文档库 最新最全的文档下载
当前位置:文档库 › 气质联用法测定纺织品中溴系阻燃剂

气质联用法测定纺织品中溴系阻燃剂

印染助剂

TEXTILE AUXILIARIES

Vol.33No.6Jun.2016

第33卷第6期2016年6月康宁

(国家纺织制品质量监督检验中心,北京100025)

摘要:采用气质联用法测定纺织品中溴系阻燃剂,

对萃取溶剂、色谱柱、仪器分析条件进行了优化,方法检出限为5mg/kg ,回收率为80.66%~101.19%,重复性1.98%~7.39%,重现性2.51%~19.11%,完全可以满足日常试验的需要。

关键词:溴系阻燃剂;气质联用;甲苯中图分类号:TQ610.7

文献标识码:C

文章编号:1004-0439

(2016)06-0056-05Determination of brominated flame retardants in textiles by gas

chromatography-mass spectrometry (GC-MS)

KANG Ning

(China National Textiles Supervision Testing Center,Beijing 100025,China)

Abstract:Brominated flame retardants in textiles was determined by gas chromatography-mass spec ?

trometry (GC-MS).The extracting solvent,the chromatographic column and the conditions of instrumental analysis were optimized.The detection limit of this method was 5mg/kg,with recovery rate ranging from 80.66%to 101.19%,repeatability from 1.98%to 7.39%and reproducibility from 2.51%to 19.11%,which could completely meet the demands of routine tests.

Key words:brominated flame retardants;gas chromatography-mass spectrometry (GC-MS);toluene

阻燃剂的安全性包括阻燃剂本身以及阻燃剂整理工艺过程和燃烧时所产生物质的急性毒性、致癌性、对皮肤刺激性、致变异性和对水生物的毒性[1-2]。近年来,部分现有阻燃剂被不同程度限用。多溴联苯、多溴联苯醚属于持久性有机污染物,首先由欧盟RoHS 指令针对电子电器而被禁用[3],然后在各国和各个领域都被禁用。目前,阻燃剂残留分析普遍采用

气相色谱法[4],配有电子俘获检测器(GC-ECD ),测定的方法灵敏度高,分离效果好,定量准确,经过多年实践运用,已经证明是一种经典适用的分析方法。国标GB/T 24279-2009给出了一种气质联用测定阻燃剂的方法[5],但该方法在实际检测使用过程中存在一些问题,例如检测限过大,部分物质检出限达到100mg/kg ,另外,萃取溶剂萃取效果较差,这些缺点使得这一方法在日常试验过程中存在较大局限性。本文提出了一种采用短柱(15m )分析溴系阻燃剂的方法,采用甲苯超声波萃取,萃取效果好,检出限低,在实际应用中具有较大的优势。

1

试验

1.1

仪器与材料

仪器:Agilent 7890A-5975C 气质联用仪(美国

Agilent 公司)。试剂:一溴联苯(1)、二溴联苯(2)、三

溴联苯(3)、四溴联苯(4)、五溴联苯(5)、六溴联苯(6)、七溴联苯(7)、八溴联苯(8)、九溴联苯(9)、十溴联苯(10)、五溴联苯醚(pentaBDE )、八溴联苯醚(octaBDE )、十溴联苯醚(decaBDE )、六溴环十二烷(HBCD )(标准品,分析纯,纯度99.0%,德国Dr Ehe ?

气质联用法测定纺织品中溴系阻燃剂

收稿日期:2015-02-03作者简介:康宁(1983-),男,工程师,主要从事生态纺织品检测方法研究。

[多氯联苯,化合物,高分]高分辨气质联用法测定环境空气中的12种多氯联苯类化合物

高分辨气质联用法测定环境空气中的12种多氯联苯类化合物 1 前言 多氯联苯(PCBs)又称氯化联苯,由德国H.施米特和G.舒尔茨于1881年首次合成。PCBs 属于人工合成的氯代芳香烃类化合物,化学式为C12H10-nCln(n10)[1]。PCBs物理化学性质极为稳定,具有良好的电绝缘性和耐热性,曾在工业上广泛使用。但由于PCBs的污染具有广泛性、残留持久,以及通过生物链浓缩对人体的潜在危害等原因,成为社会公害,是公认的全球性污染物之一[2]。其中的12种被世界卫生组织(WHO)认定为具备毒性的PCBs,包括PCB 77,PCB 81,PCB 105,PCB 114,PCB 118,PCB 123,PCB 126,PCB 156,PCB 157,PCB 167,PCB 167及PCB 189。PCBs对人类危害最典型的例子是日本1968年米糠油中毒事件,受害者食用被PCBs污染的米糠油而中毒。 20世纪70年代,人们就开始了分析研究PCBs,如Thomas G.H.等[3]利用GC/MS分析了纸浆中的PCBs,Canada D.C.等[4]通过GC/MS技术讨论了PCBs的分析方法,到目前为止,PCBs的分析研究仍是大家关注的热点[5-6]。前处理和分析方法也趋于多样化,如邱静等采用高效液相色谱对常温存在的19种手性多氯联苯进行了拆分,并对比了5种不同多糖类手性色谱柱的拆分效果[7];郭远明等采用超声波萃取、分散固相萃取净化结合气相色谱电子捕获检测法,建立了快速测定环境土壤或底泥中7种指示性多氯联苯的方法[8]。本文利用高分辨气相色谱-高分辨质谱(HRGC/HRMS)联用法测定环境空气中12种PCBs,加标回收率和精密度测定的数据表明,该方法的各项参数能满足实验的要求。 2 实验部分 2.1 仪器和试剂 AutoSpec Premier高分辨磁式质谱仪(美国Waters)、7890A气相色谱仪(美国Agilent)、ASE350快速溶剂萃取仪(美国Thermo Fisher)、Sibata HV-1000R大流量环境空气采样器(日本柴田)、N-1200BV-WD旋转蒸发仪(日本东京理化)。EPA68C PCB标准物质系列(加拿大Wellington)、聚氨酯吸附材料(PUF)、甲苯(分析纯,美国Tedia)、丙酮(分析纯,美国Tedia)、正己烷(分析纯,美国Tedia)、二氯甲烷(分析纯,美国Tedia)、壬烷(分析纯,美国Tedia)、无水硫酸钠(分析纯,国药集团)。 2.2 实验方法 2.2.1 样品的采集和保存样品采集使用HV-1000R型大流量环境空气采样器,流量为1 000L/min,采样时间约为24h。采样前石英滤膜于400oC下烘烤6h,PUF用丙酮和甲苯分别超声30min。样品运输过程中应密封避光、冷藏保存,途中应避免引入干扰而破坏样品。回实验室后将样品放在事先用有机溶剂清洗过的金属盘中,室温下干燥避光保存,以备提取。 2.2.2 样品预处理(1)提取:样品使用快速溶剂萃取仪进行提取。将样品填装在萃取池内,加入提取内标,进行萃取。ASE参数如下:系统压力1 500psi、温度100oC、加热时间5min、静态时间6min、溶剂甲苯、冲洗体积60%(萃取池体积)、吹扫150psi 200s、循环3次。(2)脱水:在玻璃漏斗上垫少许玻璃棉,铺加约5g无水硫酸钠,将萃取液经上述漏斗过滤到浓缩器皿中,每次用少量萃取溶剂充分洗涤萃取容器,将洗涤液也倒入漏斗中,重复3次。最后再用少许萃取溶剂冲洗无水硫酸钠,待浓缩。(3)净化:样品首先使用浓硫酸进行

溴系列阻燃剂

溴系阻燃剂 (2007-05-21 19:36:10) 转载▼ 一、溴系阻燃剂的阻燃作用 阻燃剂是用以提高材料的抗燃性,阻止材料被引燃及抑制火焰传播的助剂。一个理想的阻燃剂要满足如下几个条件: ⑴、阻燃效率高,达到同样的阻燃效果用量少。 ⑵、低毒,燃烧后产生的有毒有腐蚀性的气体和烟量少。 ⑶、相容性好,与易燃材料结合后不易析出或流失。 ⑷、热稳定性高,既保证在阻燃基质加工温度下不分解,又保证分解温度不宜过高。 ⑸、对阻燃基质的性能影响小。 ⑹、在日光下稳定。 ⑺、制造工艺简单,价格低廉。 但同时满足以上的要求实际上是不可能的,所以选择实用的阻燃剂一般考虑在满足基本要求的前提下,对其它条件的要求往往采用最佳的平衡。 按阻燃元素的类别,阻燃剂分为卤系(卤系又分为氯系和溴系)、磷系、锑系、镁系、硼系、钼系等等。当前阻燃剂种类繁多,但综合上面七个条件,溴系阻燃剂特别应用于高分子材质方面无疑是最好的。因此溴系阻燃剂是目前世界上产量最大的有机阻燃剂。 固体物质在空气中燃烧一般可分以下三个步骤:⑴、物质燃烧分解产生可燃性气体;⑵、可燃性气体在空气中燃烧;⑶、燃烧产生的热量使物质继续分解使燃烧持续。阻燃的作用就是使上述三个步骤中的至少一个中止,它一般是通过气相阻燃、凝聚相阻燃或中断热交换等机理实现的。 溴系阻燃剂的阻燃作用属气相阻燃,其阻燃机理为溴系阻燃剂受热分解生成HBr,HBr捕获传递燃烧链式反应的活性自由基(如OH·、O·、H·),生成活性较低的溴自由基,致使燃烧减缓或中止。反应式如下: RBr →Br · + R Br · + RCH3→ HBr + RCH2 · HBr + H · →H2 + Br · HBr + O · →OH · + Br · HBr + OH · →H2O + Br · 同时HBr是密度大的气体,又难燃,它不仅能稀释空气中的氧,并且能覆盖在材料的表面隔离空气致使材料的燃烧速度降低或自熄,达到阻燃的目的。 就阻燃的效率来说,用脂肪族溴化物好于脂环族溴化物,脂环族溴化物好于芳香族溴化物。当溴系阻燃剂和氧化锑并用时,具有明显的增效作用。 二、溴系阻燃剂的种类和用途 溴系阻燃剂的种类很多,一般分以以下几类:

气质联用技术检测对甲苯磺酸酯类杂质

龙源期刊网 https://www.wendangku.net/doc/5416511186.html, 气质联用技术检测对甲苯磺酸酯类杂质 作者:霍立刘艳妮 来源:《中国新技术新产品》2016年第02期 摘要:建立了气相色谱-质谱联用法测定对甲苯磺酸拉帕替尼中的对甲苯磺酸甲酯、对甲苯磺酸乙酯和对甲苯磺酸异丙酯。采用6%氰丙基苯基94%二甲基聚硅氧烷为固定液的毛细管柱,以衍生技术和顶空进行技术相结合,质谱法检测。对甲苯磺酸甲酯、对甲苯磺酸乙酯和对甲苯磺酸异丙酯分别在0.040μg/mL~2.203μg/mL、0.125μg/mL~6.877μg/mL和0.002μg/mL~0.109μg/m L浓度范围内线性关系良好,平均回收率分别为99.6%、98.2%和103.8%,定量限均为0.001μg/mL。 关键词:对甲苯磺酸甲酯;对甲苯磺酸乙酯;对甲苯磺酸异丙酯;气相色谱;对甲苯磺酸拉帕替尼 中图分类号:TQ460.7 文献标识码:A 对甲苯磺酸烷基酯,如对甲苯磺酸甲酯和对甲苯磺酸乙酯,是对甲苯磺酸与甲醇,乙醇,或其它低级醇形成的酯。对甲苯磺酸烷基酯会被视为潜在基因毒性杂质,这些物质可与DNA 发生烷基化反应,从而可能成为引发癌症的诱因。由于拉帕替尼在生产过程中使用了对甲苯磺酸、甲醇、乙醇和异丙醇,反应过程中易生成对甲苯磺酸甲酯,对甲苯磺酸乙酯,对甲苯磺酸异丙酯。本试验采用气相色谱质谱联用技术检测检测这三种杂质。 1 仪器 Agilent6890-5973GC/MS气质联用仪。 2 对照品 对甲苯磺酸甲酯(分析纯),对甲苯磺酸乙酯(分析纯),对甲苯磺酸异丙酯(分析纯),对甲苯磺酸丁酯(分析纯)。 3 色谱条件 色谱柱:以6%氰丙基苯基94%二甲基聚硅氧烷为固定液的毛细管柱(长:30m,内径:0.32mm,膜厚:1μm)。 载气:氦气。 流速:2.0mL/min。

Agilent气质联用培训教材

Agilent 7890 / 5975C-GC/MSD (For 1701E02系列工作站) 现场培训教材 安捷伦科技有限公司 生命科学与化学分析仪器部

培训目的 ●初步了解Agilent 7890A气相色谱仪和5973C质谱仪的操作。 ●正确地执行仪器的开机、关机;初步掌握软件中有关仪器参数设定、 分析方法的编辑、谱库检索及报告的打印。 注意事项: 1.老化柱子 分段老化。按温度从低到高分段,程序升温老化。这是最好 的老化方法。如HP-5柱,5-6℃/min至250℃,反复数次; 再升至280℃,反复数次;接到MS上看基线情况。270℃以 后基线提高为正常。再老化到300℃半小时。无论何种方式, 载气必须充足。 2.进样口用红色或灰色隔垫,可减少隔垫流失。 3.GC/MS接口处必须用vesper垫圈(5062-3508)。注意安装方 向(大的一端朝向质谱)。 4.新柱子安装时无方向性,但一旦使用过,再不要改变方向。 保存柱子时注意将两端密封好,避免水和空气破坏柱子内涂层 仪器配置: 1. 在操作系统桌面双击Config/配置图标进入仪器配置界面 2.如下图所示点击所要配置的仪器

配置MSD及GC: 以下采用中文工作站界面,英文工作站请参考相应位置及图标 在出现的画面中输入仪器名称、序列号等信息后,在质谱仪一栏中选择MSD的型号,并输入MSD的IP地址,选择DC极性(标注于MSD侧板的中部金属上部);同样配置GC后点击确定退出。

配置完成后桌面上应出现“Instrument #1”和“Instrument #1 Data Analysis”的图标(名称由配置时输入的仪器名称决定)。如下图所示: 开机 1.打开载气钢瓶(He)控制阀,设置分压阀压力至0.5Mpa 2.打开计算机,登录进入Windows XP(SP2)系统,初次开机时建 议使用5975的小键盘LCP输入IP地址和子网掩码,并使用新地 址重启,否则安装并运行Bootp Service 3.打开7890GC、5975MSD电源(若MSD真空腔内已无负压则应在打 开MSD电源的同时用手向右侧推真空腔的侧板直至侧面板被紧 固地吸牢),等待仪器自检完毕 4.在桌面双击“Instrument #1”图标,进入MSD化学工作站

溴系阻燃剂

2. 溴系阻燃剂 2.1 溴系阻燃剂的特点 溴系阻燃剂与其他阻燃剂相比,主要有以下优点[1]:1)阻燃效率高,添加量少,对被阻燃基材的加工性能和理化性能影响较小;2)有优良的热稳定性和水不溶性;3)分散性好,与材料有较好的相容性;4)原料来源充足,制备工艺成熟,价格低廉;5)热分解温度范围窄,起阻燃作用的成分比集中,浓度大。6)种类繁多,能满足多种高聚物加工工艺及阻燃产品的使用要求,应用范围广。 2.2 阻燃机理 其主要作用机理是溴系阻燃剂受热分解生成HBr,而HBr能捕获传递燃烧链式反应的活性自由基(如OH·、O·和H·),生成活性较低的溴自由基,致使燃烧减缓或中止[2]。 RX → HX. HX + HO·→X·+ H2O RH + X·→ HX + R·[18,19]。 此外,HBr为密度大的气体,并且难燃,它不仅能稀释空气中的氧,同时还能覆盖于材料表面,替代空气,致使材料的燃烧速度降低或自熄。 2.3 溴系阻燃剂分类 溴系阻燃剂从使用方法上可将其分为反应型和添加型;从化合物结构上可将其分为多溴二苯醚类、溴代苯酚类、溴代双酚A类、溴代邻苯二甲酸类、溴代多元醇类、溴代烷烃类以及其他新型溴系阻燃剂。其中最重要的是多溴二苯醚((PBDEs)、四溴双酚A (TBBPA)和六溴环十二烷(HBCD)等,前两者的产量占溴系阻燃剂的50%左右[3]。 2.4 十溴二苯醚 十溴二苯醚(DBDEs)是由溴与联苯醚在AlCl3作用下反应制得,其含溴量高达83·3%(质量分数),热稳定性好,阻燃效能高,且价格适中,广泛应用于聚苯乙烯、聚烯烃、聚酯、聚酰胺等热塑性塑料的加工,也可用于环氧树脂、酚醛树脂、不饱和聚酯等热固性树脂的阻燃加工,是一种产量和消耗量较大的添加型含溴阻燃剂[4] 文献报道的十溴二苯醚的合成工艺有两种方法;一是溶剂法,二是无溶剂法。 2. 5 四溴双酚A 四溴双酚A(TBBPA)是双酚A的溴化衍生物,含溴量为58·8%(质量分数),可分为反应型和添加型阻燃剂。反应型四溴双酚A主要用作含溴环氧树脂和含溴聚碳酸酯的中间体,用于制备含溴环氧树脂、含溴聚碳酸酯、含溴酚醛树脂等阻燃树脂。四溴双酚A与COCl2反应生成含溴为58%(质量分数)的四溴双酚A聚碳酸酯,具有热稳定性高、渗出量少、加工性能优异、对树脂的物理性能影响较小和不腐蚀等优点。添加型主要用作环氧树脂、酚醛树脂、HIPS、ABS、不饱和树脂和聚氨酯等材料的阻燃,TBBPA具有促进聚合物熔体流动性的特征,用40%质量分数)即可达到很好的阻燃效果,氧指数可达30·9[5]。 二酚基丙烷(双酚A)在溶剂中澳化合成四嗅双酚A(T.B.A),其反应式为:

实验十三-气质联用分离测定有机混合体系

实验十三、气质联用分离测定有机混合体系 一、实验目的和要求 (1)掌握GC-MS的基本原理。 (2)了解GC-MS的基本构造、分析条件的设置和工作流程。 (3)掌利用GC-MS对有机物进行定性定量分析的方法。 二、实验原理 本实验采用液-液萃取和液-固萃取两种方法,从环境水样中提取多种有机氯农药,如BHCs、DDT及其降解产物DDE和DDD、艾氏剂、狄氏剂等,经GC-MS 分析测定。通过固相萃取硅胶小柱分离、GC-MS选择离子检测法(SIM)消除共存成分的干扰。 在GC-MS仪中,样品首先经过气相色谱柱被分离成单一组分,再进入质谱计的离子源,在离子源中,样品分子被电离成离子,离子经过质量分析器之后即按照m/z顺序排列成谱。经检测器检测后得到质谱,计算机采集并储存质谱,经过适当处理即可得到样品的色谱图、质谱图等信息。经谱库检索后可得到化合物的定性结果,由色谱图还可以进行各组分的定量分析。 该方法适用于环境水样(包括地表水、地下水和海水等)中有机氯农药的监测,测量范围在每升几纳克到几百纳克数量级。单个有机氯农药的GC-MS检测限和最低定量浓度见表7-1。 三、实验仪器和试剂 1、仪器 (1)气相色谐质谱联用仪(GC-MS),EI源。 (2)自动进样器。 (3)固相萃取浓缩装置(加压型或减压型)。 (4)旋转蒸发器。 (5)1~2L分液漏斗。 (6)300mL三角烧瓶。 (7)300mL,茄形瓶。 2、试剂 (1)溶剂。残留农药分析纯,包括丙酮、正已烷和乙酸乙酯。 (2)氯化钠。优级纯,在350℃下加热6h,除去吸附在表面的有机物,冷却后保存于干净的试剂瓶中。 (3)无水硫酸钠。分析纯,在350℃下加热6h,除去水分及吸附于表面的有机物,冷却后保存于干净的试剂瓶中。 (4)硅胶小柱。Bond Elut JR SI Silica Gel,Varian或Waters Sep-pak Plus Silica Car-tride(美国)。

安捷伦气质联用仪操作规程

Agilent 7890 A/ 5975C气相色谱质谱联用仪操作规程1. 开机 1)打开载气钢瓶控制阀,设置分压阀压力至0.5Mpa 。 2) 打开计算机,登录进入Windows XP系统,初次开机时使用5975C的小键盘LCP输入IP地址和子网掩码,并使用新地址重起,否则安装并运行Bootp Service 。 3)依次打开7890AGC、5975MSD电源(若MSD真空腔内已无负压则应在打开MSD电源的同时用手向右侧推真空腔的侧板直至侧面板被紧固地吸牢),等待仪器自检完毕。 4)桌面双击GC-MS图标,进入MSD化学工作站 5)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面, 在真空菜单中选择真空状态,观察真空泵运行状态,此仪器真空泵配置为分子涡轮泵,状态显示涡轮泵转速涡轮泵转速应很快达到100 %,否则,说明系统有漏气,

应检查侧板是否压正、放空阀是否拧紧、柱子是否接好。 2. 调谐 调谐应在仪器至少开机2个小时后方可进行,若仪器长时间未开机为得到好的调谐结果将时间延长至4小时。 1)首先确认打印机已连好并处于联机状态。 2) 在操作系统桌面双击GC-MS图标进入工作站系统。 3)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面。 4) 单击调谐菜单,选择自动调谐调谐MSD,进行自动调谐,调谐结果自动打印。 5) 如果要手动保存或另存调谐参数,将调谐文件保存到atune.u中。 6) 然后点击视图然后选择仪器控制返回到仪器控制界面。 注意: 自动调谐文件名为ATUNE.U 标准谱图调谐文件名为STUNE.U 其余调谐方式有各自的文件名. 3. 样品测定 3.1 方法建立 1)7890A配置编辑 点击仪器菜单,选择编辑GC配置进入画面。在连接画面下,输入GC Name:GC 7890A;可在Notes处输入7890A的配置,写7890A GC with 5975C MSD。点击获得GC配置按钮获取7890A的配置。

超详细气质联用原理

超详细气质联用原理 3在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相 ;自上而下运动的一相(一般是气体或液体)称为流动相 ;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 从不同角度,可将色谱法分类如下: 1. 按两相状态分类 气体为流动相的色谱称为气相色谱(GC)根据固定相是固体吸附剂还是固定液(附着在惰性载体上的一薄层有机化合物液体),又可分为气固色谱(GSC)和气液色谱(GLC)。液体为流动相的色谱称液相色谱(LC) 同理液相色谱亦可分为液固色谱(LSC)和液液色谱(LLC)。超临界流体为流动相的色谱为超临界流体色谱(SFC)。 随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CBPC). 4 由检测器输出的电信号强度对时间作图,所得曲线称为色谱流出曲线。曲线上突起部分就是色谱峰。如果进样量很小,浓度很低,在吸附等温线(气固吸附色谱)或分配等温线(气液分配色谱)的线性范围内,则色谱峰是对称的。在实验操作条件下,色谱柱后没有样品组分流出时的流出曲线称为基线,稳定的基线应该是一条水平直线。色谱峰顶点与基线之间的垂直距离,以(h)表示 5不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间,它正比于色谱柱的空隙体积。试样从进样到柱后出现峰极大点时所经过的时间,称为保留时间

气相色谱法和气质联用测定混合烷烃样品的实验讲义

实验1 毛细管气相色谱法测定混合烷烃样品 一、目的要求 1. 了解6820气相色谱仪的基本结构及工作原理。 2. 了解色谱定性的基本原理。 3. 熟悉分离度的定义、计算及判据。 二、实验原理 色谱法的实质是分离分析。它根据混合物各组分在互不相溶的两相——固定相与流动相中分配能力、吸附能力等性能的差异作为分离依据。当各组分随流动相渗漉通过固定相时,在流动相与固定相之间进行反复多次的分配,结果使那些分配系数仅有微小差异的组分在色谱柱中的移动距离产生了较大的差别,从而得到分离。 物质在一定得色谱条件下具有一定的保留值,故保留值可以作为一种定性指标。色谱定量的依据是峰高或峰面积。当操作条件一定时,组分的质量(或浓度)与检测器响应讯号成正比。判断色谱柱分离效能的指标是分离度,其定义式为: Rs=2(t R2-t R1)/(W1+W2) 式中,t R为保留时间,W为基线宽度,二者均可由色谱流出曲线得到。 三、仪器与试剂 仪器:6820气相色谱仪,FID检测器(Agilent),氮、氢、空气体发生器,稳压电源,微量进样器,定性滤纸 试剂:混合烷烃样品 四、实验步骤 1. 色谱条件 色谱柱:DB-1,15 m×0.53 mm; 柱温:80℃,梯度:15 ℃/min;气化室温度:250 ℃;FID温度:300 ℃; 载气:高纯氮,分压表0.4 MPa,流量:410 mL/min。 2. 混合样品的分离测定 (1)注册样品——样品/编辑/注册样品。 (2)进样——混合样品0.2μL/后进样口/手动进样。 五、结果处理 1. 方法/输出/报告规格/面积百分比/打印。 2. 计算分离度。 六、思考题 1. 气相色谱如何定性? 2. 分离度有何意义? 3. 气相色谱中柱温的选择原则是什么? 4. 分流与不分流进样各适用于何种情况?应注意哪些问题?

气质联用验收

气质联用验收 工程师在安装完仪器之后,都要对仪器进行检测调试,会出具一份完整的调试检测报告。主要关注的包括以下几方面: 1. 调谐通过:出具一份通过的调谐报告.注意空气本底强度、标准品峰强度大小,空气本底强度反映真空度的好坏,强度应越低越好,调谐用标准品峰强度反映仪器的灵敏度,应有足够的强度。在后面的使用过程中注意观察空气本底强度及标准峰强度的变化,应相对稳定。 2. 仪器灵敏度测试达到要求:装机后一般采用标准品进行S/N测试,出具测试报告。测试结果应达到其所宣称的参数值。灵敏度是各种仪器必须接受考察的必检项目,反应了仪器的整体性能,分绝对灵敏度和相对灵敏度,一般仪器厂商在所给的仪器性能参数上也会全部给出。所谓绝对灵敏度指记录仪上得到的可控制的质谱信号所需的样品量(g);相对灵敏度指可检测到的微量物质的最小浓度(pp m)。灵敏度又与离子化效率、质量传输效率、扫描方法、扫描速度、检测器增益、进样方式等多种因素有关,所以在仪器的验收时,必需把好关(很多厂家在其宣传资料上给出的灵敏度值相当高,大都是在验收时打仪器其它指标的擦边球,通过其它指标的调节来显示视觉上的高灵敏度)。 在验收仪器时,一般采用八氟萘检测其绝对灵敏度。1pg八氟萘m/z272 S/ N>180(RMS),在此表示的是均方根信噪比,而在仪器验收过程中,厂家所设定的一般是信号值与极短的时间段(在某一极短时间段内仪器的基线甚至能出现直线),这样就在视觉上大大的提高了仪器的灵敏度。如果我们采用峰/峰信噪比,采用极为直观的方式进行检测,所得值将远低于仪器所给定的灵敏度(当然不可否认在数学上均方根表示比平均高度比值的确要高)。至于扫描方式,选择离子扫描(SIM)比全离子扫描(SCAN)灵敏度要高许多。 3. 真空系统漏气问题:漏气问题是经常遇到的问题,好的真空是进行MS分析的前提,因此对仪器的真空状况应引起足够的重视。一般在调谐时可进行真空检漏,如果通过,则提示真空不漏。 4. 质量范围,质量轴的稳定性:一般在一定条件下,一定时间内质量标尺发生漂移的幅度,一般多以8h或12h内某一质量的测定值的变化,一般控制在±0.1u/12h,这样可以减少仪器校准的频率,增加仪器的稳定性。该仪器的质量范

“三招”判断气质联用分子离子峰

“三招”判断气质联用分子离子峰 通常判断分子离子峰的方法如下: (1)分子离子峰一定是质谱中质量数最大的峰,它应处在质谱的最右端。 (2)分子离子峰应具有合理的质量丢失。也即在比分子离子小4~14 及20~25个质量单位处,不应有离子峰出现,否则,所判断的质量数最大的峰就不是分子离子峰。因为一个有机化合物分子不可能失去4~14个氢而不断键。如果断键,失去的最小碎片应为CH3,它的质量是15个质量单位。同样也不可能失去20~25个质量单位。 (3)分子离子峰应为奇电子离子,它的质量数应符合氮规则(略)。 如果某离子峰完全符合上述3项判断原则,那么这个离子峰可能是分子离子峰;如果3项原则中有一项不符合,这个离子峰就肯定不是分子离子峰。应该特别注意的是,有些化合物容易出现M-1峰或M+1峰,另外,在分子离子很弱时,容易和噪音峰相混,所以,在判断分子离子峰时要综合考虑样品来源、性质等其他因素。 如果经判断没有分子离子峰或分子离子峰不能确定,则需要采取其他方法得到分子离子峰,常用的方法有:

(1)降低电离能量降低电子轰击的能量,可以减少分子离子峰进一步裂解的可能性,从而增强分子离子峰 (2)制备衍生物 (3)更换其他离子源 分子离子的确认: 分子离子峰的m/z 值示出准确的相对分子质量,高分辨质谱的分子离子峰还可提供精确的相对分子质量,由此可方便地推断出化合物的分子式,所以识别分子离子峰是很重要的。构成分子离子峰有三个必要条件: (1) 在质谱图中必须是最高质量的离子; (2) 必须是一个奇电子离子; (3) 在高质量区,它能合理地丢失中性碎片而产生重要的碎片离子。 样品分子电离失去一个电子形成的分子离子除了伴随的同位素峰外,必然出现在质谱图中的最高质量处。中性分子失去孤电子对中或一对成键电子中的一个电子,而形成的分子离子必定是一个自由基正离子,

常见阻燃剂

十溴二苯乙烷TDE 英文名称:2,2',3,3',4,4',5,5',6,6'-Decabromobibenzyl [1] 英文别名:DBDPE;1,2-Bis(2,3,4,5,6-pentabromophenyl)ethane CAS号:84852-53-9 分子式:C14H4Br10 分子量:971.22 熔点:~345℃. 沸点:~676.2℃. 新型溴系添加型阻燃剂(改性塑料行业必须用到的) 密封阴凉干燥保存 十溴二苯乙烷是一种使用范围广泛的广谱添加型阻燃剂,其溴含量高,热稳定性好,抗紫外线性能佳,较其他溴系阻燃剂的渗出性低;特别适用于生产电脑、传真机、电话机、复印机、家电等的高档材料的阻燃。 十溴二苯乙烷热裂解或燃烧时不产生有毒的多溴代二苯并二恶烷 (DBDO )及多溴代二苯并呋湳(DBDF ),用它阻燃的材料完全符合欧洲关于二恶英条例的要求,对环境不造成危害。二恶英(Dioxin),又称二氧杂芑(qǐ),是一种无色无味、毒性严重的脂溶性物质,二恶英实际上是二恶英类(Dioxins)一个简称,它指的并不是一种单一物质,而是结构和性质都很相似的包含众多同类物或异构体的两大类有机化合物。二恶英包括210种化合物,这类物质非常稳定,熔点较高,极难溶于水,可以溶于大部分有机溶剂,是无色无味的脂溶性物质,所以非常容易在生物体内积累,对人体危害严重。 十溴二苯乙烷无任何毒性,也不会对生物产生任何致畸性,对水生物如鱼等无副作用,可以说符合环保的要求。 十溴二苯乙烷在使用的体系中相当稳定,用它阻燃的热塑性塑料可以循环使用。 十溴二苯乙烷对阻燃材料性能的不利影响较传统阻燃剂十溴二苯醚小,且耐光性能好,渗出性低。 项目规格项目规格

超详细气质联用原理

3在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相; 自上而下运动的一相(一般是气体或液体)称为流动相;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 从不同角度,可将色谱法分类如下: 1. 按两相状态分类 气体为流动相的色谱称为气相色谱(GC)根据固定相是固体吸附剂还是固定液(附着在惰性载体上的一薄层有机化合物液体),又可分为气固色谱(GSC)和气液色谱(GLC)。 液体为流动相的色谱称液相色谱(LC)同理液相色谱亦可分为液固色谱(LSC)和液液色谱(LLC)。超临界流体为流动相的色谱为超临界流体色谱(SFC)。 随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CBPC). 4 由检测器输出的电信号强度对时间作图,所得曲线称为色谱流出曲线。曲线上突起部分就是色谱峰。如果进样量很小,浓度很低,在吸附等温线(气固吸附色谱)或分配等温线(气液分配色谱)的线性范围内,则色谱峰是对称的。在实验操作条件下,色谱柱后没有样品组分流出时的流出曲线称为基线,稳定的基线应该是一条水平直线。色谱峰顶点与基线之间的垂直距离,以(h)表示 5不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间,它正比于色谱柱的空隙体积。试样从进样到柱后出现峰极大点时所经过的时间,称为保留时间 6调整保留时间实际上是组份在固定中停留的总时间。保留时间是色谱法定性的依据。但同一组分的保留时间受到流动相流速的影响,因此,常用保留体积等参数进行定性分析。死体积指色谱柱在填充后,柱管内固定相颗粒间所剩留的空间、色谱仪中管路和连接头间的空间以及检测器的空间的总和。某组分的保留时间扣除死时间后,称为该组分的调整保留时间。由于组分在色谱柱中的保留时间tr包含了组分随流动相通过柱子所须的时间和组分在固定相中滞留所须的时间,所以tr实际上是组分在固定相中保留的总时间。保留时间是色谱法定性的基本依据,但同一组分的保留时间常受到流动相流速的影响,因此色谱工作者有时用保留体积来表示保留值。指从进样开始到被测组分在柱后出现浓度极大点时所通过的流动相的体积。某组分的保留体积扣除死体积后,称为该组分的调整保留体积。 7相对保留值只与柱温以及固定相性质有关,与柱径柱长、填充情况和流动相流速无关。是常用的定性数据。在定性分析中,通常固定一个色谱峰作为标准(s),然后再求其它峰(i)对这个峰的相对保留值,此时可用符号α表示, 式中tr '(i)为后出峰的调整保留时间,所以α总是大于1的。相对保留值往往可

溴类阻燃剂研究现状

溴类阻燃剂发展现状 *** (广东石油化工学院化学与生命科学学院茂名 525000) 摘要:经过对溴系阻燃剂的市场消费量的分析,表明溴系阻燃剂虽面临环保方面的一些压力,但它们在一定时期内还会在很多国家生产和使用,是一时难以被替代且具有良好发展前景的阻燃剂。本文阐述了溴系阻燃剂的特点和阻燃机理,重点介绍了阻燃体系中溴系阻燃剂产品及阻燃技术的开发与应用。并针对溴系阻燃剂在使用中存在的问题,提出了新的研究方向,预测了溴系阻燃剂今后的发展趋势。 关键词:溴系阻燃剂;阻燃技术;发展现状;发展趋势 1.1阻燃剂发展现状 阻燃剂是一种能够降低或抑制高分子材料可燃性的添加剂,用以提高材料抗燃性,主要用于阻止合成和天然高分子材料被引燃及抑制火焰传播的助剂。阻燃剂品种很多,按照分类不同,主要可以分为:按使用方式可分为反应型阻燃剂和添加型阻燃剂两大类。前者指与基材中的其它组分化学反应而形成的阻燃剂,或者为高聚物的单体,或者作为辅助试剂而参与高聚物的合成反应,最后成为高聚物的结构单元,多用于热固性高聚物;后者指只是以物理方式分散于基材中,多用于热塑性高聚物。按阻燃元素种类不同,阻燃剂常可分为卤系、有机磷系及卤- 磷系、氮系、磷 - 氮系、锑系、铝 - 镁系、无机磷系、硼系、铝系等;按属性可分为有机阻燃剂和无机阻燃剂两大类,有机阻燃剂包括卤系 ( 溴系及氯系 )、有机磷系 ( 含卤 - 磷系、磷 - 氮系) 及氮系等,无机阻燃剂包括锑系、铝 - 镁系、无机磷系、硼系、铝系等。一个理想的阻燃剂应具有阻燃效率高、热稳定性好、光稳定性好、与被阻燃基材相容性好、本身低毒或基本无毒、燃烧时生成的有毒和腐蚀性气体量及烟量尽可能少、原料简单易得、工艺简便等特点。但实际上,目前许多阻燃剂很难达到理想的要求,近年来,追求高毒、低烟、无尘的阻燃剂已成为阻燃领域的重要课题及发展的主要方向。 1.2溴系阻燃剂的概况 溴系阻燃剂作为有机阻燃剂的一大类,主要由溴化剂( 常用的是溴素) 与有关有机物反应而得,其产量约占有机阻燃剂40%左右。目前,国外消耗量较大的溴系阻燃剂主要包括:四溴双酚A及其衍生物、十溴二苯醚及其同系物、脂肪族多溴化物、溴化芳烃、溴代酚及其衍生物及高分子阻燃剂等,其中,四溴双酚A是产量和消耗量最大的含溴阻燃剂,它可作为反应型阻燃剂用于环 氧树脂、聚碳酸酷等,又可作为添加型阻燃剂用于ABS、酚醛树脂等[1];而十溴二苯醚是另一个产量大的添加型含溴阻燃剂。

气质联用仪

综合实验报告 实验名称:气质联用仪法(GC-MS)测定鱼油脂肪酸成分学生信息:14级食安2班郑雅莹201430520229

1 实验试剂与仪器 1.1 实验试剂 油脂,异辛烷,氢氧化钾甲醇溶液,硫酸氢钠,高纯氦气。 1.2 实验仪器 本实验采用的是安捷伦7890A/5975C-GC/MSD,。GC中主要包括载气系统,进样系统,分离系统,检测系统和数据处理系统;MS中主要包括就是离子源(EI),质量分析器,检测器。 载气:一般为氦气 进样系统:包括进样装置和汽化室。样品进入汽化室后在一瞬间就被汽化,然后随载气进入色谱柱。 分离系统:分离系统主要作用部件是色谱柱。气质用的色谱柱是毛细管柱。通常来说,一根毛细管色谱柱通常由两部分组成:管身和固定相管身。其分离效率高,分析速度快,样品用量小。其缺点是样品负荷量小,因此经常需要采用分流技术。 检测系统:气质的检测系统是质谱仪。 数据处理系统:即连接计算机。 2 实验方法与原理 2.1 仪器基本原理和应用范围 质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力;而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质

谱仪联合起来使用的仪器叫做气-质联用仪。 气质联用仪是利用试样中各组份在气相和固定液两相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器(质谱仪),产生的离子流讯号经放大后,在记录器上描绘出各组份的色谱峰。 气质联用仪的工作过程是高纯载气由高压钢瓶中流出,经减压阀降压到所需压力后,通过净化干燥管使载气净化,再经稳压阀和转子流量计后,以稳定的压力、恒定的速度流经气化室与气化的样品混合,将样品气体带入色谱柱中进行分离。分离后的各组分随着载气先后流入检测器(质谱仪),然后载气放空。检测器将物质的浓度或质量的变化转变为一定的电信号,经放大后在记录仪上记录下来,就得到色谱流出曲线。根据色谱流出曲线上得到的每个峰的保留时间,可以进行定性分析,根据峰面积或峰高的大小,可以进行定量分析。 2.2定性分析原理 将待测物质的谱图与谱库中的谱图对比定性。 2.3定量分析原理 相对定量方法(峰面积归一法):由气质联用仪得到的总离子色谱图或质量色谱图,其色谱峰面积与相应组分含量成正比,可对某一组分进行相对定量。 绝对定量法(标准物质标定法):配制一组合适浓度的标准样品,在最佳测定条件下,由低浓度到高浓度依次测定它们的吸光度A,以吸光度A对浓度C作图得A-C标准曲线。在相同的测定条件下,测定未知样品的吸光度,从A-C标准曲线上用内插法求出未知样品中被测元素的浓度。 3 实验步骤 3.1 鱼油提取 鱼油提取方法:索氏提取。 3.2 鱼油脂肪酸甲酯化 称取60 mg油脂样致具塞试管中,用移液枪移取4 mL异辛烷溶解试样。加入200 uL氢氧化钾甲醇溶液,盖上玻璃塞猛烈震摇30 s,后静置至澄清。向溶液中加入约1 g硫酸氢钠,猛烈震摇,中和氢氧化钾。待盐沉淀后,将含有甲酯的

气质联用操作流程

气相色谱仪-质谱仪操作流程 1开气; 2打开两主机(GC/MS),启动电脑。 3点击联机图表; 4在弹出的离子源、四级杆信息栏点应用、确定,使其分别加热到230℃,150℃; 5编辑GC参数中把辅助加热设置为280℃;抽真空4小时以后,调谐. 6调谐质谱:视图—调谐和真空控制,进入调谐界面,调谐--自动调谐:仪器自动调谐,看调节结果中水氮比(与基峰比)是否小于20%和10% 等(或者点击调谐—调谐评估),调谐好后保存文件:文件--保存调谐参数,并替代原有调谐文件;(也可直接调用原有的调谐报告) 7编辑气相色谱仪参数:编辑进样前清洗,进样口,色谱柱,检测器的温度压力条件等 8编辑质谱参数:a:定性:全扫描,--全扫描参数,规定扫描质量范围,阈值(>500),光电倍增器工作电压,扫描绘图窗口的设置等;b:定量:选择离子扫描,找出已定性样的特征离子,在“SIM参数”中,根据待测组分个数和组分间隔时间分组,在组内添加特征离子质荷比m/z,并根据不同组分出峰时间的差异分组设定不同时间段采集的特征离子质荷比。 9保存方法 10运行序列或者方法 11数据处理:A:定性:a、打开待分析色谱图;b、扣除本底(圈一段相对平稳基线,仪器自动算出时间范围内的平均值,--文件--图谱扣除);c、谱库检索: 1.选谱库:谱图—选择谱图—通过路径找到谱图(c:\datebase\nisi08.l); 2选择结构图:视图—参数检索,到选结构图视图,结构—选择结构数据库--通过路径找到谱图(c:\datebase\nisi08.l),然后返回分析窗口:视图—返回图谱。 B:定量:调出数据,积分,编辑校正曲线,保存方法,出报告 12执行放空程序视图—调谐和真空,进入调谐和放空的界面。点击真空放空,ok,开始执行放空程序,外真空泵自动关闭,辅助加热区降温,转子降速,约40分钟达到规定状态。手动扭松放气阀慢慢让空气进入。 13关机,关气

浅析高分辨气质联用法测定环境空气中的12种多氯联苯类化合物.doc

浅析高分辨气质联用法测定环境空气中的12种多氯联苯类化合物- 1前言 多氯联苯(PCBs)又称氯化联苯,由德国H.施米特和G.舒尔茨于1881年首次合成。PCBs属于人工合成的氯代芳香烃类化合物,化学式为C12H10-nCl(nn10)。PCBs物理化学性质极为稳定,具有良好的电绝缘性和耐热性,曾在工业上广泛使用。但由于PCBs的污染具有广泛性、残留持久,以及通过生物链浓缩对人体的潜在危害等原因,成为社会公害,是公认的全球性污染物之一。其中的12种被世界卫生组织(WHO)认定为具备毒性的PCBs,包括PCB77,PCB81,PCB105,PCB114,PCB118,PCB123,PCB126,PCB156,PCB157,PCB167,PCB167及PCB189。PCBs 对人类危害最典型的例子是日本1968年米糠油中毒事件,受害者食用被PCBs污染的米糠油而中毒。 20世纪70年代,人们就开始了分析研究PCBs,如ThomasG.H.等利用GC/MS分析了纸浆中的PCBs,Cana?daD.C.等通过GC/MS技术讨论了PCBs的分析方法,到目前为止,PCBs 的分析研究仍是大家关注的热点。前处理和分析方法也趋于多样化,如邱静等采用高效液相色谱对常温存在的19种手性多氯联苯进行了拆分,并对比了5种不同多糖类手性色谱柱的拆分效果;郭远明等采用超声波萃取、分散固相萃取净化结合气相色谱电子捕获检测法,建立了快速测定环境土壤或底泥中7种指示性多氯联苯的方法。本文利用高分辨气相色谱-高分辨质谱(HRGC/HRMS)联用法测定环境空气中12种PCBs,加标回收率

和精密度测定的数据表明,该方法的各项参数能满足实验的要求。 2实验部分 2.1仪器和试剂AutoSpecPremier高分辨磁式质谱仪(美国Waters)、7890A气相色谱仪(美国Agilent)、ASE350快速溶剂萃取仪(美国ThermoFisher)、SibataHV-1000R大流量环境空气采样器(日本柴田)、N-1200BV-WD旋转蒸发仪(日本东京理化)。EPA68CPCB标准物质系列(加拿大Wellington)、聚氨酯吸附材料(PUF)、甲苯(分析纯,美国Tedia)、丙酮(分析纯,美国Tedia)、正己烷(分析纯,美国Tedia)、二氯甲烷(分析纯,美国Tedia)、壬烷(分析纯,美国Tedia)、无水硫酸钠(分析纯,国药集团)。 2.2实验方法 2.2.1样品的采集和保存样品采集使用HV-1000R型大流量环境空气采样器,流量为1000L/min,采样时间约为24h。采样前石英滤膜于400oC下烘烤6h,PUF用丙酮和甲苯分别超声30min。样品运输过程中应密封避光、冷藏保存,途中应避免引入干扰而破坏样品。回实验室后将样品放在事先用有机溶剂清洗过的金属盘中,室温下干燥避光保存,以备提取。 2.2.2样品预处理(1)提取:样品使用快速溶剂萃取仪进行提取。将样品填装在萃取池内,加入提取内标,进行萃取。ASE 参数如下:系统压力1500psi、温度100oC、加热时间5min、静态时间6min、溶剂甲苯、冲洗体积60%(萃取池体积)、吹扫150psi200s、循环3次。(2)脱水:在玻璃漏斗上垫少许玻璃棉,铺加约5g无水硫酸钠,将萃取液经上述漏斗过滤到浓缩器皿中,每次用少量萃取溶剂充分洗涤萃取容器,将洗涤液也倒入漏斗中,重复3次。最后再用少许萃取溶剂冲洗无水硫酸钠,待浓缩。

常见阻燃剂的类型

常见阻燃剂的类型 随着全球安全环保意识的日益加强,人们对防火安全及制品阻燃的要求越来越高,无卤、低烟、低毒的环保型阻燃剂已成为人们追求的目标。 目前国内塑料改性用阻燃剂近80%为含卤阻燃剂,其中以多溴二苯醚和多溴联苯类物质为代表,溴系阻燃剂效率高、用量少,对材料的性能影响小,且价格适中。和其它类型的阻燃剂相比,其效能/价格比更具有优越性,我国供出口电子电气类产品中70%~80%都用此类阻燃剂。但溴-锑阻燃体系在热裂解及燃烧时会生成大量的烟尘及腐蚀性气体,而且近年欧盟一些国家认为溴系阻燃剂燃烧时会产生有毒致癌的多溴代苯并恶瑛(PBDD)和多溴代二苯并呋喃(PBDF),2003年2月,欧盟出台了RoHS和WEEE两个禁令,其中RoHs是限制有害物质的禁令(The Restriction ofHazrdOus Substances Directive),它规定自2006年1月1日起,在欧盟国家销售的所有电子电气设备,不能含有多溴联苯及多溴二苯醚。 常用环保型阻燃剂 一、环保型溴系阻燃剂 1、十溴二苯乙烷8010 8010不属于多溴二苯醚,在燃烧中绝对不可能产生PBDD或PBDF;8010的相对分子量为971;溴含量82%,和DBDPO含溴量相当(83%),因此阻燃性能基本一致;初熔点345℃,热稳定性较DBDPO(305℃)高;它的耐光性以及不易渗析的特点都优于DBDPO,最可贵的是其阻燃的塑料可以回收使用,这是许多溴系阻燃剂所不具备的特点。8010工业品为平均粒度3μm、自由流动、微颗粒化的白色结晶粉末,在塑料改性中容易分散,塑料制品颜色自由。而且工业化成本和DBDPO相当,是DBDPO最为理想的替代品。 作为添加型溴系阻燃剂,8010在使用过程也需要和锑化物配合使用,配合比例和DBDPO/锑化物比例相同;和DBDPO相比,8010更适用于高温高粘特性的工程塑料。 首先对8010进行工业化生产的是美国雅宝公司,并申请了生产和使用专利;这一度使国内阻燃剂研究生产单位迟迟没有开展这方面的研究,但经查询发现,雅宝公司的专利范围是在中国之外的地区,因而可以在中国生产和使用8010,只是不能出口及申请专利。柳暗花明,国内研究生产单位纷纷投入研究,2002年年底以工业规模试验成功。目前,国内市场厂商代表有:雅宝公司,大湖公司,苏州晶华工有限公司,山东莱玉化工等。 2、溴化环氧树脂 阻燃剂用溴化环氧树脂又称为四溴双酚A环氧树脂齐聚物,溴含量可达50%,分子量在1000~45000之间,分为EP型和EC型;EP型和EC型相比,前者的耐光性较好,但溴含量较低,而后者阻燃的ABS和HIPS具有较好的抗冲强度。商业品溴化环氧树脂是乳黄色半透名晶片和白色粉末的混合物,国产溴化环氧树脂有刺激性气味,而以色列死海溴产品则无气味。溴化环氧树脂具有令人满意的熔体流速和较高的阻燃效率,优良的热稳定性和光稳定性,且能赋予阻燃基材良好的机械性能,产品不起霜。

相关文档