文档库 最新最全的文档下载
当前位置:文档库 › 导数的应用(单调性、极值、最值)

导数的应用(单调性、极值、最值)

导数的应用(单调性、极值、最值)
导数的应用(单调性、极值、最值)

导数的应用(单调性、极值、最值)

蓝园高级中学 数学组 陈秋彬

1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

2.了解函数在某点取得极值的必要条件和充分条件;理解极大值、极小值的概念;会用导数求不超过三次的多项式函数的极大值、极小值。

3. 会用导数求不超过三次的多项式函数在定区间上的最大值、最小值。

从进几年的高考试题来看,利用导数研究函数的单调性、极值和最值是导数的基本问题,每年必考,分值较大,需要考生重点练习、熟练应用。

导数及其应用占据着非常重要的地位,包括求函数的极值,求函数的单调区间,证明函数的增减性等;还包括将导数内容和传统内容中有关不等式、函数、解析几何等知识有机地结合在一起,设计综合试题。随着导数作为考试内容的考查力度逐年增大,导数已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的必不可少的工具。

导数一般考法比较简单,就是讨论单调区间求最值。但也有的省市考得较难,与不等式结合,放在最后一题的位置,往往需要我们理解其几何意义,才能找到方向。

考点1 函数的单调性与导数

1. 在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间内单调递增;如果()0f x '<,那么函数()y f x =在这个区间内单调递间.

2. 判断函数单调性的步骤:

因为()f x = ,所以()f x '= . 当()0f x '>,即 时,函数()f x = 单调递增; 当()0f x '<,即 时,函数()f x = 单调递减.

函数()f x = 的单调增区间为 ,单调减区间为 .

3. 一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时函数的图像就比较“陡峭”(向上或向下);反之,函数的图像就“平缓”一些. 考点2 函数的极值与导数

1. (1)如果函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都小,那么点a

叫做()y f x =的极小值点,()f a 叫做函数()y f x =的极小值;

(2)如果函数()y f x =在点x b =的函数值()f b 比它在点x b =附近其他点的函数值都大,那么点b

叫做()y f x =的极大值点,()f b 叫做函数()y f x =的极大值. (3)极小值点、极大值点统称为极值点,极大值和极小值统称为极值. 2. (1)求函数()y f x =的极值的方法(充分条件): 解方程()0f x '=.当0()0f x '=时:

①如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; ②如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值. (2)必要条件:函数()y f x =在一点取得极值的必要条件是函数()y f x =在这一点的导数值0。 考点3 函数的最大(小)值与导数

1.一般地,如果在区间[,]a b 上函数()y f x =的图像是一条连续不断的曲线,那么它必有最大值和最小值.

2.求函数()y f x =在[,]a b 上的最大值与最小值的步骤: ①求函数()y f x =在(,)a b 内的极值;

②将函数()y f x =的各极值与断点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.

考点1 函数的单调性与导数 典例求下列函数的单调区间:

(1).32)(2

4

+-=x x x f ; (2).22)(x x x f -=;

解题思路 在对函数求导以前,先求出函数的定义域,然后求函数的导数,利用导数大于零和小于零解

出单调增区间和减区间。

解题过程 (1).函数)(x f 的定义域为R ,x x x x x x f )1)(1(44)(4

+-=-='

令0)(>'x f ,得01<<-x 或1>x .

∴函数)(x f 的单调递增区间为(-1,0)和),1(+∞; 令0)(<'x f ,得1-

∴函数)(x f 的单调递减区间为)1,(--∞和(0,1). (2).函数定义域为.20≤≤x

.2122)2()(2

2

2x

x x x

x x x x f --=

-'-=

'

令0)(>'x f ,得10<

∴函数)(x f 的单调递减区间为(1,2). (3).函数定义域为).)((1

1)(,022b x b x x

x b x f x +-=-

='≠ 令0)(>'x f ,得b x >或b x -<.

∴函数)(x f 的单调递增区间为),(b --∞和),(+∞b ; 令0)(<'x f ,得b x b <<-且0≠x ,

∴函数)(x f 的单调递减区间是)0,(b -和),0(b .

易错点拨 为了提高解题的准确性,在利用求导的方法确定函数的单调区间时,也必须先求出函数的定

义域,然后再求导判断符号,以避免不该出现的失误.学生易犯的错误是将两个以上各自独立单调递增(或递减)区间写成并集的形式,如将例(1) 中,函数)(x f 的单调递增区间和递减区间分别写成

),1()0,1(+∞- 和)1,0()1,( --∞ 的错误结果.这里我们可以看出,除函数思想方法在本题中的重要

作用之外,还要注意转化的思想方法的应用. 变式1 函数)0()(>+

=b x

b

x x f 的单调递增区间为 , 单调递减区间为 。

点拨 求函数的导数,令导数0)(/

>x f 解出即可,注意答案的填写。 答案 ),(b --∞和),(+∞b ;)0,(b -和),0(b . 变式2 函数??

?

??+

=x y 11log 21在区间),0(+∞上是( ) A .增函数,且0>y B .减函数,且0>y C .增函数,且0

点拨 关键理解符合函数的单调性和对定义域的考虑,注意对数的性质。 答案 C

考点2 函数的极值与导数

典例 已知函数

321

()33

f x ax bx x =+++,其中0a ≠,当b a ,满足什么条件时,)(x f 取得极值?

解题思路 求函数)(x f 的导数,令0)(/=x f 转变为含参数的一元二次方程问题,通过讨论方程是否有

跟,层层深入解决问题。

解题过程 由已知得2'()21f x ax bx =++,令0)('=x f ,得2210ax bx ++=,

)(x f 要取得极值,方程2210a x b x ++=必须有解,所以△2440b a =->,即2b a >,此时方程2210a x b x ++=

的根为122b b x a a --==222b b x a a

--==

, 所以12'()()()f x a x x x x =--

0>a

所以)(x f 在x 1, x 2处分别取得极大值和极小值.

所以)(x f 在x 1, x 2处分别取得极大值和极小值.

综上,当b a ,满足2

b a >时, )(x f 取得极值.

易错点拨 对含参数方程或不等式的讨论容易出错,可借助函数图象。

变式 1 已知函数3

2

()f x ax bx cx =++在点0x 处取得极大值5,其导函数

'()y f x =的图象经过点(1,0),(2,0),如图所示.

求:(Ⅰ)0x 的值;(Ⅱ),,a b c 的值.

点拨 理解极值的意义和本质,借助导函数的图象来研究原函数的性质。 答案 01,2,9,12x a b c ===-=

变式2 (2012陕西理7)设函数()x

f x xe =,则( )

(A ) 1x =为()f x 的极大值点 (B )1x =为()f x 的极小值点 (C ) 1x =-为()f x 的极大值点 (D )1x =-为()f x 的极小值点

点拨求函数)(x f 的导数,令0)(/=x f ,进而判断极大值和极小值。 答案 D

考点3 函数的最大、最小值与导数

典例1已知c x bx ax x f +-+=2)(23在2-=x 时有极大值6,在1=x 时有极小值,求c b a 、、的值;

并求)(x f 在区间[-3,3]上的最大值和最小值.

解题思路 先通过极值的意义求出c b a 、、的值,然后对函数()y f x =的各极值与端点处的函数值

)3(-f 、)3(f 比较,其中最大的一个是最大值,最小的一个是最小值.

解题过程23)(2/--=x x x f ,令0)(/=x f 得3

2

-=x 或1=x . ∵当32-

x 时, 0)(/>x f ∴)(x f y =在??? ?

?

-∞-32,和()+∞,1上为增函数, 在??

? ??-1,32上为减函数, ∴)(x f 在3

2

-=x 处有极大值, 在1=x 处有极小值. 极大值为27

22

5

)(32=-f , 而7)2(=f , ∴)(x f 在[]2,1-上的最大值为7. 若对于任意[]2,1-∈x 都有m x f <)(成立, 得m 的范围 7>m . 易错点拨 区别极值和最值,容易混淆,计算易出错。 变式 已知函数c bx ax x x f +++=23)(在3

2

-

=x 与x=1时都取得极值。 (1)求a ,b 的值与函数f (x )的单调区间

(2)若对]2,1[-∈x 时,不等式2

)(c x f <恒成立,求c 的取值范围。

【方法提炼】 利用导数法求函数的单调区间,应按照求单调区间的一般步骤,注意函数单调性是函数在其定义域上的局部性质,函数的单调区间是函数的定义域的子区间,求函数单调区间时千万不要忽视函数的定义域.

作业:复习课本巧练模拟

word完整版导数的单调性与极值题型归纳

导数的应用(单调性与极值) 一、求函数单调区间 3-3x的单调递减区间是________________ x1、函数y= x的单调递增区间是_______________ -3)e(x)=(x2、函数f 3、函数f(x)=ln x-ax(a>0)的单调递增区间为() 11A.(0,) B.(,+∞) aa1B.C.(-∞,) D.(-∞,a) a 4、函数y=x-2sin x在(0,2π)内的单调增区间为________. 2x x5、求函数f(x)=x(e-1)-的单调区间. 2 a6、已知函数f(x)=+x+(a-1)ln x+15a,其中a<0,且a≠-1.讨论函数f(x)的x单调性.

二、导函数图像与原函数图像关系 1 导函数正负决定原函数递增递减导函数大小等于原函数上点切线的斜率 导函数大小决定原函数陡峭平缓 1、若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a, b]上的图象可能是() 2、若函数y=f(x)的导函数在区间[a,b]上是先增后减的函数,则函数y=f(x)在区间[a,b]上的图象可能是() 2x cos x)·,则函数y=g(g在其任一点+1(x,y)处切线斜率为(x)=3、设曲线yx) (的部分图象可以为

) 的图象,如图所示,则(xx)的导函数f′()f4、函数 ( 0是极小值点B.x=x=1是最小值点 (1,2)上单增在xf D 是极小值点=.C x2 .函数()三、恒成立问题2

123+bx+cxf(x)=x-b-∞,+∞)上是增函数,求.若f(x)1、已知函数在(2; 的取值范围

导数的应用—单调性与极值的习题课

导数的应用—单调性与极值的习题课 【复习目标】 1.理解导数在研究函数的单调性和极值中的作用; 2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的 单调性,会求不超过三次的多项式函数的单调区间; 4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三 次的多项式函数的极大值、极小值,体会导数方法在研究函数性质中的一般性和有效性。 【重点难点】 ①利用导数求函数的极值;②利用导数求函数的单调区间;④利用导数证明函数的单调性; ⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题; 【基础过关】1. 函数的单调性 ⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则) (x f 为 .(逆命题不成立) (2) 如果在某个区间内恒有0)(='x f ,则)(x f . 注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. (3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ; ② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根; ③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺 序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间; ④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区 间内的增减性. 2.可导函数的极值 ⑴ 极值的概念 设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称 )(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点. ⑵ 求可导函数极值的步骤: ① 求导数)(x f '; ② 求方程)(x f '=0的 ; ③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负, 那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函 数y =)(x f 在这个根处取得 . 【基础训练】 例1.如果函数()y f x =的图像如右图,那么导函数, ()y f x =的图像可能是( ) 例2. 曲线x x y ln 22-= 的单调减区间是( )

导数与单调性极值最基础值习题

导数与单调性极值最基础值习题 评卷人得分 一.选择题(共14小题) 1.可导函数y=f(x)在某一点的导数值为0是该函数在这点取极值的() A.充分条件B.必要条件 C.充要条件?D.必要非充分条件 2.函数y=1+3x﹣x3有( ) A.极小值﹣1,极大值3?B.极小值﹣2,极大值3 C.极小值﹣1,极大值1 D.极小值﹣2,极大值2 3.函数f(x)=x3+ax2﹣3x﹣9,已知f(x)的两个极值点为x1,x2,则x1?x2=() A.9 B.﹣9C.1 D.﹣1 4.函数的最大值为() A.?B.e2C.e D.e﹣1 5.已知a为函数f(x)=x3﹣12x的极小值点,则a=() A.﹣4 B.﹣2 C.4 D.2 6.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=() A.﹣2或2? B.﹣9或3 C.﹣1或1 D.﹣3或1 7.设函数f(x)=xex,则() A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点 C.x=﹣1为f(x)的极大值点?D.x=﹣1为f(x)的极小值点 8.函数y=x3﹣2ax+a在(0,1)内有极小值,则实数a的取值范围是() A.(0,3)?B.(0,)?C.(0,+∞)?D.(﹣∞,3) 9.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于() A.11或18?B.11 C.18?D.17或18 10.设三次函数f(x)的导函数为f′(x),函数y=x?f′(x)的图象的一部分如图所

示,则正确的是() A.f(x)的极大值为,极小值为 B.f(x)的极大值为,极小值为 C.f(x)的极大值为f(﹣3),极小值为f(3) D.f(x)的极大值为f(3),极小值为f(﹣3) 11.若f(x)=x3+2ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是( )A.﹣a2或a<﹣1C.a≥2或a≤﹣1?D.a>1或a<﹣2 12.函数y=xe﹣x,x∈[0,4]的最小值为() A.0 B.?C.?D. 13.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是()A.5,﹣15 B.5,﹣4C.﹣4,﹣15?D.5,﹣16 14.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是( ) A.﹣37 B.﹣29 C.﹣5 D.以上都不对 评卷人得分 二.填空题(共10小题) 15.函数f(x)=x3﹣3x2+1的极小值点为. 16.已知f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,则a+b=. 17.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= . 18.已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a 的取值范围是. 19.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的

高中数学:导数与函数的极值、最值练习

高中数学:导数与函数的极值、最值练习 (时间:30分钟) 1.函数f(x)=ln x-x在区间(0,e]上的最大值为( B ) (A)1-e (B)-1 (C)-e (D)0 解析:因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时, f′(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1. 2.(豫南九校第二次质量考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( C ) (A)4 (B)2或6 (C)2 (D)6 解析:因为f(x)=x(x-c)2, 所以f′(x)=3x2-4cx+c2, 又f(x)=x(x-c)2在x=2处有极小值, 所以f′(2)=12-8c+c2=0,解得c=2或6, c=2时,f(x)=x(x-c)2在x=2处有极小值; c=6时,f(x)=x(x-c)2在x=2处有极大值; 所以c=2. 3.函数f(x)=3x2+ln x-2x的极值点的个数是( A ) (A)0 (B)1 (C)2 (D)无数 解析:函数定义域为(0,+∞),且f′(x)=6x+-2=,不妨设g(x)=6x2-2x+1. 由于x>0,令g(x)=6x2-2x+1=0,则Δ=-20<0, 所以g(x)>0恒成立,故f′(x)>0恒成立, 即f(x)在定义域上单调递增,无极值点. 4.(银川模拟)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>),当x∈(-2,0)时,f(x)的最小值为1,则a的值等于( D ) (A)4 (B)3 (C)2 (D)1 解析:由题意知,当x∈(0,2)时,f(x)的最大值为-1. 令f′(x)=-a=0,得x=,

导数的单调性及极值问题

二轮复习导数 (一) 2015. 02. 07 一、 运用导数研究函数的单调性 单调区间: (1) 求单调区间 (2)已知单调区间 (3)在某区间上不单调 运用导数求函数单调区间的思维流程图: 答题步骤: 第一步:求定义域; 第二步:求)(x 'f ; 第三步:令)(x 'f =0,求相应的导函数零点值;(是一次型还是二次型?是否有解?有几个解) 第四步:列表分析函数的单调性, (列表实际上就是画数轴,也可以认为是穿根解不等式,首先要做的是比较根的大小以及根于定义域边界的大小) 第五步:由表格写结论。 例1:(2012西城一模)已知函数()e (1)ax a f x a x =?++,其中1-≥a . 求)(x f 的单调区间. 解:2 (1)[(1)1] ()e ax x a x f x a x ++-'=,0x ≠.……………6分 ①当1-=a 时,令()0f x '=,解得1x =-. )(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞.……8分 当1a ≠-时,令()0f x '=,解得1x =-,或1 1 x a = +. ②当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1 ( ,)1 a +∞+; 单调递增区间为(1,0)-,1 (0, )1 a +.………10分 ③当0=a 时,()f x 为常值函数,不存在单调区间.…………11分 ④当0a >时,)(x f 的单调递减区间为(1,0)-,1 (0, )1 a +; 单调递增区间为(,1)-∞-,1 ( ,)1 a +∞+.…………13分

1)分类讨论的特点:二次项系数不确定 ,一元二次方程根的大小确定 。 例2:(2012-2013朝阳第一学期期末)已知函数1 ()()2ln ()f x a x x a x =--∈R .求函数()f x 的单调区间. 解:函数()f x 的定义域为(0,)+∞.222 122()(1)ax x a f x a x x x -+'=+-= (1)当0a ≤时,2()20h x ax x a =-+<在(0,)+∞上恒成立, 则()0f x '<在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递减.……………4分 (2)当0a >时,244a ?=-, (ⅰ)若01a <<, 由()0f x '>,即()0h x >,得1x a <或1x a +>;………………5分 由()0f x '<,即()0h x -, .......................................2分 令()0f x '=,得到121 2,0x x a = -= , 由12a ≥可知120a -≤ ,即10x ≤....................5分 ① 即12a =时,121 20x x a =-==.所以,2 '2 ()0,(1,)2(1) x f x x x =-≤∈-+∞+,............6分 故()f x 的单调递减区间为(1,)-+∞ . ................................7分 ② 当 112a <<时,1 120a -<-<,即1210x x -<<=, 所以,在区间1 (1,2)a --和(0,)+∞上,'()0f x <;........8分在区间1(2,0)a -上,'()0f x >..........9分 故 ()f x 的单调递减区间是1 (1,2)a --和(0,)+∞,单调递增区间是1(2,0)a -. .........10分 ③当1a ≥时,11 21x a = -≤-,

《函数的单调性与极值》教学案设计

《函数的单调性与极值》教学案设计 教学目标:正确理解利用导数判断函数的单调性的原理; 掌握利用导数判断函数单调性的方法; 教学重点:利用导数判断函数单调性; 教学难点:利用导数判断函数单调性 教学过程: 一 引入: 以前,我们用定义来判断函数的单调性.在假设x 10时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内, 切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间 (∞-,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数。 例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。 例2 确定函数76223+-=x x y 的单调区间。 y

2 极大值与极小值 观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。 一般地,设函数y=f(x)在0x x 及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f(0x )是函数y=f(x)的一个极小值。极大值与极小值统称极值。 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。 (ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。 (ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,

导数与函数的单调性、极值、最值

教学过程 一、课堂导入 问题:判断函数的单调性有哪些方法?比如判断2x y=的单调性,如何进行? 因为二次函数的图像我们非常熟悉,可以画出其图像,指出其单调区间,再想一下,有没有需要注意的地方? 如果遇到函数x y3 x 3- =,如何判断单调性呢?你能画出该函数的图像吗? 定义是解决问题的最根本方法,但定义法较繁琐,又不能画出它的图像,那该如何解决呢?

二、复习预习 函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?

三、知识讲解 考点1 利用导数研究函数的单调性 如果在某个区间内,函数y=f(x)的导数f′(x)>0,则在这个区间上,函数y=f(x)是增加的;如果在某个区间内,函数y=f(x)的导数f′(x)<0,则在这个区间上,函数y=f(x)是减少的. 利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分.

求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小. 注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域内进行. ①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点; ②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点; ③若f′(x)在x0两侧的符号相同,则x0不是极值点.

(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.

用导数解决函数的单调性、极值、最值的方法步骤

用导数解决函数的单调性、极值、最值的方法步骤 (833200)新疆奎屯市第一高级中学 特级教师 王新敞 极值是一个局部概念 由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小 并不意味着它在函数的整个的定义域内最大或最小函数的极值不是唯一的 即一个函数在某区间上或定义域内极大值或极小值可以不止一个极大值与极小值之间无确定的大小关系 即一个函数的极大值未必大于极小值. 函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 用导数判别f (x 0)是极大、极小值的思路: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值 求函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ) (2)求方程f ′(x )=0的根 (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x )在这个根处无极值在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值;在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 函数的最值是比较整个定义域内的函数值得出的,函数的极值是比较极值点附近函数值得出的. 函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个 利用导数求函数的最值步骤:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与 )(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值 例1 求列函数的极值:(1)22)2()1(--=x x y ;(2)21 22 -+= x x y 解:(1)2 / 2 2 )2)(75)(1()(,)2()1()(---=∴--=x x x x f x x x f 令0)(/ =x f ,得驻点2,5 7 ,1321== =x x x

高中数学 利用导数研究函数的极值和最值

专题4 利用导数研究函数的极值和最值 专题知识梳理 1.函数的极值 (1)函数极值定义:一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作y 极大值=,是极大值点。如果对附近的所有的点,都 有.就说是函数的一个极小值,记作y 极小值=,是极小值点。极大值与极 小值统称为极值. (2)判别f (x 0)是极大、极小值的方法: 若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值. (3)求可导函数f (x )的极值的步骤: ①确定函数的定义区间,求导数 ; ①求出方程的定义域内的所有实数根; ①用函数的导数为的点,顺次将函数的定义域分成若干小开区间,并列成表格.标出在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值。 ①根据表格下结论并求出需要的极值。 2. 函数的最值 (1)定义:若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最大值,记作;若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最小值,记作; (2)在闭区间上图像连续不断的函数在上必有最大值与最小值. (3)求函数在上的最大值与最小值的步骤: ①求在内的极值; ①将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值, 从而得出函数在上的最值。 考点探究 )(x f x 0x 0f (x )f (x 0)f (x 0))(x f f (x 0)x 00x 0)(0='x f 0x )(x f 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '¢f (x )=00)(x f ')(x f I x 0x ?I f (x )£f (x 0))(0x f y max =f (x 0))(x f I x 0x ?I f (x )3f (x 0))(0x f y min =f (x 0)[]b a ,)(x f []b a ,)(x f []b a ,)(x f (,)a b )(x f f (a ),f (b ))(x f []b a ,

利用导数研究函数的单调性和极值(答案)

小题快练 1.(2013全国Ⅰ卷理)设曲线1 1 x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .1 2 - D .2- 2.(2013全国Ⅰ卷改编)设函数2 )1()(x e x x f x --=,则函数()f x 的单调递增区间 为 ,单调递减区间为 . 【解析】(Ⅰ) 当1k =时, ()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=- 令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表: 右表可知,函数f x 的递减区间为0,ln 2,递增区间为,0-∞,ln 2,+∞. 3.(2013湖北理)若f(x)=2 1ln(2)2 x b x - ++∞在(-1,+)上是减函数,则b 的取值范围是(C ) A.[-1,+∞] B.(-1,+∞) C.(-∞,-1) D.(-∞,-1) 4.已知函数x bx ax x f 3)(2 3 -+=在1±=x 处取得极值. (1)讨论)1(f 和)1(-f 是函数f (x )的极大值还是极小值; (2)过点)16,0(A 作曲线y= f (x )的切线,求此切线方程. (1)解:323)(2-+='bx ax x f ,依题意,0)1()1(=-'='f f ,即 ?? ?=--=-+. 0323, 0323b a b a 解得0,1==b a . ∴)1)(1(333)(,3)(2 3 -+=-='-=x x x x f x x x f . 令0)(='x f ,得1,1=-=x x . 若),1()1,(∞+--∞∈Y x ,则0)(>'x f ,故 f (x )在)1,(--∞上是增函数, f (x )在),1(∞+上是增函数. 若)1,1(-∈x ,则0)(<'x f ,故f (x )在)1,1(-上是减函数. 所以,2)1(=-f 是极大值;2)1(-=f 是极小值. (2)解:曲线方程为x x y 33 -=,点)16,0(A 不在曲线上. 设切点为),(00y x M ,则点M 的坐标满足03 003x x y -=. 因)1(3)(2 00-='x x f ,故切线的方程为))(1(3020 0x x x y y --=- 注意到点A (0,16)在切线上,有 )0)(1(3)3(16020030x x x x --=-- 化简得83 0-=x ,解得20-=x . 所以,切点为)2,2(--M ,切线方程为0169=+-y x .

利用导数求函数的单调区间、极值和最值

精锐教育学科教师辅导讲义 讲义编号____________________ 学员编号: 年 级: 课时数及课时进度:3(3/60) 学员姓名: 辅导科目: 学科教师: 学科组长/带头人签名及日期 课 题 利用导数学求函数单调区间、极值和最值 授课时间: 备课时间: 教学目标 1、能熟练运用导数求函数单调区间、判定函数单调性; 2、能用导数求函数的极值和最值。 重点、难点 考点及考试要求 教学内容 一、利用导数判定函数的单调性并求函数的单调区间 1.定义:一般地,设函数)(x f y =在某个区间内有导数,如果在这个区间内0)(' >x f ,那么函数)(x f y = 在 为这个区间内的增函数;如果在这个区间内 0)(' x f 解不等式,得x 的范围就是递增区间. ③令 0)('

二、利用导数求函数的极值 1、极大值 一般地,设函数)(x f 在点x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f <,就说)(0 x f 是函数的一 个极大值,记作()x y f 0=极大值 ,x 0是极大值点 2、极小值 一般地,设函数)(x f 在x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f >就说)(0 x f 是函数) (x f 的一个极小值,记作 ()x y f 0=极小值 ,x 0是极小值点 3、极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示, x 1 是极大值点, x 4 是极小值点,而)()( 1 4 x x f f >. (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 f(x 2)f(x 4) f(x 5) f(x 3) f(x 1) f(b) f(a) x 5 x 4x 3x 2 x 1b a x O y 4、判别()x f 0 是极大、极小值的方法: 若 x 满足 0)(0' =x f ,且在x 0的两侧)(x f 的导数异号,则x 0是)(x f 的极值点,()x f 0是极值,并且如果 )(' x f 在 x 两侧满足“左正右负”,则x 是)(x f 的极大值点,()x f 0 是极大值;如果)(' x f 在x 0两侧满足“左负右正” ,则x 0是)(x f 的极小值点,()x f 是极小值 5、求可导函数)(x f 的极值的步骤: (1)确定函数的定义区间,求导数 )(' x f

导数的单调性及极值

导数的单调性及极值 1.已知函数()cos x f x xe =(e 为自然对数的底数),当[],x ππ∈-时, ()y f x =的图象大致是() A. B. C. D. 2.函数x y xe -=,[0,4]x ∈的最小值为( ) A .0 B .1e C.44e D .22 e 3.已知函数()y f x =的图象是下列四个图象之一,且其导函数'()y f x =的图象如图所示, 则该函数的图象是( ) A . B . C. D . 4.函数32()f x x bx cx d =+++图象如图,则函数222log ()33 c y x bx =++的单调递减区间为( ) A.(,2]-∞- B.[3,)+∞ C.[2,3]-- D.1[,2+∞) 5.函数()f x 的定义域为开区间(,)a b ,导函数'()f x 在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有极小值点( ) A .1个 B .2个 C. 3个 D .4个 6.对于R 上可导的任意函数()f x ,若满足10'() x f x -≤,则必有( ) A .(0)(2)2(1)f f f +> B .(0)(2)2(1)f f f +≤ C .(0)(2)2(1)f f f +< D .(0)(2)2(1)f f f +≥

7.已知R 上的可导函数()f x 的图象如图所示,则不等式() ()2230x x f x '-->的解集为 A .() (),21,-∞-+∞ B .()(),21,2-∞- C .()()(),11,13,-∞--+∞ D .()()(),11,02,-∞--+∞ 8.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是 A .21<<-a B .63<<-a C .3-a D .1-a 9.若函数12 3)(23++-=x x a x x f 在区间)3,21(上单调递减,则实数a 的取值范围为 A.)310,25( B.),310(+∞ C.),3 10[+∞ D.),2[+∞ 10.已知函数()321f x x ax x =-+--在(),-∞+∞上是单调函数,则实数a 的取值范围是() A .(),3,?-∞+∞? B . (() ,3,-∞+∞ C .?? D .( 11.设3 21()252 f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的取值范围为 A.7m > B.15727m > C.157727m << D.7m < 12.已知函数()33f x x x =-,若对于区间[]3,2-上任意的12,x x 都有()()12f x f x t -≤,则实数t 的最 小值是( ) A .0 B .10 C .18 D .20 13.已知()f x 是定义在()0+∞, 上的可导函数,其导函数为()'f x ,且当0x >时,恒有()()'l n 0f x x x f x +<,则使得()0f x >成立的x 的取值范围是( ) A .()01, B .()1+∞, C .()()011+∞,, D .? 14.已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,当0>x 时,有0)()(2>-'x x f x f x 成立,则不等 式0)(>?x f x 的解集是( ) (A )),1()1,(+∞?--∞ (B ))1,0()0,1(?- (C )),1(+∞ (D )),1()0,1(+∞?- 15.已知函数

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

导数用于单调性和极值问题

专题十四、导数用于单调性和极值问题 题型一 利用导数判断函数的单调性 1.证明:函数f (x )=sin x x 在区间??? ?π2,π上单调递减. 题型二 利用导数求函数的单调区间 2.求下列函数的单调区间. (1)f (x )=x 3-x ;(2)y =e x -x +1. ! 3.求函数y =x 2-ln x 2的单调区间. 题型三 已知函数单调性求参数的取值范围 4.已知函数f (x )=x 2+a x (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调递增的,求a 的取值范围. 5.(1)已知函数f (x )=x 3+bx 2+cx +d 的单调减区间为[-1,2],求b ,c 的值. (2)设f (x )=ax 3+x 恰好有三个单调区间,求实数a 的取值范围. … 题型四 用单调性与导数关系证不等式 6.当x >0时,证明不等式ln(x +1)>x -1 2x 2. 7.当0<x <π2时,求证:x -sin x <1 6x 3. ; 题型五、函数的极值问题 8.下列函数存在极值的是( ) A .y =2x B .y =1x C .y =3x -1 D .y =x 2 9.设函数f (x )=2 x +ln x ,则( ) A .x =1 2为f (x )的极大值点 B .x =1 2为f (x )的极小值点

C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点 … 10.若函数y =f (x )是定义在R 上的可导函数,则f ′(x 0)=0是x 0为函数y =f (x )的极值点的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 11.函数y =x ·e x 的最小值为________. 12.若函数f (x )=x x 2+a (a >0)在[1,+∞]上的最大值为33,则a 的值为________. 题型六、利用极值求参数范围 13.已知函数f (x )=a sin x -b cos x 在x =π4时取得极值,则函数y =f (3π 4-x )是( ) A .偶函数且图象关于点(π,0)对称 … B .偶函数且图象关于点(3π 2,0)对称 C .奇函数且图象关于点(3π 2,0)对称 D .奇函数且图象关于点(π,0)对称 14.已知函数f (x )=x 3+ax 2+bx +c ,f (x )在x =0处取得极值,并且在区间[0,2]和[4,5]上具有相反的单调性. (1)求实数b 的值; (2)求实数a 的取值范围. 题型七、导数用于解决实际问题 15.用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为( ) ? A .6 B .8 C .10 D .12 16.一工厂生产某型号车床,年产量为N 台,分批进行生产,每批生产量相同,每批生产的准备费为C 2元,产品生产后暂存库房,然后均匀投放市场(指库存量至多等于每批的生产量).设每年每台的库存费为C 1元,求在不考虑生产能力的条件下,每批生产该车床________

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

3-3-2 函数的极值与导数 函数的最大(小)值与导数

1.函数y =2x 3-3x 2-12x +5在[-2,1]上的最大值、最小值分别是( ) A .12;-8 B .1;-8 C .12;-15 D .5;-16 [答案] A [解析] y ′=6x 2-6x -12,由y ′=0?x =-1或x =2(舍去).x =-2时y =1,x =-1时y =12,x =1时y =-8. ∴y max =12,y min =-8.故选A. 2.函数y =2-x 2-x 3的极值情况是( ) A .有极大值,没有极小值 B .有极小值,没有极大值 C .既无极大值也无极小值 D .既有极大值也有极小值 [答案] D [解析] y ′=-3x 2-2x =-x (3x +2), 当x >0或x <-23时,y ′<0, 当-230, ∴当x =-23时取极小值,当x =0时取极大值. 3.设函数f (x )=x 3+bx 2+cx +a 在x =±1处均有极值,且f (-1)=-1,则a 、b 、c 的值为( ) A .a =-1,b =0,c =-1

B .a =12,b =0,c =-32 C .a =-3,b =0,c =-3 D .a =3,b =0,c =3 [答案] C [解析] ∵f ′(x )=3x 2+2bx +c ,∴由题意得, ????? f ′(1)=0f ′(-1)=0f (-1)=-1,即????? 3+2b +c =03-2b +c =0-1+b -c +a =-1, 解得a =-3,b =0,c =-3. 4.函数y =2x x 2+1 的极大值为____________,极小值为____________. [答案] 1,-1 [解析] y ′=2(1+x )(1-x )(x 2+1)2 ,令y ′>0得-11或x <-1,∴当x =-1时,取极小值-1,当x =1时,取极大值1. 5.(2012·重庆文)已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16. (1)求a 、b 的值; (2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值. [解析] (1)因f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b ,由于f (x )在点x =2处取得极值c -16 故有????? f ′(2)=0f (2)=c -16,

相关文档
相关文档 最新文档