文档库 最新最全的文档下载
当前位置:文档库 › 一阶巴特沃斯低通滤波器电路图

一阶巴特沃斯低通滤波器电路图

一阶巴特沃斯低通滤波器电路图
一阶巴特沃斯低通滤波器电路图

一阶巴特沃斯低通滤波器电路图

图1. 一阶巴特沃斯低通滤波器电路图

图1是一由运放741或351组成的一阶有源巴特沃斯低通滤波器电路图。截止频率fc = 1/{2π(RC),增益Gp = 1 + (RF/R1).

The circuit shown in Figure 1 is a first-order Butterworth low-pass filter.

A low-pass filter is a circuit that blocks signals with frequencies greater than a cut-off frequency fc. The circuit in Figure 1 uses an op-amp configured as a non-inverting amplifier, with an RC circuit at the non-inverting input to do the filtering of the high-frequency signals. The cut-off frequency fc of this circuit is determined by R and C, i.e., fc = 1/{2π(RC)}.

The pass-band gain Gp of this filter is given by: Gp = 1 + (RF/R1). Thus, if the frequency f of the input s ignal is lower than fc, Vo ≈ Gp x Vin. If f = fc, Vo ≈ 0.707 Gp x Vin. If f > fc, Vo < Gp x Vin.

图2. 二阶巴特沃斯低通滤波器电路图

图2是一由运放741或351组成的二阶有源巴特沃斯低通滤波器电路图。截止频率fc = 1/{2π x sqrt(R2R3C2C3)},增益V o/Vin = (1+RF/R1).

As the frequency of the input signal goes higher than fc, the gain of the first-order Butterworth

low-pass filter in Figure 1 decreases at a rate of -20 dB/decade. If one desires a better low-pass frequency response than this, the second-order Butterworth low-pass filter in Figure 2 can be used. This circuit exhibits a -40 dB/decade roll-off at f>fc, wherein fc = 1/{2π x sqrt(R2R3C2C3)}. Also, for this circuit, magnitude of V o/Vin = (1+RF/R1)/(sqrt(1+(f/fc)4)).

巴特沃斯数字低通滤波器

目录 1.题目.......................................................................................... .2 2.要求 (2) 3.设计原理 (2) 3.1 数字滤波器基本概念 (2) 3.2 数字滤波器工作原理 (2) 3.3 巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法 (4) 3.5实验所用MA TLAB函数说明 (5) 4.设计思路 (6) 5、实验内容 (6) 5.1实验程序 (6) 5.2实验结果分析 (10) 6.心得体会 (10) 7.参考文献 (10)

一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ ,通带最大衰减为0.5HZ ,阻带最小衰减为10HZ ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ 。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。如果要处理的是模拟信号,可通过A\DC 和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。 2、数字滤波器的工作原理 数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系 y(n)=x(n) h(n) 在Z 域内,输入输出存在下列关系 Y(Z)=H(Z)X(Z) 式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。 同样在频率域内,输入和输出存在下列关系 Y(jw)=X(jw)H(jw) 式中,H(jw)为数字滤波器的频率特性,X(jw)和Y(jw)分别为x(n)和y(n)的频谱。w 为数字角频率,单位rad 。通常设计H(jw)在某些频段的响应值为1,在某些频段的响应为0.X(jw)和H(jw)的乘积在频率响应为1的那些频段的值仍为X(jw),即在这些频段的振幅可以无阻碍地通过滤波器,这些频带为通带。X(jw)和H(jw)的乘积在频段响应为0的那些频段的值不管X(jw)大小如何均为零,即在这些频段里的振幅不能通过滤波器,这些频带称为阻带。 一个合适的数字滤波器系统函数H(Z)可以根据需要输入x(n)的频率特性,经数字滤波器处理后的信号y(n)保留信号x(n)中的有用频率成分,去除无用频率成分。 3、巴特沃斯滤波器设计原理 (1)基本性质 巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数。巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。 巴特沃思滤波器的低通模平方函数表示1 () ΩΩ+ =Ωc N /22 a 11 ) (j H

低通滤波器实验报告

(科信学院) 信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2012/2013学年第二学期) 题目: ____低通滤波器设计____ _____ _____ _ 专业班级:通信工程 学生姓名: 学号: 指导教师: 设计周数:2周 2013年7月5日 题目: ____低通滤波器设计____ _____ _____ _ (1)

第一章、电源的设计 (2) 1.1实验原理: (2) 1.1.1设计原理连接图: (2) 1. 2电路图 (5) 第二章、振荡器的设计 (7) 2.1 实验原理 (7) 2.1.1 (7) 2.1.2定性分析 (7) 2.1.3定量分析 (8) 2.2电路参数确定 (10) 2.2.1确定R、C值 (10) 2.2.2 电路图 (10) 第三章、低通滤波器的设计 (12) 3.1芯片介绍 (12) 3.2巴特沃斯滤波器简介 (13) 3.2.1滤波器简介 (13) 3.2.2巴特沃斯滤波器的产生 (13) 3.2.3常用滤波器的性能指标 (14) 3.2.4实际滤波器的频率特性 (15) 3.3设计方案 (17) 3.3.1系统方案框图 (17) 3.3.2元件参数选择 (18) 3.4结果分析 (20) 3.5误差分析 (23) 第四章、课设总结 (24) 第一章、电源的设计 1.1实验原理: 1.1.1设计原理连接图:

整体电路由以下四部分构成: 电源变压器:将交流电网电压U1变为合适的交流电压U2。 整流电路:将交流电压U2变为脉动的直流电压U3。 滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。 稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。 1)变压器变压 220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。 2)整流电路 桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单项桥式整流电路,具有输出电压高,变压器利用率高,脉动系数小。

各种滤波器

设计一个九级集总参数低通滤波器,电路结构如图所示,要求截止频率为450MHz,通带内增益大于-1dB,阻带内650M以上增益小于-50dB。通带内反射系数要求小于-15dB。要求优化参数Cost<0.5(最佳为 5(波长线长为相对值)。计算线长Z为2.5和3.5两处的输入阻抗、反射系数。并画出Z为2.5时的阻抗与导纳圆图。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-300MHz 增益参数S21:通带内0MHz-300MHz S21>-0.5dB ;阻带内420MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-300MHz S11<-10dB ; 2、为了节省成本,计划将该滤波器设计为7级结构。你能把它设计出来吗?根据你的优化仿真结果,探讨滤波器级数与其性能的关系。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-350MHz 增益参数S21:通带内 S21>-1dB 阻带内550MHZ以上 S21<-45dB 反射系数S11:通带内 S11<-15dB 2、简述功分器的基本技术要求及其主要特性参数。

通带频率范围:0MHz-400MHz 增益参数S21:通带内0MHz-400MHz S21>-0.2dB 阻带内600MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-400MHz S11<-10dB 要求优化参数 2、简述HFSS的特点及其主要应用的范围。 IVCURVEI来测量非线性器件——三极管GBJT3的特性曲线并加入调谐,分析其变化。 高通滤波器===== 设计具体要求 ====== 通带频率范围:550MHz以上 增益参数S21:通带内S21>-2dB ;阻带内0-400MHz,S21<-50dB 反射系数S11:通带内S11<-20dB; 2、你会添加Marker吗?试在S21曲线上,添加一横坐标为600MHz的Marker。添加后需请老师签字。 3、使用TXLine工具计算微带线εr=12.9,t/h=0.1,分别计算W/h=2.5,3.0以及3.5时的特性阻高通滤波器 ===== 设计具体要求 ====== 设计一个九级集总参数高通滤波器,电路结构如图所示,要求截止频率为550MHz,通带内增益大于-1dB,阻带内0-350MHz增益小于-45dB。通带内反射系数要求小于-15dB。 2、如果要设计低通滤波器,与前面相比,有哪些步骤需要变化?并画出结构简图。 MicrowaveOffice的Optimize功能选择框中的优化算法,并画出优化算法框图。

matlab仿真一阶低通滤波器幅频特性和相频特性

freqs 模拟滤波器的频率响应 语法: h = freqs(b,a,w) [h,w] = freqs(b,a) [h,w] = freqs(b,a,f) freqs(b,a) 描述: freqs返回一个模拟滤波器的H(jw)的复频域响应(拉普拉斯格式) 请给出分子b和分母a h = freqs(b, a, w) 根据系数向量计算返回模拟滤波器的复频域响应。freqs计算在复平面虚轴上的频率响应h,角频率w确定了输入的实向量,因此必须包含至少一个频率点。 [h, w] = freqs(b, a) 自动挑选200个频率点来计算频率响应h [h, w] = freqs(b, a, f) 挑选f个频率点来计算频率响应h 例子: 找到并画出下面传递函数的频率响应 Matlab代码: a = [1 0.4 1]; b = [0.2 0.3 1]; w = logspace(-1, 1);

logspace功能:生成从10的a次方到10的b次方之间按对数等分的n个元素的行向量。n如果省略,则默认值为50。 freqs(b, a, w); You can also create the plot with: h = freqs(b,a,w); mag = abs(h); phase = angle(h); subplot(2,1,1), loglog(w,mag) subplot(2,1,2), semilogx(w,phase) To convert to hertz, decibels, and degrees, use: f = w/(2*pi); mag = 20*log10(mag); phase = phase*180/pi; 算法: freqs evaluates the polynomials at each frequency point, then divides the numerator response by the denominator response: s = i*w; h = polyval(b,s)./polyval(a,s)

二阶压控型低通滤波器设计

二阶压控型低通滤波器设计 1. 设计要求 设计一个二阶压控型低通滤波器,要求通带增益为2,截止频率为2KHz ,可以选择0.01uF 电容器,阻值尽量接近实际计算值,电路设计完后,画出频率响应曲线,并采用Multisim 软件进行仿真分析。 2. 设计目的 (1) 进一步掌握滤波器电路的工作原理和参数计算。 (2) 熟练使用Multisim 进行简单的电路设计和仿真。 3. 问题分析与参量计算 3.1 问题的简单分析 二阶压控型低通LPF 电路基本原理图可参照教材P345页(如下) 而题目中已经给出了电容的值,故我们所要做的只是确定电阻阻值以及进行电路合理的相关改善。 实验所选取的运放器是a741,实验是在Multisim 环境仿真完成的。 3.2 计算电路相关参数 (1) 低通滤波器在通带将内电容视为开路,给电路引入负反馈从而满足“虚短”、“虚断”,通带增益 3412up R A R =+ =,则34R R =,取34R R == 10k Ω。 (2) 传递函数:为方便计算,取1212,R R R C C C ====,由“虚短”、“虚断”及叠 加定理,得()() ()()() ()()()677776/1()()[()]0up p p p i U s A U s U s U s sCR U s U s U s U s U s U s sC R R ==+-----= 得到传递函数:62()1()()1(3)()u up i up U s A s A U s A sCR sCR ==+-+ 令s j ω=,取012f RC π=,2f ωπ=,2 001(3)()up u up A A f f j A f f ?=+-- (3) 当f 为截止频率时,200|1(3)()|2up f f j A f f +--=,令0f x f =,则得方程 4210x x --=,解得x ,因为2f kHz =,取0.01C F μ=可解得10.1224R k ≈Ω电阻,由于实际试验中难以的到10.1224k Ω的电阻,故实际试验中用10k Ω的电阻代替之 (4)入10,1p V mv f kHz ==的信号源 最终得到的电路图: 3.3二阶压控电压源低通滤波器(LPF )的幅频特性 Q=13-Aup =13-2 =1 ,所以Q=1的曲线即为此二阶压控电压源低通滤波器(LPF )的幅频特性。

(完整word版)基于巴特沃斯的低通滤波器的设计原理

课程设计报告 ——基于虚拟仪器的幅频特性自动测试系统的实现 2010年12月25日 一、实验内容 基于虚拟仪器的幅频特性自动测试系统的实现 二、实验目的 1、通过对滤波器的设计,充分了解测控电路中学习的各种滤波器的工作原理以及工作机制。学习幅频特性曲线的拟合,学会基本MATLAB操作。 2、进一步掌握虚拟仪器语言LabVIEW设计的基本方法、常用组件的使用方法和设计全过程。以及图形化的编程方法;学习非线性校正概念和用曲线拟合法实现非线性校正;练习正弦波、方波、三角波产生函数的使用方法;掌握如何使用数据采集卡以及EIVIS产生实际波形信号。了解图形化的编程方法;练习DIO函数的

使用方法;学习如何使用数据采集卡以及EIVIS产生和接受实际的数字信号。 3、掌握自主化学习的方法以及工程设计理念等技能。 三、实验原理 滤波器是具有频率选择作用的电路或运算处理系统。滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。 任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。 滤波器主要参数介绍: ①通带截频f p=w p/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频f r=w r/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率f c=w c/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以f c作为通带或阻带截频。 ④固有频率f0=w0/(2π)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。 有源滤波器地设计,主要包括确定传递函数,选择电路结构,选择有源器件

EMI滤波电路全集

滤波器电路全集 一.EMI滤波电路:EMI滤波器主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰。实际上它是利电感和电容的特性,使频率为50Hz左右的交流电可以顺利通过滤波器,但高于50Hz以上的高频干扰杂波被滤波器滤除,所以它又有另外一种名称,将EMI滤波器称为低通滤波器(彩电上的称法),其意义为,低频可以通过,而高频则被滤除。下面是EMI滤波电路的线路图: 上图中的C1和L1组成第一级EMI滤波,C2、C3、C4与L2组成第二级滤波。实物图如下图所示:

二级EMI滤波电路 在优质电源中,都有两道EMI滤波电路,其中一路在电源插座处,另外一路在电源的PCB板上(也有把两道EMI滤波电路都做在PCB板上的情况),这两道EMI电路,可以很好地滤除电网中的高频杂波和同相干扰电流,同时把电源中产生的电磁辐射削减到最低限度,使泄漏到电源外的电磁辐射量不至于对人体或其它设备造成不良影响。劣质电源通常会省去第一级EMI滤波电路,甚至连第二级EMI滤波电路也省 掉。 · [图文] EMI滤波电路 · [组图] 不同应用领域的滤波器(调节器)电路 · [图文] 单相全波整流复式滤波电路 · [图文] 单相全波整流电容滤波电路 · [组图] 单相全波整流电感滤波电路 · [组图] 单相半波整流电容滤波电路 · [图文] 用相同参数构成的每倍频程24dB低通滤波电路 · [图文] OPA2604制作的三阶低通滤波器电路 · [图文] OPA603制作的1MHz高通滤波器电路 · [图文] MC33171制作的陷波器电路 · [图文] INA110制作的60Hz输入陷波滤波器电路 · [组图] OPA603组成的10MHz带通滤波器电路 · [组图] 数字梳状滤波器集成电路 · [图文] UPC822电源频率噪声滤波器电路 · [组图] 运放组成的单峰特性滤波器电路 · [图文] MAX291+TA7504P构成的8次低通滤波器电路 · [组图] LM307组成的低Q值高增益带通滤波器电路 · [组图] 具有锐截止特性的有源高通滤波器电路

微带低通滤波器的设计

微带低通滤波器的设计 朱晶晶 摘要:本文通过对国内外文献的查看和整理,对课题的研究意义及滤波器目前的发展现状做了阐述,然后介绍了微带线的基本理论,以及滤波器的基本结构,归纳了微带滤波器的作用和特点。之后对一个七阶微带低通滤波器进行了详细的研究,最后利用三维电磁场仿真软件ANSYS HFSS 进行仿真验证,经过反复调试,结果显示满足预期的性能指标。 关键字:微带线;低通滤波器;HFSS Abstract:View and finishing this article through to the domestic and foreign literature, the research significance and the filter to the current development status of, and then introduces the basic theory of microstrip line, and the basic structure of the filter, summarizes the function and characteristics of microstrip filter.After a seven step microstrip low-pass filter has carried on the detailed research, the use of 3 d electromagnetic field simulation software ANSYS HFSS simulation verification, after repeated testing, the results show that meet the expected performance index. Key word: microstrip line; low-pass filter; HFSS 1.引言 随着无线通信技术的快速发展,微波滤波器已经被广泛应用于各种通信系统,如卫星通信、微波中继通信、军事电子对抗、毫米波通信、以及微波导航等多种领域,并对微波滤波器的要求也越来越高。滤波器是一种重要的微波通信器件,它具有划分信道、筛选信号的功能,是一种二端口网络。整个通信系统的性能指标直接受它的性能优劣的影响[1]。主要技术指标要求有高阻带抑制、低通带插损、高功率、宽频带和带内平坦群时延等。同时,体积、成本、设计时间也是用户较为关心的话题。滤波器已经成为许多设计问题的关键,微带滤波器的设计技术是无线通信系统中的关键技术。传统方法设计出来的滤波器结构尺寸都比较大,在性能指标上也存在一定程度上的局限性,往往不能够满足现代无线通信系统的要求。目前,微带低通滤波器具有高性能、尺寸较小、易于集成、易于加工等优点因而得到了广泛的应用。 本论文以切比雪夫低通滤波器的研究作为实例,设计出一款七阶的微带低通滤波器,要求符合现代个人移动通信系统多需求的射频产品,覆盖一定的通信频率范围,使之掌握工程开发的相关步骤以及当前技术发展与需求。 2. 微带线的基本理论与参数 ε和导线厚度t、基板的介质损耗角正切函数,接地板和导线所用的金属 (1) 基板参数[2]:基板高度h、基板相对介电常数 r 通常为铜、银、铝。 (2) 电特性参数:特性阻抗、工作频率和波长、波导波长和电长度。 (3) 微带线参数:宽度W、长度L 和微带线单位长度衰减的量AdB。微带线的基本结构如1所示。 (a)结构示意图(b)横截面示意图 图1 微带线结构图 微带滤波器的参数: (1) 带宽 带宽指信号所占据的频带宽度,在被用来描述信道时,带宽是指能够有最大频带宽度。带宽在信息论、无线电、通信、信号处理和波谱学等领域都是一个核心概念。 (2) 带外衰减 由于要抑制无用信号,因此越大的带外衰减特性就越好,此项指标一般取通带外与截止频率为一定比值的某点频率的衰减值[3]。 (3) 通带插损 由于网络端口和元件自身损耗的不良匹配会造成一些能量损耗,造成在通带内引入的噪声过高以至于有用信号通过系统后产生信号失真,为了解决通信系统的这方面问题,就用插损IL 来表示滤波器的损耗特性。 (4) 带内驻波 滤波器的输入端口和输出端口与外加阻抗匹配的程度由带内驻波表示。驻波越小则说明匹配越好,反过来,则不然。 3. 运用HFSS 软件进行设计模拟仿真 3.1 微带低通滤波器的设计参数 滤波器工作频段:f1 =10MHz—f2=2500MHz =0.1dB 滤波器通带衰减:L Ar 滤波器带外抑制:在3500~5000MHz 的频率之间有35dB 的衰减 滤波器输入、输出端微带线特性阻抗:Z0=50 ε=3.66mm,h=0.508mm,t=0.004 所选介质基板指标为: r 可以计算得到7 阶切比雪夫低通滤波电路各微带传输线的结构参数[4-5]得到各尺寸如表1所示:

巴特沃斯二阶低通滤波器上课讲义

数为式⑸所示。 3 5 4 964 S 2 2 6 6ls 3 5 4 964 采用的低通滤波电路如图2所示,滤波增益为1,此电路传递函数如式(6)所示, 只需将巴特沃斯滤波器的传递函数与此传递函数的系数一一对应即可以整定出 滤波电路的参数。MEMS 陀螺的带宽为30HZ ,从采样频率100HZ 的数据序列中消除掉30HZ 以上的噪声。巴特沃斯函数只是在 co =0处精确地逼近理想低通特性,在通带内 随着o 增加,误差愈来愈大,在通带边界上误差最大,逼近特性并不很好,但 是陀螺仪的有用输出信号本就在低频段, 对通带边界的滤波要求不高,因此巴特 沃斯滤波器就可以满足要求。要求巴特沃斯滤波器通带上限截止频率 fc=30HZ , 阻带下限截止频率 fs=80HZ ,通带最大衰减 A max =3db ,阻带最小衰减为 A min =15db o 由式( 1)-(4)可得巴特沃斯低通滤波器为二阶。 .;? ?10°.叽 _1 1 (1) lg ■'10°.% _1 ' |(101.5_1、|『30.622)… 严—「g 而口厂黑3922尸.49 ‘‘2汇兀X 80 .2汉兀疋30丿 n lg 1.49 0.85 =lg 7.1 = 0.85 = 1.75 H(s) 1 s 2 . 2s 1 中的s 得到去归一化后的滤波器传递函 H(s)

图2二阶低通滤波典型电路 C 1C 2R 1 R 2 式⑸与式⑹对比可得: 令 C i =0.1uf , R 2=R i = R 3,解得 R 2=R i = R 3=6.6K ,C 2=0.6uf ,至此巴特沃斯滤波器 构造完成。R 1C 1 R 2C 1 R 3C 2 C 1C 2 R 2 R 3 1 1 1 s 1 1 1 」 266.4 (8) R i C i R 2 C i R 3C 2 1 C i C 2 R 2 R 3 H(s)= s 2 C 1C 2 R 2 R-I = 35494.6 = 35494.6 (9)

基于ADS设计2GHz阶跃阻抗低通滤波器讲解

课程设计说明书 题目:基于ADS设计2GHz阶跃阻抗低通滤波器 学院(系): 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

基于ADS设计2GHz阶跃阻抗低通滤波器 摘要:用微带或带状线实现低通滤波器的一种相对容易的方法是用很高和很低特征阻抗的传输线交替排列的结构。这种滤波器通常称为阶跃阻抗或高Z-低Z滤波器,由于它结构紧凑且较容易设计,因此是首选设计方法。在设计2GHz阶跃阻抗低通滤波器时,核心之一是采用阻抗和频率定标公式,用低阻抗和高阻抗线代替串联电感和并联电容。 关键词:阶跃阻抗低通滤波器;微带线;定标公式; Based on the ADS design 2 GHZ step impedance low pass filter Abstract: Using microstrip or stripline low pass filter is a relatively easy way with high and low characteristic impedance of the transmission structure arranged alternately. This filter is usually called step impedance is low or high Z - Z filter, due to its compact structure, and is easier to design, so design method is preferred. In design 2 GHZ step impedance low pass filter, one of the core is the impedance and frequency calibration formula, with low impedance and high impedance line instead of series inductance and the shunt capacitance. Key words: Step impedance low pass filter; Microstrip line. Scaling formula;

一阶二阶无源所有滤波器正确设计

无源滤波器 1一阶RC 低通滤波器 频率响应 幅频特性:2 ) (11|)(|RC j H ωω+= ; 相频特性:)arctan( )(RC ωωφ-=; RC f c C ππτπω21 212=== ,C f 为截止频率。 1.1二阶RC 低通滤波器 采用1阶无源RC 滤波器觉得不够满意地方可以采用RC 滤波器简单地多级连接的方法。但需要较低的信号源阻抗和较高的负载阻抗。 可以求得 )(|)(|311 )(222ωθωωω∠=+-==j H RC j C R V V jw H i o 2 2 2 2 22 2 9)1(1 |)(|C R C R j H ωωω+-= 截止角频率τω3742 .06724.21= = RC c ,截止频率π ω=2f c C

2一阶RC 高通滤波电路 RC f c C ππτπω21212=== ,C f 为截止频率。 2.1二阶RC 高通滤波电路 RC RC C R R U U H ωωωωj 1j j 1)j (12 += + == τ RC ω1 1C ==

) 63(26724.2: 1 , ) 53(311 )(:00 2 0-= = --?? ? ??-= =RC f RC j U U j H c i o πωωωωωω截止频率其中传输函数 RC j U U j H i o 1, ) 93(31 )(:000= -? ?? ? ??--= =ωωωωωω其中传输函数 3二阶RC 带通滤波电路 在图(A )无源带通滤波器中,R 1=R 2=R ,C 1=C 2=C 时,分析可得 4二阶RC 带阻滤波电路 ) 123(3 arctan )(:) 113(23027 .0:)103(23027.3:0 0---=-=-=ω ωωωωθππ相频特性下限频率上限频率RC f RC f L H

二阶压控压源型巴特沃斯低通滤波器设计

利用VCVS型二阶RC有源网络实现巴特沃斯型低通滤波器 的设计 一.二阶压控电压源低通滤波器的构成 下图所示就是压控压源二阶型滤波网络电路: 其传递函数为: 与一般低通滤波传输函数相比: 可得: 截至角频率: 增益因子:

选择性因子: 二阶低通滤波器归一化低通传输函数为: 去归一化低通传输函数为: 令: 得: R2应有实根 得:

二.各参数的设计 由于所需的滤波网络阶次为二阶 因为设计指标里通带截至频率规定: f p =100.1KHz,设运放的电压增益为2,而两 个电容的值最好相同,则令 C C C ==21,带入上式品质因 素公式中,可得: 因为品质因素在数值上等于截止频率时的滤波网络电压增益和通带电压增益只比,则 2 1=Q 则 R R R 2212== (1) 因为 2 121121 R R C C f p π = (2) 则由式(1)(2)可求得 R C 1 10125.16 -??= 由实际电子元器件标称值可以设定: 三.结果的验证 利用Multisim 对设计的电路进行仿真。首先搭建整个电路如下: 2 1R R Q =

其中XFG1是信号发生器,XBP1是波特仪,而XSC1是示波器。我们设计的时候所设定的截止频率是100.1K。所以先选择一个比较低的频率值,看其运放的放大倍数。所以先设定信号源频率为1K,仿真结果如下: 示波器示数: 从图中可以看出在低频段时:通道1的峰值为29.98mv,通道2的峰值为62.029mv,滤波网络的放大倍数可以算得A1=2.069。现在把信号源的频率调到预设截至频率,继续仿真,结果如下:

基于matlab-的巴特沃斯低通滤波器的实现

基于matlab 的巴特沃斯低通滤波器的实现 一、课程设计的目的 运用MATLAB实现巴特沃斯低通滤波器的设计以及相应结果的显示,另外还对多种低通滤波窗口进行了比较。 二、课程设计的基本要求 1)熟悉和掌握MATLAB 的基本应用技巧。 2)学习和熟悉MATLAB相关函数的调用和应用。 3)学会运用MATLAB实现低通滤波器的设计并进行结果显示。 三、双线性变换实现巴特沃斯低通滤波器的技术指标: 1.采样频率10Hz。 2.通带截止频率fp=0.2*pi Hz。 3.阻带截止频率fs=0.3*pi Hz。 4.通带衰减小于1dB,阻带衰减大于20dB 四、使用双线性变换法由模拟滤波器原型设计数字滤波器 程序代码: T=0.1; FS=1/T; fp=0.2*pi;fs=0.3*pi; wp=fp/FS*2*pi; ws=fs/FS*2*pi; Rp = 1; % 通带衰减 As = 15; % 阻带衰减 OmegaP = (2/T)*tan(wp/2); % 频率预计 OmegaS = (2/T)*tan(ws/2); % 频率预计 %设计巴特沃斯低通滤波器原型

N = ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS))); OmegaC = OmegaP/((10^(Rp/10)-1)^(1/(2*N))); [z,p,k] = buttap(N); %获取零极点参数 p = p * OmegaC ; k = k*OmegaC^N; B = real(poly(z)); b0 = k; cs = k*B; ds = real(poly(p)); [b,a] = bilinear(cs,ds,FS);% 双线性变换 figure(1);% 绘制结果 freqz(b,a,512,FS);%进行滤波验证 figure(2); % 绘制结果 f1=50; f2=250; n=0:63; x=sin(2*pi*f1*n)+sin(2*pi*f2*n); subplot(2,2,1);stem(x,'.'); title ('输入信号'); y=filter(b,a,x); subplot(2,2,2);stem(y,'.') ; title('滤波之后的信号'); figure(3) ; stem(y,'.') title('输出的信号'))

巴特沃斯滤波器c语言

1. 模拟滤波器的设计 1.1巴特沃斯滤波器的次数 根据给定的参数设计模拟滤波器,然后进行变数变换,求取数字滤波器的方法,称为滤波器的间接设计。做为数字滤波器的设计基础的模拟滤波器,称之为原型滤波器。这里,我们首先介绍的是最简单最基础的原型滤波器,巴特沃斯低通滤波器。由于IIR滤波器不具有线性相位特性,因此不必考虑相位特性,直接考虑其振幅特性。 在这里,N是滤波器的次数,Ωc是截止频率。从上式的振幅特性可以看出,这个是单调递减的函数,其振幅特性是不存在纹波的。设计的时候,一般需要先计算跟所需要设计参数相符合的次数N。首先,就需要先由阻带频率,计算出阻带衰减 将巴特沃斯低通滤波器的振幅特性,直接带入上式,则有 最后,可以解得次数N为 当然,这里的N只能为正数,因此,若结果为小数,则舍弃小数,向上取整。 1.2巴特沃斯滤波器的传递函数 巴特沃斯低通滤波器的传递函数,可由其振幅特性的分母多项式求得。其分母多项式

根据S解开,可以得到极点。这里,为了方便处理,我们分为两种情况去解这个方程。当N为偶数的时候, 这里,使用了欧拉公式。同样的,当N为奇数的时候, 同样的,这里也使用了欧拉公式。归纳以上,极点的解为 上式所求得的极点,是在s平面内,在半径为Ωc的圆上等间距的点,其数量为2N个。为了使得其IIR滤 波器稳定,那么,只能选取极点在S平面左半平面的点。选定了稳定的极点之后,其模拟滤波器的传递函数就可由下式求得。

1.3巴特沃斯滤波器的实现(C语言) 首先,是次数的计算。次数的计算,我们可以由下式求得。 其对应的C语言程序为 [cpp]view plaincopy 1.N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) / 2. log10 (Stopband/Cotoff) )); 然后是极点的选择,这里由于涉及到复数的操作,我们就声明一个复数结构体就可以了。最重要的是,极点的计算含有自然指数函数,这点对于计算机来讲,不是太方便,所以,我们将其替换为三角函数, 这样的话,实部与虚部就还可以分开来计算。其代码实现为 [cpp]view plaincopy 1.typedef struct 2.{ 3.double Real_part; 4.double Imag_Part; 5.} COMPLEX; 6. 7. https://www.wendangku.net/doc/5516290094.html,PLEX poles[N]; 9. 10.for(k = 0;k <= ((2*N)-1) ; k++) 11.{ 12.if(Cotoff*cos((k+dk)*(pi/N)) < 0) 13. { 14. poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N)); 15.poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N)); 16. count++; 17.if (count == N) break; 18. } 19.}

二阶巴特沃斯滤波器的分析与实现电路

巴特沃斯滤波器的分析与实现 巴特沃斯滤波器网上没有提供现成的电路和具体参数,此处本文给出几种类型的巴特沃斯滤波器,并给出了参数计算分析。 1、巴特沃斯低通滤波器的定义: 巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示: 其中, n = 滤波器的阶数 ωc =截止频率=振幅下降为-3分贝时的频率 ωp = 通频带边缘频率 1/(1 + ε2) = |H(ω)|2在通频带边缘的数值. 2、巴特沃斯滤波器的实现 2.1 一些常见资料的滤波器的错误 有些资料上给出的二阶巴特沃斯滤波器电路图为: 图中红线部分为放大电路,其实滤波器为2阶RC滤波器。其传递函数为: H(s)= 1 1+s(R1C1+R1C2+R2C2)+s2R1R2C1C2 下面证明此滤波器不可能为二阶巴特沃斯滤波器:滤波器幅频传递函数为: |H(jw)|=| 1 1+jw(R1C1+R1C2+R2C2)?w2R1C1R2C2 | = 1 1+w4(R1R2C1C2)2+w2((R1C1+R1C2+R2C2)2?2R1R2C1C2) 若滤波器是巴特沃斯滤波器,则((R1C1+R1C2+R2C2)2?2R1R2C1C2要为0 。因为(R1C1+R1C2+R2C2)2?2R1R2C1C2始终大于零(R1R2C1C2不取零值,C1或C2为零时为1阶RC滤波器,此时为巴特沃斯滤波器),所以不论R1R2C1C2取何值,都不是二阶巴特沃斯滤波器 2.2 二阶巴特沃斯滤波器的实现方法 本文列举了2种2阶巴特沃斯滤波器的实现方法,并给出了滤波器是巴特沃斯滤波器的参数。以下详述: 方法1:RC压控电压源滤波器 传递函数为:

分布参数低通滤波器的仿真

第11章分布参数低通滤波器的仿真 当频率不高时,集总元器件滤波器工作良好,但当频率达到或接近GHz时,滤波器通常由分布参数元器件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元器件值过小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元器件;其二是此时工作波长与滤波器元器件的物理尺寸相近,滤波器元器件之间的距离不可忽视,需要考虑分布参数效应。 本章讨论由分布参数构成的低通滤波器,分布参数低通滤波器可以由阶梯阻抗低通滤波器或短截线低通滤波器实现,本章主要介绍利用ADS软件设计分布参数低通滤波器的方法。本章将首先给出分布参数低通滤波器的理论基础,然后讨论如何利用ADS软件设计、仿真、调谐与优化分布参数低通滤波器,针对微带线阶梯阻抗低通滤波器和短截线低通滤波器,本章将完成符合技术指标的滤波器原理图和布局图。 11.1 微带阶梯阻抗低通滤波器的仿真 阶梯阻抗低通滤波器也称为高低阻抗低通滤波器,它是一种结构简洁的电路,其由很高和很低特性阻抗的传输线段交替排列而成,结构紧凑,便于设计和实现。本节将给出符合技术指标的微带线阶梯阻抗低通滤波器原理图,并由原理图给出阶梯阻抗低通滤波器版图。 11.1.1 微带阶梯阻抗低通滤波器的理论基础 1.短传输线段的近似等效电路 阶梯阻抗低通滤波器是由特性阻抗很高或很低的短传输线段构成,短传输线段的近似等效电路需要讨论。一段特性阻抗为、长度为的传输线的Z矩阵为 一段传输线的网络参量与集总元器件T形网络的网络参量有等效关系,集总元器件T 形网络的构成如图11.1所示。 集总元器件T形网络的Z矩阵为

假定集总元器件T 形网络由电感和电容构成,如图11.2(a )所示,若假定传输线有大的特性阻抗和短的长度( ),一段短传输线与集总元器件T 形网络的等效关系为 若假定传输线有小的特性阻抗和短的长度( ),一段短传输线与集总元器件T 形网络的等效关系为 2Z i1 1Z i2 3Z _ + + _ 1V 2V

一阶低通滤波原理

一阶低通滤波原理 Prepared on 22 November 2020

一阶低通滤波原理 将普通硬件RC低通滤波器的微分方程用差分方程来表求,变可以采用软件算法来模拟硬件滤波的功能。 经推导,低通滤波算法如下:Yn=a*Xn+(1-a)*Yn-1,式中 Xn——本次采样值Yn-1——上次的滤波输出值; a——滤波系数,其值通常远小于1; Yn——本次滤波的输出值。 由上式可以看出,本次滤波的输出值主要取决于上次滤波的输出值(注意不是上次的采样值,这和加权平均滤波是有本质区别的),本次采样值对滤波输出的贡献是比较小的,但多少有些修正作用,这种算法便模拟了具体有教大惯性的低通滤波器功能。 滤波算法的截止频率可用以下式计算:fL=a/(2π*t),π约为圆周率,式中 a——滤波系数; t——采样间隔时间; 例如:当t=(即每秒2次),a=1/32时;fL=(1/32)/(2**)= 当目标参数为变化很慢的物理量时,这是很有效的。 另外一方面,它不能滤除高于1/2采样频率的干扰信号,本例中采样频率为2Hz,故对 1Hz以上的干搅信号应采用其他方式滤除,低通滤波算法程序于加权平均滤波相似,但加权系数只有两个:a和1-a。为计算方便,a取一整数,1-a用256-a,来代替,计算结果舍去最低字节即可,因为只有两项,a和1-a,均以立即数的形式编入程序中,不另外设表格。虽然采样值为单元字节(8位A/D)。为保证运算精度,滤波输出值用双字节表示,其中一个字节整数,一字节小数,否则有可能因为每次舍去尾数而使输出不会变化。 设Yn-1存放在30H(整数)和31H(小数)两单元中,Yn存放在32H(整数)和33H (小数)中。

二阶有源低通滤波器

设计题题目 二阶有源低通滤波器 设计一个有源低通滤波器的截止频率为kHz f 10 。 方案论证 (1):对信号进行分析与处理时, 常常会遇到有用信号叠加上无用噪声的问题, 这些噪声有的是与信号同时产生的, 有的是传输过程中混入的。因此, 从接收的信号中消除或减弱干扰噪声, 就成为信号传输与处理中十分重要的问题。根据有用信号与噪声的不同特性, 消除或减弱噪声,提取有用信号的过程称为滤波, 实现滤波功能的系统称为滤波器。 滤波器分为无源滤波器与有源滤波器两种 工作原理: 二阶有源滤波器是一种信号检测及传递系统中常用的基本电路, 也是高阶虑波器的基本组成单元。常用二阶有源低通滤波器的电路型式有压控电压源型、无限增益多路反馈型和双二次型。本次课程设计采用压控电压源型设计课题。 有源二阶滤波器基础电路如图1所示: 图1 二阶有源低通滤波基础电路 它由两节RC 滤波电路和同相比例放大电路组成,在集成运放输出到集成运放同相输入之间引入一个负反馈,在不同的频段,反馈的极性不相同,当信号频率f >>f0时(f0 为截止频率),电路的每级RC 电路的相移趋于-90o,两级RC 电路的移相到-180o,电路的输出电压与输入电压的相位相反,故此时通过电容c 引到集成运放同相端的反馈是负反馈,反馈信号将起着削弱输入信号的作用,使电压放大倍数减小,所以该反馈将使二阶有源低通滤波器的幅频特性高频端迅速衰减,只允许低频端信号通过。其特点是输入阻抗高,

输出阻抗低。 传输函数为: )()()(i o s V s V s A = 2F F ) ()-(31sCR sCR A A V V ++= 当f=0或者频率很小时,各电容可视为开路 F 0V A A ==1+(A vf\-1)R1/R1 称为通带增益 F 31V A Q -=称为等效品质因数 RC 1c = ω 称为特征角频率 则2c n 22c 0)(ωωω++= s Q s A s A 上式为二节低通滤波电路传递函数的典型表达式 注:当Q =0.707时的3dB 截止角频率,当30≥=VF A A 电路将自激振荡。 当jw s =代入 2220222)(c c c c c c VF w s Q w s w A w s Q w s w A s A ++=++= (式11) 则 2220 )(])(1[1lg 20)(lg 20Q w w w w A jw A c c +-= (式12) 2)(1)(arctan )(c c w Q w w w --=? (式13)

相关文档
相关文档 最新文档