混凝土中氯离子的来源和保护钢筋的措施及其研究进展。 关键词:钢筋,混凝土,钢筋腐蚀,氯离子 前言 钢筋在混凝土高碱性环境中的钝态条件被破坏,便会腐蚀。钢筋钝化膜破坏机理主要是混凝土的碳化物和氯化物侵入,这两种因素既影响混凝土孔隙液的pH值,又影响钢筋的电位值,因而直接影响钢筋的稳定性。 由于氯化物的侵蚀使钢筋混凝土构筑物发生破坏而造成重大损失的现象十分普遍。比如,北京西直门立交桥于1979年建成投入使用,不到20年其钢筋混凝土结构便被腐蚀得十分严重,不得不进行加固维护。引起西直门立交桥过早腐蚀破坏的原因是多方面的,但冬季经常向立交桥撒含氯化物除冰盐(如工业用盐)是最为重要的一个因素。台湾四面环海,许多钢筋混凝土构筑物受破坏以及不断发生的“海砂屋”事件,也是氯化物侵蚀所引起的。目前,中国大陆也存在“海砂屋”现象。 氯离子的侵蚀引起钢筋局部腐蚀是最有害的,对此,各国都予以高度重视。由于钢筋混凝土结构的复杂性和研究条件的差异,研究结果和结论并不完全一致,许多问题还有待深入研究。这里主要对国内外氯离子与钢筋腐蚀关系的研究进展和防止氯化物侵蚀的措施进行阐述。 1 钢筋腐蚀与氯离子去钝化机理 钢筋混凝土是多相、不均质的复杂体系,钢筋表面具有电化学不均匀性,存在着电位较负的阳极区和电位较正的阴极区;一般钢筋表面总处于混凝土孔隙液膜中,即钢筋表面阳极区和阴极区之间存在电解质溶液;由于混凝土的多孔性,其构筑物总是透气和透水的,即通常氧可以通过毛细孔道达到钢筋表面作为氧化剂接受钢筋发生腐蚀产生的自由电子。因此,钢筋表面存在活化状态,则可构成腐蚀电池,钢筋就会发生电化学腐蚀。但在正常情况下,钢筋在混凝土中不会发生腐蚀。这是因为钢筋表面在碱性混凝土孔隙液中生成钝化膜,发生阳极钝化阻止了钢筋的腐蚀。因此,长期保持混凝土固有的高碱性是保护钢筋不受腐蚀、保证钢筋混凝土构筑物耐久性的一条有效途径。但是,在氯离子侵蚀严重的情况下钢筋的腐蚀还是时有发生。 混凝土中钢筋的腐蚀是电化学腐蚀,但有其特殊性。钢筋腐蚀的先决条件是表面去钝化。通常认为其基本反应是在阳极区铁失去电子变为铁离子,导致铁的溶解。铁离子可进一步反应生成氢氧化物和氧化物,在阴极区进行氧的还原反应。由于腐蚀产生的多种形式的氢氧化物和氧化物的体积比铁原来本身的体积大好几倍,因此,可造成钢筋混凝土结构的局部应力集中而膨胀开裂,进一步促进了钢筋的腐蚀。 氯离子是极强的去钝化剂,关于氯离子的去钝化机理认识还不一致,有人认为是氯离子易渗入钝化膜,也有人认为是Cl-优先于氧和OH-被钢吸附。一般认为,在不均质的混凝土中氯离子能够破坏钢筋表面钝化膜,使钢筋发生局部腐蚀。在阳极区铁发生腐蚀生成铁离子,当钢筋/混凝土界面环境存在氯离子时,在腐蚀电池产生的电场作用下,氯离子不断向阳极区迁移

舰船腐蚀与防护

第一章概述 (1) 第二章舰船的主要防腐措施 (2) §2.1舰船的涂漆防腐 (2) §2.2舰船的阴极保护 (2) §2.2.1牺牲阳极法 (2) §2.2.2外加电流阴极保护法 (3) §2.2.3阴极保护 (4) §2.3船体的结构设计防腐 (4) §2.4船底微生物清除 (5) 第三章现代的舰船阴极保护系统设计 (5) §3.1阴极保护系统 (5) §3.2计算机仿真技术在阴极保护系统的应用 (5) 第四章国内外舰船阴极防腐技术发展 (6) §4.1国外舰船防腐 (6) §4.2国内舰船防腐 (7) 第五章结语 (7) 致谢 (7) 参考文献 (7)

舰船腐蚀与防护 摘要:随着科技的发展,舰船的应用越来越广泛,但同时我们也面临着新的考验。现在大多数舰船都是金属外壳,而海水这个恶劣环境,海水盐度、湿度、海洋大气等,都容易使金属腐蚀,是舰船的杀手。船体造成舰船的受损,每年为人类造成了巨额损失。因此,舰船防腐成为了许多行业的研究热点之一。现在人们根据电化学腐蚀原理,以阴极保护为主,涂层防护为辅来防腐。 关键字:舰船腐蚀与防护、腐蚀、阴极保护、涂层保护 Ships corrosion and protection Abstract: with the development of science and technology, ship used more widely, but at the same time we also face new test. Now most ships are metal shell, and the bad environment water, salinity, humidity, Marine atmosphere, easy to make metal corrosion, are the killer. The hull of the ship's damaged, caused a year for a human caused a huge loss. Therefore, ships anticorrosive became many industry the hotspot. Now people by electrochemical corrosion principle, according to cathodic protection is given priority to, complementary to corrosion protection coating. Key word: ships corrosion protection, and corrosion, cathodic protection, coating protection 第一章概述 腐蚀是材料由于环境的作用而引起的破坏或变质,材料所处的环境越差,则对其耐腐蚀性和需要采取的防护措施要求越高。大多数舰船的外壳都是金属,它们处于海水这个苛刻的腐蚀环境之中,受海水盐度、湿度、海洋大气等影响,腐蚀成为了它们使用寿命的一个严重威胁。舰船结构的强度下降,阻力增大,更有甚能导致灾难性的危害。每年我国舰船腐蚀造成的损失可达几百亿。因此,腐蚀一直是造船业和腐蚀专业研究的重点之一。 舰船处于海水环境和海洋大气环境之中,其各个结构遭受着不同程度的腐蚀危害。而且如果不采取有效的防护措施,腐蚀会越来越快。人们根据腐蚀原理,将舰船的腐蚀分为了化学腐蚀和电化学腐蚀两大类。海洋中的舰船多发生电化学腐蚀,由于舰船水线一下部分,长期受到海水的直接作用,腐蚀最为严重。

氯离子对不锈钢腐蚀的机理

氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但 大致可分为2 种观点。 成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样 导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越 稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理 其中在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断 裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。 ②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶 液中才容易发生应力腐蚀。 ③一般在合金、碳钢中易发生应力腐蚀。研究表明,应力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。 压力容器的应力来源: ①外载荷引起的容器外表面的拉应力。 ②压力容器在制造过程中产生的各种残余应力,如装配过程中产生的装配残余应力,制造过程中产生的焊接残余应力。在化工生产中,压力容器所接触的介质是多种多样的,很多介质中含有氯离子,在这些条件下,压力容器就发生应力腐蚀失效。铬镍不锈钢在含有氧的氯离子的水溶液中,首先在金属表面形成了一层氧化膜,它阻止了腐蚀的进行,使不锈钢钝化。由于压力容器本身的拉应力和保护膜增厚带来的附加应力,使局部地区的保护膜破裂,破裂处的基体金属直接暴露在腐蚀介质中,该处的电极电位比保护膜完整的部分低,形成了微电池的阳极,产生阳极溶解。因为阳极小、阴极大,所以阳极溶解速度很大,腐蚀到一定程度后,又形成新的保护膜,但在拉应力的作用下又可重新破坏,发生新的阳极溶解。在这种保护膜反复形成和反复破裂过程中,就会使某些局部地区的腐蚀加深,最后形成孔洞,而孔洞的存在又造成应力集中,更加速了孔洞表面的塑性变形和保护膜的破裂。这种拉应力与腐蚀介质的共同作用便形成了应力腐蚀裂纹。 2. 2 应力腐蚀失效的防护措施 控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。实际情况 千变万化,可按实际情况具体使用。 (1)选用耐应力腐蚀材料 近年来发展了多种耐应力腐蚀的不锈钢,主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素

钢筋锈蚀的机理

钢筋锈蚀的机理 公司内部编号:(GooD?TMMT?MMUT?UUPTY?UUYY?DTTI?钢筋锈蚀的机理

1前言 钢筋锈蚀对钢筋混凝土结构及预应力混凝土结构的耐久性和安全性影响极大。混凝土在多种因素作用下(如碳化、氯离子侵蚀等),钢筋因原先在碱性介质中生成的钝化膜被破坏而渐渐失去保护作用,导致钢筋锈蚀,生成的铁锈体积比被腐蚀掉的金属体积大3~4倍,使混凝土保护层沿钢筋纵向开裂,而裂缝一旦产生,钢筋锈蚀速度大大加快,结构构件的承载力与可靠性劣化的速度大大加快,有的共至发展到钢筋锈断,危及结构的安全。 文献资料表明,钢筋锈蚀引起钢筋混凝土结构的过早破坏已成为世界各国普遍关注的一大灾害。美国标准局1975年的调查表明,混凝土中钢筋的腐蚀占全美各种腐蚀的40%:日本新干线使用不到10年,就出现大面积因钢筋腐蚀引起的混凝土开裂、剥蚀。在我国,大量采用钢筋混凝土结构已有儿十年历史,对于遭受恶劣环境条件的腐蚀作用影响,尤其是在20世纪五六十年代,由于要求早强或防冻在混凝土中掺加过量的氯盐的结构,耐久性破坏现象非常严重。长期以来,人们发现混凝土结构在复杂恶劣的环境下会出现未老先衰的现象,尤其是接连不断的工程事故,使学术界在血的教训面前深刻认识到研究和提高混凝土耐久性的现实意义。 笔者将对钢筋锈蚀机理、影响因素、腐蚀过程、锈后钢筋混凝土的力学性能及粘结性能等进行分析,提出钢筋锈蚀应采取的预防措施,提高混凝土的耐久性和结构的安全性,减少耐久性破坏造成的损失,将是一项具有重大实际意义和社会经济效益的研究课题。 2对钢筋锈蚀的分析 混凝土中钢筋锈蚀机理的研究 一一电化学反应过程

谈船体的锈蚀与防护

谈船体的锈蚀与防护 1、钢铁锈蚀的原因: 钢铁暴露在空气中和浸入海水中会大量腐蚀,用钢制材料建制的船舶如不采取防锈措施,用不了几年就会被锈蚀而报废,如采取防锈措施得力,保养得当,船舶就能营运几十年,从而提高钢材十倍以上的利用价值。要真正做到防锈就必须了解锈蚀的成因。 钢铁被腐蚀一般可分为化学腐蚀和电化学腐蚀两大类。 化学腐蚀:钢铁接触氧、酸、碱或其他有腐蚀性的物质,直接发生化学反应,使钢铁损耗。这种现象叫做化学腐蚀。如暴露在空气中,水上的建筑被氧化,浸没在海水里的船体发生锈蚀。 电化学腐蚀:不同的金属在电解液中相接触所发生的腐蚀叫电化学腐蚀。电化学腐蚀比化学腐蚀更为普遍,危害性更大。其中,电极电位低的金属容易失去电子,成为阳极而被消耗。如锌比铁电位低,铁比铜电位低,因此当锌与铁或铁与铜相接触时,锌与铁容易被腐蚀。所以在车叶附近的船壳、舵和铜质车叶间有意安装一些锌块,使锌腐蚀而减缓钢的损耗,起到了保护船体的作用。 电化学腐蚀也常见于同一钢铁的某一局部因经过加工(如电焊、敲击、弯折等)使这一局部的电位比其他部分低,成为阳极而被腐蚀。所以船上的焊缝或弯曲处比其他部位容易生锈。 1、除锈的方法 除锈有两种方法: (1)局部敲铲;“局部敲铲”就是把有锈部位的锈蚀敲掉,周围漆膜铲整齐。 (2)出白:“出白”就是将铁锈、油漆全部除掉。 2、除锈注意事项 (1)除锈及时,有锈必除,否则锈蚀会加深。 (2)除锈要求彻底干净,否则被油漆遮盖后会拱破漆膜。 (3)用敲铲的方法除锈不能用力太大,避免在钢板上留下锤痕铲印,因为这些痕印最容易产生锈蚀。 (4)敲锈锤不能过于锋利,以免敲坏钢板,敲锈不应留下痕迹。 (5)敲锈时必须戴上防护眼镜和防护手套。 (6)除锈先除片状锈或斑点锈,然后将粉状锈铲除,并用钢丝刷刷干净后,用棉纱擦净锈末。 (7)局部除锈或部分除锈时,四周漆膜应产生成几何图形并铲齐,应使敲铲处和周围漆膜有个坡度,以便于油漆与被敲铲处较好的接触。 (8)多人同时敲铲应适当保持距离,并注意检查锤头与锤柄是否松动,以免脱落发生意外。 (9)除锈工作完毕,收好工具,并将锈末漆皮打扫干净,(收集入桶,不得到入海中)及时刷上防锈漆。 (10)除锈后如因故不能及时上漆,若时间间隔过长,上漆前应用钢丝刷将浮锈刷掉。 (11)除了除锈所用的敲、铲、刷外,还可以使用除锈液及除锈膏等化学除锈剂。

水泥中氯离子对钢筋的腐蚀

氯离子对钢筋腐蚀机理的影响 [摘要] 氯化物的侵入是引起混凝土中钢筋腐蚀的最主要原因之一,氯离子能破坏钢筋表面钝化膜而引起钢筋局部腐蚀,对腐蚀过程具有催化作用。但只有混凝土中氯离子的浓度达到一定的临界值后,钢筋才会发生腐蚀。由于影响因素多,至今难以确定统一的氯离子浓度临界值。着重阐述了钢筋腐蚀行为和氯离子的去钝化机理、混凝土中氯离子的来源和保护钢筋的措施及其研究进 展。 [关键词] 钢筋混凝土;钢筋;腐蚀;氯离子 0 前言 钢筋在混凝土高碱性环境中的钝态条件被破坏,便被腐蚀。钢筋钝化膜破坏机理主要是混凝土的碳化和氯化物侵入,这两种因素既影响混凝土孔隙液的pH值,又影响钢筋的电位值,因而直接影响钢筋的稳定性。因氯化物的侵蚀引起钢筋混凝土构筑物破坏而造成重大损失的现象非常严重。北京西直门立交桥于1979年建成投入使用,不到20a钢筋混凝土的腐蚀已十分严重,不得不进行改建。引起西直门立交桥过早破坏的原因是多方面的,但长期在冬季向立交桥撒含氯化物除冰盐引起钢筋腐蚀使立交桥结构受到破坏是突出的因素。台湾四面环海,许多钢筋混凝土构筑物受破坏以及不断发生的“海砂屋”事件,也是氯化物侵蚀所引起的。目前,中国大陆也存在“海砂屋”现象。氯离子的侵蚀引起钢筋局部腐蚀是最有害的,对此,各国都给予了高度的重视。由于钢筋混凝土结构的复杂性和研究条件的差异,研究结果和结论并不完全一致,许多问题还有待深入研究。本工作主要对国内外氯离子与钢筋腐蚀系的研究进展和防止氯化物侵蚀的措施进行评述。 1 钢筋腐蚀与氯离子去钝化机理 钢筋混凝土是多相、不均质的特殊复杂体系,钢筋表面具有电化学不均匀性,存在着电位较负的阳极区和电位较正的阴极区;一般钢筋表面总处于混凝土孔隙液膜中,即钢筋表面阳极区和阴极区之间存在电解质溶液;由于混凝土的多孔性,

船舶金属腐蚀失效与防护研究

船舶金属腐蚀失效与防护研究 摘要:目前,大多数船舶都采用金属外壳。而金属在海洋环境中,受海水温度、海水含盐度、海洋大气温度、海洋大气湿度的影响,腐蚀程度很严重,腐蚀不仅 降低了船舶钢结构的强度,缩短了船舶的使用寿命,同时还会使航行阻力增加, 航速降低,影响使用性能。更为严重的是,一旦出现穿孔或开裂,还会导致海损 事故的发生,造成惊人的损失。所以,加强对船舶防腐新技术的研究具有重大意义。 关键词:船舶金属;腐蚀失效;防护; 船舶由于长期处于盐度较高的海洋环境中,腐蚀极为严重,腐蚀不但能够降 低船舶钢结构的强度,缩短船舶寿命,还会增加航行阻力,降低航速,影响船舶 性能和航行安全。因腐蚀导致结构损坏和破坏,财产甚至生命的损失屡见不鲜, 可以说船舶腐蚀是影响其寿命的最大的因素之一。 一、船舶金属腐蚀失效 1.在船体钢结构上的电化学腐蚀主要有以下几种。(1)氧的浓差电池作用。由于氧有夺取电子的能力,且水面的氧较水下的氧多,故近水面部分的金属得到 电子成为阴极,而水中部分的金属失去电子成为阳极而发生腐蚀。腐蚀发生后, 缝隙或缺口处的氧多,而底部氧少,从而底部继续腐蚀,最后成为锈坑或锈穿。(2)两种不同金属或钢种的腐蚀。在海水中,两种不同成分的金属接触时,电 势较低的金属成为阳极发生腐蚀,例如铆钉和焊缝处容易锈蚀,原因即于此。(3)氧化皮引起的腐蚀。由于氧化皮的电极电位比钢铁的高0.26V,所以成为阴极,而钢铁本身成为阳极发生腐蚀。(4)涂膜下的腐蚀。由于实际上涂膜表央 有微孔存在,所以海水仍可缓慢穿过涂膜产生电化学腐蚀。此时,含涂膜的部分 成为阴极,不含涂膜的部分成为阳极而发生腐蚀,在涂膜未损坏或失效时,这一 过程是缓慢的。涂漆前未除尽的氧化皮、锈蚀物、污物、水分、盐类等,在涂膜 下加速进程,破坏涂膜。涂装时漏涂等施工缺陷也会加速腐蚀进程,从而过早破 坏涂膜。涂膜损坏后,将产生前述各种腐蚀,这种腐 2.机械作用腐蚀。机械作用的腐蚀包括腐蚀作用和机械磨损,二者相互加速。其中包括冲击腐蚀,这是由于液体湍流或冲击所造成;空泡腐蚀,高速流动的液体,因不规则流动,产生空泡,形成“水锤作用”,常常破坏金属表面的保护膜, 加速腐蚀作用,如螺旋浆、泵轴等处易发生;微振磨捐腐蚀,两个紧接着的表面 相互振动而引起的磨捐;应力腐蚀开裂,是在拉伸应力和腐蚀介质作用下的金属 金属腐蚀破坏,金属内会产生沿晶或穿晶的裂纹。 3.生物腐蚀。生物腐蚀是由海洋生物的船底附着引起的,这种腐蚀包括化学腐蚀和电化学腐蚀两种。由于海洋生物在船底的附着,破坏了漆膜,造成钢板局 部电化学腐蚀;由于微生物的新陈代谢作用,分泌出具有侵蚀性的产物如CO2、NH4OH、H2S等以及其他有机酸和无机酸引起钢板的腐蚀作用等。 4.化学腐蚀。化学腐蚀的特点是:腐蚀反应产物是直接地参与反应的金属,在表面区域生成,无电流产生。一般分为气体腐蚀和在非电解质溶液中的腐蚀两 大类。例如钢铁在高温蒸汽中产生的氧化皮,在有机液体中浸泡的破坏等。 二、防护技术 1.防腐蚀涂料技术。采用合适的船舶涂料,以正确的工艺技术,使其覆盖在船舶的各个部位,形成一层完整、致密的涂层,使船舶各部位的钢铁表面与外界 腐蚀环境相隔离,以防止船舶腐蚀的措施,称之为船舶的涂层保护。目前,船舶

氯离子腐蚀介绍

氯离子腐蚀研究一:氯离子可破坏金属氧化膜保护层,形成点蚀或坑蚀。对奥氏体不锈钢会出现晶间腐蚀。 曾碰到过这种问题,最后结论是没有解决办法,用别的材料成本太高效果也不见得很好没考虑,所以就正常用16MnR然后考虑点腐蚀余量。 除了衬胶,衬塑也可以呀,如果是管线,当然最好的办法还是选用钛材,只是花钱多啊! 对氯离子腐蚀,可以采用双相不锈钢。 二:这个与氯离子的浓度有关系和操作温度有关。 通常可以用碳钢,不如纯碱的盐水工段有不少设备就采用碳钢材料。当然为了增加寿命可以采用内部涂漆、衬胶等。 有条件可以采用双相钢,钛材等。 而且钢材的抗拉强度不要太高,最便宜的还是内壁衬胶,也是一个不错的方法。我们的盐酸罐就是这种方法。 当然其温度压力也有要求。 脱硫行业中会用一些254SMO,Al6XN,SAF2507,等,不重要的地方也可以衬胶 我同意六楼的观点,我们买的泵基本上是2605

三:氯离子一般都是海水里,所以要选耐海水腐蚀的钢种,通常的18-8型奥氏体不锈钢经验证,耐海水腐蚀并不好。在海水环境下不锈钢的 使用,孔蚀、间隙腐蚀的局部腐蚀有时发生。对这些局部腐蚀的抑制,已知增加Cr和Mo,奥氏体系不锈钢和双相钢,特别是添加N是 有效果的,美国研制的超级奥氏体不锈钢(牌号我记不清了),日本研制的高N奥氏体系不锈钢,因为316L,317L这类钢不抗海水腐蚀!以下钢种供参考: 高强度耐海水腐蚀马氏体时效不锈钢 00Cr16Ni6Mo3Cu1N 高强度耐海水腐蚀不锈钢 00Cr26Ni6Mo4CuTiAl 耐海水不锈钢Yus270(20Cr-18Ni-6Mo-0.2N) 管道中氯离子含量高是不是会对管道产生腐蚀,这个过程是怎样的 是什么和什么发生反应?介绍的详细一点谢谢了 最佳答案 不一定是酸性才腐蚀,这种问题我以前碰到过——氯离子的应力腐蚀开裂,一般不锈钢对Cl离子比较敏感。建议用“不锈钢”、“ Cl 离子”、 “应力腐蚀”等关键词搜索获取更多资料,也可以寻找这方面的专着,讲述更清楚明白。譬如:

氯离子腐蚀防护

腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2 种观点 成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力 应力腐蚀失效机理 在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。 ②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。 ③一般在合金、碳钢中易发生应力腐蚀。研究表明,应力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。 压力容器的应力来源: ①外载荷引起的容器外表面的拉应力。 ②压力容器在制造过程中产生的各种残余应力。 生产中对应力腐蚀失效的防护措施控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。实际情况千变万化,可按实际情况具体使用。(1)选用耐应力腐蚀材料 (2)控制应力 (3)严格遵守操作规程 工艺操作、工艺条件对压力容器的腐蚀有巨大的影响。因此,必须严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0 ×10 - 6以下。实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5 ×10 - 6亚硫酸钠混合物,就可以得到良好的效果。 (4)维修与管理 为保证压力容器长期安全运行,应严格执行有关压力容器方面的条例、法规,对在用压力容器中允许存在的缺陷必须进行复查,及时掌握其在运行中缺陷的发展情况,采取适当的措施,减

十大海洋腐蚀防护技术

盘点十大海洋腐蚀防护技术 前言 海洋工程构筑物大致分为:海岸工程(钢结构、钢筋混凝土)、近海工程(海洋平台、钻井、采油、储运)、深海工程(海洋平台、钻井、采油、储运)、海水淡化、舰船(船体、压载舱、水线以上),简称为船舶与海洋工程结构。船舶与海洋工程结构的主要失效形式包括:均匀腐蚀、点蚀、应力腐蚀、腐蚀疲劳、腐蚀/磨损、海生物(宏生物)污损、微生物腐蚀、H2S与CO2腐蚀等等。控制船舶和海洋工程结构失效的主要措施包括:涂料(涂层)、耐腐蚀材料、表面处理与改性、电化学保护(牺牲阳极、外加电流阴极保护)、缓蚀剂、结构健康监测与检测、安全评价与可靠性分析及寿命评估。 从腐蚀控制的主要类型看(表1),涂料(涂层)是最主要的控制方法、耐腐蚀材料次之,表面处理与改性是常用的腐蚀控制方法,电化学保护(牺牲阳极与外加电流)是海洋结构腐蚀控制的常用手段,缓蚀剂在介质相对固定的内部结构上经常使用,结构健康监测与检测技术是判定腐蚀防护效果、掌握腐蚀动态以及提供进一步腐蚀控制措施决策和安全评价的重要依据,腐蚀安全评价与寿命评估是保障海洋工程结构安全可靠和最初设计时的重要环节。建立全寿命周期防护理念,结合海洋工程设施的特点及预期耐用年数,在建设初期就重视防腐蚀方法,通过维修保养实现耐用期内整体成本最小化并保障安全性,是重大海洋工程结构值得重视的问题。 表1腐蚀防护方法及中国的防腐蚀费用比例

一、防腐涂料(涂层) 涂料是船舶和海洋结构腐蚀控制的首要手段。海洋涂料分为海洋防腐涂料和海洋防污涂料两大类。按防腐对象材质和腐蚀机理的不同,海洋防腐涂料又可分为海洋钢结构防腐涂料和非钢结构防腐涂料。海洋钢结构防腐涂料主要包括船舶涂料、集装箱涂料、海上桥梁涂料和码头钢铁设施、输油管线、海上平台等大型设施的防腐涂料;非钢结构海洋防腐涂料则主要包括海洋混凝土构造物防腐涂料和其他防腐涂料。 海洋防腐蚀涂料包括车间底漆、防锈涂料、船底防污涂料、压载舱涂料、油舱涂料、海上采油平台涂料、滨海桥梁保护涂料以及相关工业设备保护涂料。海洋防腐涂料的用量大,每万吨船舶需要使用4~5万升涂料。涂料及其施工的成本在造船中占10%~15%,如果不能有效防护,整个船舶的寿命至少缩短一半,代价巨大。 海洋防腐领域应用的重防腐涂料主要有:环氧类防腐涂料、聚氨酯类防腐涂料、橡胶类防腐涂料、氟树脂防腐涂料、有机硅树脂涂料、聚脲弹性体防腐涂料以及富锌涂料等,其中环氧类防腐涂料所占的市场份额最大,具体见表2。实际上,从涂料使用的分类看,涂料可以分为:底漆、中间漆和面漆。其中,底漆主要包括

相关文档