文档库 最新最全的文档下载
当前位置:文档库 › SG3525脉宽调制高频开关稳压电源设计

SG3525脉宽调制高频开关稳压电源设计

SG3525脉宽调制高频开关稳压电源设计
SG3525脉宽调制高频开关稳压电源设计

课程设计

课题名称SG3525脉宽调制高频开关稳压电源设计

课程设计任务书

课程名称:电力电子技术

题目:SG3525脉宽调制高频开关稳压电源设计

设计内容与设计要求

一.设计内容:

1.电路功能:

1)电网工频交流先整流为固定直流,通过功率变换(高频逆变)得到20~50KHz的高频交流,再经高频整流与滤波,得到所需

的直流;

2)电路由主电路与控制电路组成,主电路主要环节:工频整流滤波、功率变换(高频逆变)、高频整流滤波。控制电路主要环

节:脉冲发生电路、脉宽调制PWM、电压电流检测单元、驱

动电路。

3)功率变换电路中的高频开关器件采用IGBT或MOSFET。

4)系统具有完善的保护

2. 系统总体方案确定

3. 主电路设计与分析

1)确定主电路方案

2)主电路元器件的计算及选型

3)主电路保护环节设计

4. 控制电路设计与分析

1)检测电路设计

2)功能单元电路设计

3)触发电路设计

4)控制电路参数确定

二.设计要求:

1.用SG3525产生脉冲。

2.设计思路清晰,给出整体设计框图;

3.单元电路设计,给出具体设计思路和电路;

4.分析所有单元电路与总电路的工作原理,并给出必要的波形分析。

5.绘制总电路图

6.写出设计报告;

主要设计条件

1.设计依据主要参数

1)输入输出电压:单相(AC)220(1+15%)、15V(DC)2)输出电流:5A

3)电压调整率:≤1%

4)负载调整率:≤1%

5)效率:≥0.8

6)功率因数:≥0.8

2. 可提供实验与仿真条件

说明书格式

1.课程设计封面;

2.任务书;

3.说明书目录;

4.设计总体思路,基本原理和框图(总电路图);

5.单元电路设计(各单元电路图);

6.故障分析与电路改进、实验及仿真等。

7.总结与体会;

8.附录(完整的总电路图);

9.参考文献;

11、课程设计成绩评分表

进度安排

第一周星期一:课题内容介绍和查找资料;

星期二:总体电路方案确定

星期三:主电路设计

星期四:控制电路设计

星期五:控制电路设计;

第二周星期一: 控制电路设计

星期二:电路原理及波形分析、实验调试及仿真等

星期四~五:写设计报告,打印相关图纸;

星期五下午:答辩及资料整理

参考文献

1.石玉,栗书贤.电力电子技术题例与电路设计指导.机械工业出版社,1998. 2.王兆安,黄俊.电力电子技术(第4版).机械工业出版社,2000. 3.浣喜明,姚为正.电力电子技术.高等教育出版社,2000.

4.莫正康.电力电子技术应用(第3版).机械工业出版社,2000.

5.郑琼林,耿学文.电力电子电路精选.机械工业出版社,1996.

6.刘定建,朱丹霞.实用晶闸管电路大全.机械工业出版社,1996.

7.刘祖润,胡俊达.毕业设计指导.机械工业出版社,1995.

8.刘星平.电力电子技术及电力拖动自动控制系统.校内,1999.

目录

第1章概述 (1)

第2章系统总体方案确定 (2)

第3章主电路设计 (3)

3.1 主电路结构设计 (3)

3.2 主电路元器件的计算及选型 (4)

3.3 主电路保护设计 (7)

第4章单元电路设计与分析 (8)

4.1 控制电路芯片介绍 (8)

4.2 控制功能单元电路设计 (9)

4.3 驱动电路的设计 (11)

第5章总结 (12)

附录

评分表

第1章概述

开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。开关电源技术运用功率变换器进行电能变换,经过变换电能,可以满足各种用电要求。目前,开关电源以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。

电源装置是电力电子技术应用的一个重要领域,在现代的各种电力设备中都得到里广泛的应用。特别是在小型及各种家用电器和电子设备中大量使用了各种AC—DC转化电路,其中高频开关式直流稳压电源由于具有效率高、体积小、重量轻等突出优点而得到最为广泛的应用。本课题是设计一种基于SG3525 PWM控制芯片为核心构成的高频开关电源电路。

SG3525芯片能同时满足较好的电气性能和较低的成本,因而被广泛用于小功率开关电源。用其作为PWM控制芯片组成的电路具有结构简单、体积小、容易实现的特点。实验表明由该PWM控制芯片控制的开关电源的性能可同集成稳压器媲美,效率比线性稳压电源高,有很好的发展前景。

电子电源微处理器监控,电源系统内部通信,电源系统智能化技术以及电力电子系统的集成化与封装技术。总之,开发高功率密度,高效率,高性能,高可靠性以及智能化电源系统仍然是今后开关电源技术的发展方向。

第2章系统总体方案确定

本课题的任务是基于SG3525PWM控制芯片为核心构成开关稳压电源。整流滤波环节是把从公网上输入的交流电初步转换成直流电,该直流电的电压U 与公网电压相同,并不符合设计要求。还要再经过逆变和高频整流滤波环节才能用于设备。

交流电的频率与逆变电路中开关管Q 的导通频率相同,开关管的导通是由SG3525 PWM控制芯片决定的。逆变后的高频交流经过由变压器副边线圈、续流二极管和电容组成的LCD电路就可得到所需的直流电。其输出电压的大小由变压器原副边匝比n、占空比d 和输入电压U 来决定。在转化过程中公网中的交流电压不是一成不变的,为了得到稳定的直流电,只能对占空比d进行不断的调整。故加入电压检测电路,并把检测结果送入脉宽调制中构成负反馈。

即主电路采用先整流滤波、后经高频逆变得到高频交流电压,然后由高频变压器降压、在整流滤波的方法,该电源在开环时,它的负载特性较差,只有加入反馈,构成闭环控制后,当外加电源电压或负载变化时,均能自动控制PWM 输出信号的占空比,以维持电源的输出直流电压在一定的范围内保持不变,达到了稳压的效果。其总设计框图如图2-1所示。

图2-1 总设计框图

第3章主电路设计

3.1主电路结构设计

半桥式开关电源主电路如图3-1 所示。图中开关管Q1、Q2 选用MOSFET, 因为它是电压驱动全控型器件,具有驱动电路简单、驱动功率小、开关速度快及安全工作区大等优点。半桥式逆变电路一个桥臂由开关管Q1、Q2 组成, 另一个桥臂由电容C6、C7 组成。高频变压器初级一端接在C6、C7 的中点, 另一端接在Q1、Q2 的公共连接端, Q1、Q2 中点的电压等于整流后直流电压的一半,开关Q1、Q2 交替导通就在变压器的次级形成幅值为V i/2的交流方波电压。通过调节开关管的占空比, 就能改变变压器二次侧整流输出平均电压V o。Q1、Q2断态时承受的峰电压均为V i,由于电容的隔直作用,半桥型电路对由于两个开关管导通时间不对称而造成的变压器一次电压的直流分量具有自动平衡作用,因此该电路不容易发生变压器偏磁和直流磁饱和的问题,无须另加隔直电容变压器原边并联的R2、C5组成RC吸收电路,用来吸收高频尖峰。在半桥电路中,占空比定义为:D=2ton/Ts

逆变电路采用的电力电子器件为美国IR公司生产的全控型电力MOSFET管,其型号为IRFP450,主要参数为:额定电流16A,额定耐压500V,通态电阻0.4Ω。两只MOSFET管与两只电容C1、C2组成一个逆变桥,在两路PWM信号的控制下实现了逆变,将直流电压变换为脉宽可调的交流电压,并在桥臂两端输出开关频率约为26KHz、占空比可调的矩形脉冲电压。然后通过降压、整流、滤波后获得可调的直流电源电压输出。该电源在开环时,它的负载特性较差,只有加入反馈,构成闭环控制后,当外加电源电压或负载变化时,均能自动控制PWM输出信号的占空比,以维持电源的输出直流电压在一定的范围内保持不变,达到了稳压的效果。

图3-1开关电源主电路

3.2主电路元器件的计算及选型

3.2.1 变压器的选择

1)原副边电压比n

电压比计算的原则是电路在最大占空比和最低输入电压的条件下,输出电压能达到要求的上限,公式如下:n≤ViminDmax/(V omax+V) △式中V △为电路中的压降,一般取2V,取Vimin=130V,代入上式得n=0.42 。

2)磁芯的选取及变压器的结构

目前变压器较为简洁常用的设计方法是Ap法。可根据下面公式选取合适的磁芯:AP=AeAW≥Pt/(2f Bk △cj)式中,Ae为磁芯截面积;Aw为磁芯的窗口截面积;Pt为变压器传输的总功率;f为开关频率;△B 为磁芯材料所允许的最大磁通摆幅;kc 为绕组的窗口填充系数j 为导线的电流密度。在这里有PT=800×(1+1/0.85), 0.85 为效率,里△B 取0.2T,kc 取0.4,j一般取4A/mm2。查有关磁芯手册,查得EE55

磁芯,其Ae=353mm2,Aw=280mm2,则其Ap=98840mm4。考虑到留有一定的裕量使电源更可靠地工作,这里采用两个磁芯组合而成。由于变压器传输的功率较大,寄生参数对其影响很大。所以变压器的绕制方法很重要,否则会引起变压器的性能下降。为了减小漏感,这里采用三明治绕法。同时,为了减小高频噪音和变压器的分布电容,原副边之间加入屏蔽层。

3)变压器初、次级匝数

为了保证在任何条件下磁芯不饱和,设计时应按照最大伏-秒面积计算匝数。因为电路中电压的波形都是方波,所以最大伏-秒面积的计算可以简化为电压和脉冲宽度的乘积。通常计算二次侧最大伏-秒面积较为方便。对半桥电路有:N2=vo/(2BAefs △),N1 =n×N2 代入数值计算得,变压器的次级匝数为30.6 匝,实际电路中取35 匝,由原副边电压比n 可计算得到变压器的初次级匝数为15 匝。

4)确定绕组的导线线径和导线股数

在选用绕组的导线线径,要考虑导线的集肤效应。为了更有效的利用导线,减小集肤效应的影响,一般要求导线线径小于两倍穿透深度△,即应选用线径r 小于2△=0.42mm2的铜导线[1]。在此采用0.31mm线径的导线多股并绕。原、副边导线的截面积分别为:AC1=Iomax/jn=4/4=0.428mm2 ,AC2=Iomax/j=4/4=1mm2 单股线面积为:3.14×0.31×0.31/4=0.0754mm2 计算原边和副边的导线股数分别为:1/0.0754=13.26 (股),0.428/0.0754=5.67(股)

3.2.2 变压器二次侧整流二极管的设计

1)额定电压

变压器副边是双半波整流电路,加在整流二极管上的反相电压为

在整流开关时,有一定的电压振荡,因此要考虑2倍裕量可以选用2* 123V=246V的整流管。

2)额定电流

在双半波整流电路中,在一个开关周期内,整流管的开关情况是:当变压器副边有电压时,只有一个整流管导通;当变压器副边电压为零时,两个整流管同时导通,可近似认为它们流过的电流相等,即为平均负载电流的一半,可近似计算整流管的电流为:

整流管中流过的最大电流为:

3.2.2 开关管的选择

交流输入电压的最大值为260V,整流滤波后的直流电压的最大值为368V。所以功率开关管关断时最大漏极电压为368V,应选择耐压在600V 以上的功率开关管。输出滤波电感电流的最大值为5A,那么变压器原边电流最大值为5A/6=0.83A,这也是功率开关管中流过的最大电流。考虑到2倍余量2*0.83A=1.6A

3.2.3二极管的选择

设输入交流电压为:wt

u i sin

2

220

则经过桥式整流后的平均电压为:

二极管两端

承受的最大反相电压为:

所以根据实际情况即可选择整流二极管:IN4007

如图3-2为半桥电路所接的二极管

图3-2半桥电路 3.3 主电路保护设计

控制电路是电源电路中工作电压最低的地方,在主电路中的正常和非正常电压或电流都可能破坏控制电路。所以控制电路的保护和其与主电路的隔离至关重要。在控制电路中要作好过电压、过电流和电压尖峰三种情况的防护,保护控制电路不受损坏。保护电路是开关电源中必不可少的补充,在这个电路中采用了输入过流保护、输出过流保护、过热保护等。输入过流保护是通过在原边主电路中串入小磁环,小磁环感应电压输出经过整流桥将电流信号转为电压信号(plp )经一个三极管接至软启动8脚,当原边电流大于设定值即plp 高于0.7v 时则将8脚电压拉低,关断3525的PWM 的输出从而保护电路。

V wt wtd u d 1982

440)(sin 222010===?πππ

12202155.542V ?=(2~3)155.54311.08~466.62N U V V

=?=

第4章单元电路设计与分析

4.1 控制电路芯片介绍

控制电路的核心是根据反馈控制原理,将期望输出电压信号与实际输出电压信号进行比较,利用误差信号对功率开关器件的导通与关断比例进行调节,从而实现实际输出电压维持在期望输出电压附近的目标。本课题选用SG3525芯片做集成控制器。

PWM控制芯片SG3525 具体的内部引脚结构如图1及图2所示。其中脚16 为SG3525 的基准电压源输出,精度可以达到(5.1±1%)V,采用了温度补偿,而且设有过流保护电路。脚5、脚6、脚7 内有一个双门限比较器,内设电容充放电电路,加上外接的电阻电容电路共同构成SG3525 的振荡器。振荡器还设有外同步输入端(脚3)。脚1 及脚2 分别为芯片内部误差放大器的反相输入端、同相输入端。该放大器是一个两级差分放大器,直流开环增益为70dB 左右。根据系统的动态、静态特性要求,在误差放大器的输出脚9 和脚1 之间一般要添加适当的反馈补偿网络。如图4-1所示为SG3525引脚图

1 2 3 4 5 6 7 8IN-

IN+

SY NC

OSC

CT

RT

DIS

SS CO MP

SD

OU TA

GN D

VCC

OU TB

VRET

VI

10

9

11

12

13

14

15

16

S

图1SG3525引脚图如图2为SG3525的内部框图

图2SG3525的内部框图4.2控制功能单元电路设计

控制电路是开关电源的核心部分,控制环节的好坏直接影响电路的整体性能,在这个电路中采用的是以SG3525芯片为核心的控制电路。如图2所示,采用恒频脉宽调制控制方式。误差放大器的输入信号是电压反馈信号,是由输出电压经分压电路获取,与普通误差放大器的接法不同的是该电压反馈接成射极跟随器形式,反馈信号比较精确,因而可以精确地控制占空比调节输出电压,提高了稳压精度。SG3525芯片振荡频率的设定范围为100~500 kHz, 芯片的脚5 和脚7 间串联一个电阻Rd 就可以在较大范围内调节死区时间。SG3525的振荡频率可表示为[2]:f s =1/(CT (0.7RT + 3R d)) 式中: CT , RT 分别是与脚5、脚6 相连的振荡器的电容和电阻; R d 是与脚7 相连的放电端电阻值。此处CT 、RT 、R d分别为图中的C53、R47、R48,取值分别为2200p、10k、100,即频率为62khz。管脚8 接一个电容的作用是用来软启动,减少功率开关管的开机冲击。11 和14 脚输出采用图腾柱输出,本电路采用外加驱动隔离电路,增强了驱动能力和电源的可靠性。保护电路是开关电源中必不可少的补充,在这个电路中采用了输入过流保护、输出过流保护、过热保护等。输入过流保护是通过在原边主电路中串入小磁环,小磁环感应电压输出经过整流桥将电流信号转为电压信号(plp)经一个三极管接至软启动8脚,当原边电流大于设定值即plp高于0.7v时则将8脚电压拉低,关断3525的PWM的输出从而保护电路。如图4-2为控制电路

4.3驱动电路的设计

设计驱动电路的目的是去除驱动电路的毛刺和对高功率管MOSFET 的栅极起保护作用。本电路采用外加驱动隔离电路,输出采用图腾柱输

出,增强了驱动能力和电源的可靠性。驱动隔离电路如图4-3 所示。

图4-3 驱动隔离电路

第5章总结

随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。开关电源技术运用功率变换器进行电能变换,经过变换电能,可以满足各种用电要求。目前,开关电源以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。因此对开关电源的了解很有必要。而本次课程设计正是基于SG3525的脉宽调制高频开关稳压电源设计。

这次课程设计我通过查找并阅读相关资料完成了基于SG3525的脉宽调制高频开关稳压电源的设计。SG3525是一个以前学习中没有接触过的芯片,而且电路的设计中还要有各种保护和检测电路,可以说是比较复杂的,因此需要自己去学习这个芯片的功能、内部结构、应用等等。通过查找SG3525和电路范例的过程扩展了自己的视野,在网络时代里,我们应该有效的利用好这一资源。这次的课程设计的完成,网络提供了很大的助力。而通过这两周的课程设计,让我把这学期学习的《电力电子技术》这门课能够很好的梳理了一遍,将所学的内容连贯起来,让我学完这门课再回过头去咀嚼整流电路,逆变,开关电源,PWM控制等等。

最后,感谢赵葵银老师布置任务之前提供给我们的相关文献资料,这些资料很有针对性这让我们省了不少去网上搜索的时间,此外,感谢赵老师为我们这组耐心讲解Microsoft Vision软件的使用,使我们获益匪浅。

附录

高频开关电源的设计与实现

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 (1) 1.主电路的选型(方案设计) (1) 2.控制电路设计 (4) 3.总体实现框架 (4) 二、主要参数及电路设计 (5) 1.主电路参数设计 (5) 2.控制电路参数设计 (7) 3.保护电路的设计以及参数整定 (8) 4.过压和欠压保护 (8) 三、仿真验证(设计测试方案、存在的问题及解决方法) (9) 1、主电路测试 (9) 2、驱动电路测试 (10) 3、保护电路测试 (10) 四、小结 (11) 参考文献 (11)

开关稳压电源设计说明书

开关稳压电源设计说明书 学生姓名: 学号: 专业班级:物电学院电子2班报告提交日期: 2014年5月20日 湖南理工学院物电学院

目录 一、设计任务及要求 (2) 1、设计任务 (2) 2、设计要求 (2) 二、基本原理与分析 (2) 三、方案设计 (5) 1、开关器件的选择 (5) 2、参数的设定 (5) 四、电路设计 (5) 1、电路整体设计 (5) 2、电路工作原理 (5) 五、总结 (7) 六、参考文献 (7)

一、设计任务及要求 1、设计任务 设计一手机开关型电池充电器,满足: (1)开关电源型充电; (2)输入电压220V,输出直流电压自定; (3)恒流恒压; (4)最大输出电流为:I max=1.0 A; 2、设计要求 (1)合理选择开关器件; (2)完成全电路理论设计、绘制电路图; (3)撰写设计报告。 二、基本原理与分析 随着电子技术和集成电路的飞速发展,开关稳压电源的类型越来越多,分类方法也各不相同,如果按照开关管与负载的连接方式分类,开关电源可以分为串联型、并联型和变压器耦合(并联)型3种类型。下面分别对这三种类型的开关电源做一些简单的介绍。 (1)串联型。 图1所示的开关电源是串联型开关电源,其特点是开关调整管VT与负载R L串联。因此,开关管和续流二极管的耐压要求较低。且滤波电容在开关管导通和截止时均有电流,故滤波性能好,输出电压U0的纹波系数小,要求储能电感铁心截面积也较小。其缺点是:输出直流电压与电网电压之间没有隔离变压器,即所谓“热地盘”,不够安全;若开关管部短路,则全部输入直流电压直接加到负载上,会引起负载过压或过流,损坏元件。因此,输出端一般需加稳压管加以保护。 根据稳压条件可得:(U i-U0)T1/L=U0T2/L 即 U0=U1T1/(T1+T2)=(T1/T)U i,σ=T1/T 由上式可见,可以通过控制开关管激励脉冲的占空比σ来调整开关电源的输出电压U0。

600W半桥型开关稳压电源设计

600W半桥型开关稳压电源设计 600W半桥型开关稳压电源设计 摘要 本次设计主要是设计一个600W半桥型开关稳压电源,从而为负载供 电。 电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源本身消耗的能量低,电源效率比普通线性稳压电源提高一倍,被广泛用于电子计算机、通讯、家电等各个行业。它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。本文介绍了一种采用半桥电路的开关电源,其输入电压为单相170 ~ 260V,输出电压为直流12V恒定,最大电流50A。从主电路的原理与主电路图的设计、控制电路器件的选取、保护电路方案的确定以及计算机仿真图形的绘制与波形分析等方面的研究。 关键词:半桥变换器;功率MOS管;脉宽调制;稳压电源; 第1章绪论1.1 电力电子技术概况 电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术属于信息电子技术。电力电子技术是应用于电

力领域的电子技术,它是利用电力电子器件对电能进行变换和控制的新兴学科。目前所用的电力电子器件采用半导体制成,故称电力半导体器件。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。电力电子技术的发展是以电力电子器件为核心,伴随变换技术和 控制技术的发展而发展的。 电力电子技术可以理解为功率强大,可供诸如电力系统那样大电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅因为它能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、运行效率的问题。为了解决发热和效率问题,对于大功率的电子电路,器件的运行都采用开关方式。这种开关运行方式就是电力电 子器件运行的特点。 电力电子学这一名词是20世纪60年代出现的,“电力电子学”和“电力电子技术”在内容上并没有很大的不同,只是分别从学术和工程技术这2个不同角度来称呼。电力电子学可以用图1的倒三角形来描述,可以认为电力电子学由电力学、电子学和控制理论这3个学科交叉而形成 的。这一观点被全世界普遍接受。 电力电子技术与电子学的关系是显而易见的。电子学可分为电子器件和电子电路两大部分,它们分别与电力电子器件和电力电子电路相对应。从电子和电力电子的器件制造技术上进两者同根同源,从两种电路的分析方法上讲也是一致的,只是两者应用的目的不同,前者用于电力变换, 后者用于信息处理。

开关稳压电源设计报告

开关稳压电源设计报告 成员名字:方愿岭段洁斐梅二召 摘要:为提高电源的利用效率和缩小设计电源的尺寸,本文介绍一种含有MC3406集成芯片的开关稳压电源,并对成芯片内部结构和外部电路作简要介绍,最终给出一个完整的开关稳压电路设计电路并对电路作具体论证最终完成开关稳压电源的实物制作。 A switching power supply design report Abstract:In order to improve the efficiency in the use of the power supply and reduce the size of the power source design, this paper introduces a kind of contains MC34063 integrated chips of a switching power supply, and the integrated chip internal structure and external circuit is briefly introduced, finally give a complete a switching circuit design circuit to make concrete demonstration and circuit switching power supply finally complete the making of objects. 关键词:开关稳压电源;整流滤波电路;PWM控制电路;MC34063 引言 电源是各种电子设备的核心,因此电源的优劣直接关系到电子设计的好坏。另外电子设计者不得不考虑的一个问题就是效率问题,所

开关可调稳压电源的设计与制作

开关可调稳压电源的设计与制作 设计思想: 交直流转换,稳压:变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电变压器原理图流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)变压器由铁芯(或磁芯)和线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器输送的电能的多少由用电器的功率决定. 将 220V 交流电压首先通过隔离变压器降压为 18V 的交流电压,隔离变压器的主要作用是:使一次侧与二次侧的电气完全绝缘,也使该回路隔离。另外,利用其铁芯的高频损耗大的特点,从而抑制高频杂波传入控制回路。用隔离变压器使二次对地悬浮,只能用在供电范围较小、线路较短的场合,此时,系统的对地电容电流小得不足以对人身造成伤害。还有一个很重要的作用就是保护人身安全。足以对人身造成伤害。隔离危险电压.18V 交流电压经过滤波二极管和电容 C2 进行滤波,经过lm7818 输出稳定的 18V 电压,电容 C1C3 是为了滤掉直流电压的毛刺,使其输出稳定 设计方案: 方案中使用隔离变压器提高抗电磁干扰能力,使用脉宽调制电路控制电压输出,采用 DC-DC 变换器,提高电源效率。 设计原理图如下: 电路原理图如下:

电路仿真结果如下: 各元器件与模块: N7818 稳压芯片介绍: 共有三种外形封装形式,,管脚 1 是电压输入脚,2 是接地脚,3 是稳定电压输出脚,用于稳压,原件如图所示: DC—DC 升压模块,DC-DC 升压变换器的工作原理:DC-DC 功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的 DC-DC 变换器又可分为降压式、升压式、极性反转式等几种;隔离型的 DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等

关于开关电源设计时的基本问题解答

关于开关电源设计时的基本问题解答 如何为开关电源电路选择合适的元器件和参数?很多未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的干扰问题,PCB layout问题,元器件的参数和类型选择问题等。其实只要了解了,使用开关电源设计还是非常方便的。一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。 开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很大影响。 输出部分设计包含了输出电容,输出电感以及MOSFET等等,这些器件的选择基本上就是要满足性能和成本的平衡,比如高的开关频率就可以使用小的电感值(意味着小的封装和便宜的成本),但是高的开关频率会增加干扰和对MOSFET的开关损耗,从而效率降低。低的开关频率带来的结果则是相反的。 对于输出电容的ESR和MOSFET的Rds_on参数选择也是非常关键的,小的ESR可以减小输出纹波,但是电容成本会增加,好的电容会贵嘛。开关电源控制器驱动能力也要注意,过多的MOSFET是不能被良好驱动的。 一般来说,开关电源控制器的供应商会提供具体的计算公式和使用方案供工程师借鉴的。如何调试开关电源电路?有一些经验可以共享给大家:(1)电源电路的输出通过低阻值大功率电阻接到板内,这样在不焊电阻的情况下可以先做到电源电路的先调试,避开后面电路的影响。(2)一般来说开关控制器是闭环系统,如果输出恶化的情况超过了闭环可以控制的范围,开关电源就会工作不正常,所以这种情况就需要认真检查反馈和采样电路。特别是如果采用了大ESR值的输出电容,会产生很多的电源纹波,这也会影响开关电源的工作的。

开关稳压电源电路设计及应用

摘要:在对线性稳压集成电路与开关稳压集成电路的应用特性进行比较的基础上,简单介绍了LM2576的特性,给出了基本开关稳压电源、工作模式可控的开关稳压电源和开关与线性结合式稳压电路的设计方案及元器件参数的计算方法。 关键词:LM2576 电源设计 MCU 嵌入式控制系统的MCU一般都需要一个稳定的工作电压才能可靠工作。而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变M CU所需的工作电压。这种线性稳压电源的线性调整工作方式在工作中会大的“热损失”(其值为V压降×I负荷),其工作效率仅为30%~50%[1]。加之工作在高粉尘等恶劣环境下往往将嵌入式工业控制系统置于密闭容器内的聚集也加剧了MCU的恶劣工况,从而使嵌入式控制系统的稳定性能变得更差。 而开关电源调节器件则以完全导通或关断的方式工作。因此,工作时要么是大电流流过低导通电压的开关管、要么是完全截止无电流流过。因此,开关稳压电源的功耗极低,其平均工作效率可达70%~90%[1]。在相同电压降的条件下,开关电源调节器件与线性稳压器件相比具有少得多的“热损失”。因此,开关稳压电源可大大减少散热片体积和PCB板的面积,甚至在大多数情况

下不需要加装散热片,从而减少了对MCU工作环境的有害影响。 采用开关稳压电源来替代线性稳压电源作为MCU电源的另一个优势是:开关管的高频通断特性以及串联滤波电感的使用对来自于电源的高频干扰具有较强的抑制作用。此外,由于开关稳压电源“热损失”的减少,设计时还可提高稳压电源的输入电压,这有助于提高交流电压抗跌落干扰的能力。 LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx 系列端稳压集成电路)的替代品,它具有可靠的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳定、可靠工作提供了强有力的保证。 一、LM2576简介 LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。LM2576系列包括LM2576(最高输入电压40V)及LM257 6HV(最高输入电压60V)二个系列。各系列产品均提供有3.3

稳压电源设计报告1

全国大学生电子设计大赛 稳 压 电 源 设 计 报 告

稳压电源 摘要: 本稳压电源,由变压器次级绕组接入,通过桥式整流和电容滤波,经过 LM7812、LM7912稳压,形成典型的双电源稳压电路,输出±12V 100mA电流。桥式整流后的电压,经过LM2576降压后,输出+5V电压,给后一级的LDO稳压电路供电,AS1117在满载(800mA)时,压差仅1.2V。用+5V供电,可以保证其工作在线性状态,3.3V输出稳定。 关键字: LM7812、LM7912、LM2576、AS1117 Abstract: The regulated power supply, the transformer secondary windings access, through the bridge rectifier and capacitor filter, through the LM7812, LM7912 voltage regulator, the formation of double power supply circuit, the output current of the 100mA + 12V. After the bridge rectifier voltage, through the LM2576 step-down, output +5V voltage, LDO voltage regulator circuit power level to, AS1117 at full load (800mA), pressure difference is only 1.2V. With +5V power supply, can ensure that the work in the linear state, the 3.3V output stability. Keywords: LM7812、LM7912、LM2576、AS1117

开关稳压电源设计

开关电源的设计 同组参与者:李方舟、周恒、张涛开关式直流稳压电源的控制方式可分为调宽式和 调频试两种,实际应用中,而调宽式应用的较多,在 目前开发和使用的开关电源集成电路中,绝大多数也 为脉宽调制(PWM)型。 开关稳压电源具有效率高,输出功率大,输入电 压变化范围宽,节约能耗等优点。 开关电源的工作原理就是通过改变开关器件的开 通时间和工作周期的比值即占空比来改变输出电压; 通常有三种方式:脉冲宽度调制(PWM),脉冲频率 调制(PFM)和混合调制。PWM调制是指开关周期 恒定,通过改变脉冲宽度来改变占空比的方式,因为 周期恒定,滤波电路的设计比较简单,也是应用能够 最广泛的调制方式。开关稳压电源的主要结构框架如 图1-1所示,有隔离变压器产生一个15-18V的交流电 压,在经过整流滤波电路,将交流电变成直流电,然 后再经过DC—DC变换,由PWM的驱动电路去控 制开关管的导通和截止,从而产生一个稳定的电压源, 如图1-1所示;

图1-1 一开关转换电路 1:滤波电路 输入滤波电路具有双向隔离作用,它可以抑制交流电网输入的干扰信号,同时也防止开关电源工作时产生的谐波和电磁干扰信号影响交流电网。如图1-2所示滤波电路中C1用以滤除直流份量中的交流成分,隔离电容应选用高频特性较好的碳膜电容,电阻R给电容提供放电回路,避免因电容上的电荷积累而影响滤波器的工作特性,C2、C3跨接在输出端,能有效地抑制共模干扰,为了减小漏电流C2、C3宜选用陶瓷电容器. 图1-2 2.电压保护电路 如图1-3所示为输出过压保护电路。稳压管VS的

击穿电压稍大于输出电压额定值,输出电压正常时,VS不导通,晶闸管VS的门极电压为零,不导通,当输出过压时,VS击穿,VS受触发导通,使光电耦合器输出三极管电流增大,通过UC3842控制开关管关断。 图1-3 输出过压保护电路 3.电压反馈电路 电压反馈电路如图1-4所示。输出电压通过集成稳压器TL431和光电耦合器反馈到的1脚,调节R1 R2的分压比可设定和调节输出电压,达到较高的稳压精度。如果输出电压U0升高,集成稳压器TL431的阴极到阳极的电流在增大,UC3842的输出脉宽相应变窄,输出电压U0变小,同样,如果输出电压U0减小,可通过反馈调节使之升高。

精通开关电源设计

《精通开关电源设计》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

高频开关稳压电源的设计

电子设备离不开电源,电源供给电子设备所需要的能量,这就决定了电源在 电子设备中的重要性。电源的质量直接影响着电子设备的工作可靠性,所以电子设备对电源的要求日趋增高。 现有的电源主要由线性稳压电源和开关稳压电源两大类组成。这两类电源由于各自的特点而被广泛应用。线性稳压电源的优点是稳定性好、可靠性高、输出电压精度高、输出纹波电压小。它的不足之处是要求采用工频变压器和滤波器,它们的重量和体积都很大,并且调整管的功耗较大,是电源的效率大大降低,一般情况均不会超过50%。但它的优良的输出特性,使其在对电源性能要求较高的场合仍得到广泛的应用。相对线性稳压电源来说,开关稳压电源的优点更能满足现代电子设备的要求,从20世纪中期开关电源问世以来,由于它的突出优点,使其在计算机、通信、航天、办公和家用电器等方面得到了广泛的应用,大有取代线性稳压电源之势。 本课题是设计一种基于SG3525 PWM控制芯片为核心构成的高频开关电源电 路。 关键词:高频开关稳压电源、SG3525、PWM

1高频开关稳压电源概述 (1) 1.1高频开关稳压电源简介 (1) 1.2高频开关稳压电源的发展状况 (2) 1.3高频开关稳压电源的基本原理 (3) 2设计任务与分析 (4) 2.1任务要求 (4) 2.2任务分析 (4) 3 系统设计方案 (5) 3.1系统总体方案设计 (5) 3.2功率变换器电路设计 (6) 3.2.1全桥功率变换器工作原理 (6) 3.2.2全桥功率变换器控制方式 (7) 3.3控制电路设计 (8) 3.3.1 SG3525结构和功能介绍 (8) 3.3.2控制电路的设计 (9) 3.4驱动电路设计 (10) 3.5辅助电源电路设计 (11) 3.6过流检测及保护电路设计 (13) 3.6.1电力电子器件的缓冲电路 (13) 3.6.2电力电子器件的保护电路 (13) 3.7整流器输出电路设计 (15) 小结与体会 (16) 附录 (18)

开关稳压电源-电力电子毕业设计论文资料

开关稳压电源 摘要:本设计应用隔离型回扫式DC-DC电源变换技术完成开关稳压电源的设计及制作。系统主要由整流滤波电路,DC-DC变换电路,单片机显示与控制电路三部分组成。开关电源的集成控制由脉宽调制控制芯片UC3843及相关电路完成,利用单片机进行D/A转换,完成对输出电压的键盘设定和步进调整,同时由单片机A/D采集数据利用数码管显示出输出电压和电流。系统具有输出电压可调范围宽、噪声纹波电压低和DC-DC变换效率高等特点。此外,该系统还具有过流保护功能,排除过流故障后,电源能自动恢复为正常状态。 关键字:DC- DC,整流滤波,脉宽调制,A/D采集,D/A转换Abstract:The stabilized voltage switching supply is designed and manufactured by DC-DC power transfer with isolation and feedback. The supply includes rectification and filtering circuit, DC-DC transfer unit, controller controlling circuit and liquid crystal display module. The swiching supply is controlled by pulse width modulation IC UC3843. The output voltage can be regulated step by step by a microcontroller, a key and a D/A converter. The output voltage and current of the switching supply are collected by a A/D converter and displayed in Nixie tubes. The switching supply have some advantage such as wide output voltage, low noise ripple, high transfer efficiency. In addition, the swiching supply can realize current foldback. Keyword:DC-DC transfer, rectification and filtering, , microcontroller, A/D collecting dat a,D/A converting 一、方案论证 图1为开关电源系统的结构图,从图中可以看出,系统分为三个部分:电路电源、控制回路和显示设定部分。

开关稳压电源设计word文档

编号:E甲0904 2007全国大学生电子设计竞赛题目E: 《开关稳压电源》 参赛学生:李泉泉、满中甜、董学峰 指导教师:刘晓军、郑亚民、周强 学校:山东大学威海分校 院系:信息工程学院 2007年9月6日

开关稳压电源(E题) 摘要 该电源以单端反激式DC-DC变换器为核心。市电通过自耦式调压器,隔离变压器,整流滤波后产生直流电压,经DC-DC变换得到题目所需输出电压,实现了开关稳压电源的设计。DC-DC变换器采用脉宽调制器(PWM)UC3842,通过调节 在30V~36V范围内可调;微控制器与键盘显示构成了占空因数使得输出电压U O 控制显示模块,能对输出电压进行键盘设定和步进调整,并显示输出电压、电流的测量和数字显示功能,形成了良好的人机界面。 关键词:DC-DC变换器,脉宽调制器(PWM) 1方案论证 1.1DC-DC主回路拓扑 适合本系统的DC-DC拓扑结构为单端反激式DC-DC变换器,利用UC3824芯片作为控制核心,该芯片抗电压波动能力强,并可使负载调整率得到明显改善,而且其频响特性好,稳定裕度大,过流限制特性好,具有过流保护和欠压锁定功能。 1.2控制方法及实现方案 手动输出电压调节采用电位器改变取样回路的上下比电阻比值来改变输出电压,使其满足题目要求,该方案电路结构简单,实现方便。 键盘设定通过单片机改变模拟开关接通通道,选取取样回路的电阻节点位置,改变取样回路的上下比电阻比值来改变输出电压,实现发挥部分的键盘设定功能。 1.3提高效率的方法及实现方案 在DC-DC变换器中,主要消耗功率的元件有主回路的开关管、续流二极管、储能电感等部件。本设计中提高效率的措施主要有: 通过增加电感线径减小电感阻值; 采用低内阻的高效率MOSFET作为主回路的开关元件; 采用高速低正相压降的肖特基二极管降低其功耗。 2电路设计与参数计算 2.1电路整体设计 本设计以DC-DC变换器为核心,辅以隔离变压、整流滤波、控制显示等功能模块,完成开关稳压电源各项功能(见图1 系统框图)。

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该如何来计算高频变压器的匝数,从而解决这个问题?接下来,晨飞电子就为大家介绍下匝数的计算方法:

UC3842脉宽调制高频开关稳压电源设计正文

目录 第1章概述 (1) 第2章系统总体方案确定 (3) 2.1 工作原理 (3) 2.2 系统组成 (4) 第3章主电路设计 (5) 3.1 主电路的设计 (5) 3.2 主电路元器件的计算及选型 (6) 3.2.1 设计依据主要参数 (6) 3.2.2 高频变压器的选择 (6) 3.2.3 芯片选择 (7) 3.3 主电路保护环节的设计 (8) 第4章控制电路设计与分析 (10) 4.1 降压整流滤波电路 (10) 4.2 PWM脉冲控制驱动电路 (11) 4.3电路输出部分的设计 (13) 第5章实验与仿真 (15) 5.1 仿真电路图 (15) 5.2 实验结果及结论 (16) 第6章总结 (18) 附录 (19)

第1章概述 在信息时代,农业、能源、交通运输、通信等领域迅猛发展,对电源产业提出个更多、更高的要求,如节能、节材、减重、环保、安全、可靠等。这就迫使电源工作者不断的探索寻求各种乡关技术,做出最好的电源产品,以满足各行各业的要求。开关电源是一种新型的电源设备,较之于传统的线性电源,其技术含量高、耗能低、使用方便,并取得了较好的经济效益。 随着半导体技术和微电子的高速发展、集成度高、功能强的大规模集成电路的不断出现,使得电子设备的体积在不断的缩小,重量在不断的减轻。所有从事这方面研究和生产的人们对开关稳压电源中的开关变压器还感到不是十分理想,他们正致力于研制出效率更高、体积更小、重量更轻的开关变压器或者通过别的途径来取代开关变压器,使之能够满足电子仪器和设备为小型化的需要。 开关稳压电源的效率是与开关管的变换速度成正比的,并且开关稳压电源中由于采用了开关变压器以后,才能使之有一组输入得到极性、大小各不相同得多组输出。要进一步提高开关稳压电源的效率,就必须提高电源的工作频率。但是,当频率提高以后,对整个电路中的元件又有了新的要求。例如,高频电容、开关管、开关变压器、储能电感等都会出现新的问题。进一步研制适应高频率工作的有关电路元器件,是从事开关稳压电源研制的科技人员要解决的问题。 工作在线性状态的稳压电源,具有稳压和滤波的双重作用因而串联闲心稳压电源不产生开关干扰,且波纹电压输出较小。但是,在开关稳压电源中的开关管工作在开关状态,其交变电压和

简易开关电源设计报告

四川教育学院应用电子设计报告 课程名称:Protel99 电路设计系部:物理与电子技术系专业班级:应用电子技术0901 学生姓名:x x x 学号: 指导教师: 完成时间:

开关电源电路设计报告 一. 设计要求: 直流稳定电源主要包括线性稳定电源和开关型稳定电源,由于开关稳压电源的优点是体积小,重量轻,稳定可靠,适用性强,故选择设计可调开关稳压电源,其具体设计要求如下: (1).所选元器件和电路必须达到在一定范围内输出电压连续可调,输出电压U0=+6V —— +9V连续可调,输出额定电流为500mA; (2).输出电压应能够适应所带负载的启动性能,且输出电压短路时,对各元器件不会产生影响; (3).电路还必须简单可靠,有过流保护电路,能够输出足够大的电流。 二.方案选择及电路的工作原理 方案一: 首先用一个桥式整流电路将输入的交流电压变成直流电压,然后经过电容滤波,然后在经过一个NPN型三级管Q1调整管,最后整过电路形成一个通路,达到最终的效果。 方案二: 开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。IGBT(绝缘栅双极型晶体管)兼有场效

应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件[6]。IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可使IGBT锁定失效,同时高的过电压会使IGBT击穿。因此,当出现短路过流时,必须采取有效的保护措施。 为了实现IGBT的短路保护,则必须进行过流检测。适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降Vce,因为管压降含有短路电流信息,过流时Vce增大,且基本上为线性关系,检测过流时的Vce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。 在短路电流出现时,为了避免关断电流的过大形成过电压,导致IGBT 锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。 在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。 为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。下面是几种IGBT短路保护的实用电路及工作原理。 利用IGBT的Vce设计过流保护电路

史上最全的开关电源设计经验资料

三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。 则代入k 后,dB =μ0×I ×dl ×R/4πR 3 对其积分可得B = 3 40R C R Idl ?? π μ

高频开关电源设计与应用

电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。 功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。使电源的工作特性就像一个电阻一样,而不在是容性的。 目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。C CM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MO S管。这种类型的控制方式,在小功率PFC电路中非常常见。 今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。 要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例: 已知参数: 交流电源的频率fac——50Hz 最低交流电压有效值Umin——85Vac 最高交流电压有效值Umax——265Vac 输出直流电压Udc——400VDC 输出功率Pout——600W 最差状况下满载效率η——92% 开关频率fs——65KHz 输出电压纹波峰峰值Voutp-p——10V 那么我们可以进行如下计算: 1,输出电流Iout=Pout/Udc=600/400=1.5A 2,最大输入功率Pin=Pout/η=600/0.92=652W 3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A 4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A 5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A 6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A 7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH 8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。实际的电路中,我用了1320uF,4只330uF的并联。 有了电感量、有了输入电流,我们就可以设计升压电感了! PFC电路的升压电感的磁芯,我们可以有多种选择:磁粉芯、铁氧体磁芯、开了气隙的非晶/微晶合金磁芯。这几种磁芯是各有优缺点,听我一一道来。

相关文档
相关文档 最新文档