文档库 最新最全的文档下载
当前位置:文档库 › 第1章重难点专题突破:3元素的“位置、结构、性质”之间的关系规律及其应用

第1章重难点专题突破:3元素的“位置、结构、性质”之间的关系规律及其应用

第1章重难点专题突破:3元素的“位置、结构、性质”之间的关系规律及其应用
第1章重难点专题突破:3元素的“位置、结构、性质”之间的关系规律及其应用

3元素的“位置、结构、性质”之间的关系规律及其应用

元素的原子结构、其在周期表中的位置及元素的性质(位、构、性)三者之间的关系可用下图表示:

应用“位置、结构、性质”三者的关系解答问题时要注意掌握以下几个方面:

1.熟练掌握四个关系式

电子层数=周期序数最外层电子数=主族序数

主族元素的最高正价=族序数(O、F除外)

最低负价=主族序数-8

2.熟练掌握周期表中的一些特殊规律

(1)各周期元素种数第一到第六周期(分别为2、8、8、18、18、32)。

(2)稀有气体元素原子序数(分别为2、10、18、36、54、86)和所在周期(分别在一到六周期)。

(3)同族上下相邻元素原子序数的关系(相差2、8、18、32等各种情况)。

(4)同周期ⅡA族与ⅢA族元素原子序数差值(有1、11、25等情况)。

3.熟悉元素周期表中同周期、同主族元素性质的递变规律,主要包括:

(1)元素的金属性、非金属性;

(2)气态氢化物的稳定性;

(3)最高价氧化物对应水化物的酸碱性。

4.熟悉1~20号元素原子结构特点及其规律

(1)原子核中无中子的原子:11H。

(2)最外层有1个电子的元素:H、Li、Na、K。

(3)最外层有2个电子的元素:He、Be、Mg、Ca。

(4)最外层电子数等于次外层电子数的元素:Be、Ar。

(5)最外层电子数是次外层电子数2倍的元素:C;是次外层3倍的元素:O;是次外层4倍的元素:Ne。

(6)电子层数与最外层电子数相等的元素:H、Be、Al。

(7)电子总数为最外层电子数2倍的元素:Be。

(8)次外层电子数是最外层电子数2倍的元素:Li、Si。

(9)内层电子总数是最外层电子数2倍的元素:Li、P。

(10)电子层数是最外层电子数2倍的元素:Li、Ca。

(11)最外层电子数是电子层数2倍的元素:He、C、S。

(12)最外层电子数是电子层数3倍的元素:O。

[特别提示]记住原子结构的特殊性对做题很有帮助,应用时应注意几个概念:最外层电子数、最内层电子数、内层电子数、次外层电子数、电子层数、核电荷数等。

【典例5】A、B、C、D 4种元素的核电荷数依次增大,它们的离子的电子层数相同且最外层电子数均为8。A原子的L层电子数与K、M层电子数之和相等,D原子的K、L层电子数之和等于电子总数的一半。

请回答下列问题:

(1)4种元素的符号依次是A________,B________,C_________________,D________。它们原子的半径由大到小的顺序是_____________________________________________。

(2)试写出4种元素的离子结构示意图:

A__________,B__________,C__________,D___________________________。

它们离子的半径由大到小的顺序____________________________________________。

(3)它们最高价氧化物对应水化物的化学式分别是______________________________

________________________________________________________________________,

分别比较酸性和碱性的强弱_______________________________________________。

(4)写出能够生成的气态氢化物的化学式:__________,比较其稳定性________________,

理由________________________________________________________________________ ________________________________________________________________________。

解析A原子的L层电子数与K、M层电子数之和相等,所以A的核电荷数为2×8=16,A 为硫元素。D原子的K、L层电子数之和等于电子总数的一半,所以D原子的核电荷数是(2+8)×2=20,D为钙元素。根据核电荷数依次增大,它们的离子电子层数相同且最外层电子数均为8可以判断出B为氯元素,C为钾元素。

答案(1)S Cl K Ca r(K)>r(Ca)>r(S)>r(Cl)

(2)S2-Cl-K+

Ca2+r(S2-)>r(Cl-)>r(K+)>r(Ca2+)

(3)H2SO4、HClO4、KOH、Ca(OH)2

酸性:HClO4>H2SO4,碱性:KOH>Ca(OH)2

(4)HCl、H2S HCl>H2S因非金属性氯元素强于硫元素

[理解感悟]核外电子总数相等的微粒可以是分子,也可以是离子;可以是单核微粒,也可以是多核微粒。电子总数相同的微粒:

(1)核外有10个电子的微粒

分子:Ne、HF、H2O、NH3、CH4

阳离子:Na+、Mg2+、Al3+、H3O+、NH+4

阴离子:N3-、O2-、F-、OH-、NH-2。

(2)核外有18个电子的微粒

分子:Ar、HCl、H2S、PH3、SiH4、F2、H2O2、N2H4、C2H6等

阳离子:Ca2+、K+

阴离子:P3-、S2-、Cl-、HS-。

(3)核外电子总数及质子总数均相同的粒子

Na+、NH+4、H3O+;F-、OH-、NH-2;Cl-、HS-;N2、CO等。

【典例6】A、B、C、D都是短周期元素,原子半径D>C>A>B,其中A、B处于同一周期,A、C处于同一主族。C原子核内的质子数等于A、B原子核内的质子数之和,C原子最外层电子数是D原子最外层电子数的4倍。试回答下列问题:

(1)这四种元素分别是A________,B______,C________,D________。

(2)这四种元素中能形成的气态氢化物的稳定性由大到小的顺序是________。

(3)A与B形成的三原子分子的化学式是______________________________________,

B与D形成的原子个数之比为1∶1的化合物的化学式是______________。

(4)A元素的某氧化物与D元素的某氧化物反应生成单质的化学方程式是________。

解析A、B处于同一周期且r(A)>r(B),故A的原子序数比B的小;A、C同主族且r(C)>r(A),故C在A的下一周期,又r(D)>r(C),故D与C同周期且原子序数D比C小。根据C原子最外层电子数是D原子最外层电子数的4倍可知,C为第三周期ⅣA族的硅,D为第三周期ⅠA族的钠,则A为碳,又C原子核内的质子数等于A、B原子核内的质子数之和,推知B为氧。

答案(1)碳氧硅钠(2)H2O>CH4>SiH4

(3)CO2Na2O2(4)2CO2+2Na2O2===2Na2CO3+O2

[理解感悟]解元素推断题的方法:解答元素推断题,必须抓住原子结构和元素的有关性质,掌握元素周期表中的主要规律,熟悉某些元素(短周期或前20号元素)的性质、存在形式和用途及其他们的特殊性,用分析推理法确定未知元素在周期表中的位置。

元素周期表中的规律

元素周期表中的规律 一、元素周期表 1、周期表结构 横行——周期:共七个周期,三短三长一不完全。 各周期分别有2,8,8,18,18,32,26种元素。前三个周期为短周期,第四至第六这三个周期为长周期,第七周期还没有排满,为不完全周期。 纵行——族:七主七副一零一VIII,共16族,18列。要记住零族元素的原子序数以便迅速由原子序数确定元素名称。 周期:一二三四五六七 元素种类:28818183226 零族:2He10Ne 18Ar 36Kr54Xe86Rn 二、元素周期表中元素及其化合物的递变性规律 1.原子结构与元素周期表的关系 电子层数= 周期数 主族元素最外层电子数= 主族序数= 最高正化合价 由上述关系,就可以由原子结构找出元素在周期表中的位置,也可以由位置确定原子结构。 2、规律性

由此可见,金属性最强的元素在周期表的左下角即Cs(Fr具有放射性,不考虑),非金属性最强的元素在右上角即F。对角线附近的元素不是典型的金属元素或典型的非金属元素。 3、元素周期表中之最 原子半径最小的原子:H原子 质量最轻的元素:H元素; 非金属性最强的元素:F 金属性最强的元素:Cs(不考虑Fr) 最高价氧化物对应水化物酸性最强的酸:HClO4 最高价氧化物对应水化物碱性最强的碱:CsOH 形成化合物最多的元素:C元素 所含元素种类最多的族:ⅢB 地壳中含量最高的元素:O元素,其次是Si元素 地壳中含量最高的金属元素:Al元素,其次是Fe元素 含H质量分数最高的气态氢化物:CH4 与水反应最剧烈的金属元素:Cs元素 与水反应最剧烈的非金属元素:F元素 常温下为液态的非金属单质是Br2,金属单质是Hg …… 4、特殊性

2019年高考化学真题分类汇编专题18 物质结构与性质(选修) (解析版)

专题18 物质结构与性质(选修) 1.[2019新课标Ⅰ]在普通铝中加入少量Cu和Mg后,形成一种称为拉维斯相的MgCu2微小晶粒,其分散在Al中可使得铝材的硬度增加、延展性减小,形成所谓“坚铝”,是制造飞机的主要村料。回答下列问题: (1)下列状态的镁中,电离最外层一个电子所需能量最大的是 (填标号 )。 A.B.C.D. (2)乙二胺(H2NCH2CH2NH2)是一种有机化合物,分子中氮、碳的杂化类型分别 是、。乙二胺能与Mg2+、Cu2+等金属离子形成稳定环状离子,其原因是,其中与乙二胺形成的化合物稳定性相对较高的是(填“Mg2+”或“Cu2+”)。 (3)一些氧化物的熔点如下表所示: 氧化物Li2O MgO P4O6SO2 熔点/°C 1570 2800 23.8 ?75.5 解释表中氧化物之间熔点差异的原因。 (4)图(a)是MgCu2的拉维斯结构,Mg以金刚石方式堆积,八面体空隙和半数的四面体空隙中,填入以四面体方式排列的Cu。图(b)是沿立方格子对角面取得的截图。可见,Cu原子之间最短距离= pm,Mg原子之间最短距离y= pm。设阿伏加德罗常数的值为N A,则MgCu2的密度是 g·cm?3(列出计算表达式)。 【答案】(1)A (2)sp3sp3乙二胺的两个N提供孤对电子给金属离子形成配位键Cu2+ (3)Li2O、MgO为离子晶体,P4O6、SO2为分子晶体。晶格能MgO>Li2O。分子间力(分子量)P4O6>SO2 (4 23 330 A 824+1664 10 N a- ?? ? 【解析】(1)A.[Ne]3s1属于基态的Mg+,由于Mg的第二电离能高于其第一电离能,故其再失去一个电子所需能量较高; B. [Ne] 3s2属于基态Mg原子,其失去一个电子变为基态Mg+; C. [Ne] 3s13p1属于激发态

元素周期表的规律总结

元素周期表的规律 一、原子半径 同一周期(稀有气体除外),从左到右,随着原子序数的递增,元素原子的半径递减; 同一族中,从上到下,随着原子序数的递增,元素原子半径递增。 二、主要化合价(最高正化合价和最低负化合价) 同一周期中,从左到右,随着原子序数的递增,元素的最高正化合价递增(从+1价到+7价),第一周期除外,第二周期的O、F元素除外最低负化合价递增(从-4价到-1价)第一周期除外,由于金属元素一般无负化合价,故从ⅣA族开始。元素最高价的绝对值与最低价的绝对值的和为8 三、元素的金属性和非金属性 同一周期中,从左到右,随着原子序数的递增,元素的金属性递减,非金属性递增;同一族中,从上到下,随着原子序数的递增,元素的金属性递增,非金属性递减; 四、单质及简单离子的氧化性与还原性 同一周期中,从左到右,随着原子序数的递增,单质的氧化性增强,还原性减弱;所对应的简单阴离子的还原性减弱,简单阳离子的氧化性增强。同一族中,从上到下,随着原子序数的递增,单质的氧化性减弱,还原性增强;所对应的简单阴离子的还原性增强,简单阳离子的氧化性减弱。元素单质的还原性越强,金属性就越强;单质氧化性越强,非金属性就越强。 五、最高价氧化物所对应的水化物的酸碱性 同一周期中,从左到右,元素最高价氧化物所对应的水化物的酸性增强(碱性减弱); 同一族中,从上到下,元素最高价氧化物所对应的水化物的碱性增强(酸性减弱)。 元素的最高价氢氧化物的碱性越强,元素金属性就越强;最高价氢氧化物的酸性越强,元素非金属性就越强。 六、单质与氢气化合的难易程度 同一周期中,从左到右,随着原子序数的递增,单质与氢气化合越容易; 同一族中,从上到下,随着原子序数的递增,单质与氢气化合越难。 七、气态氢化物的稳定性 同一周期中,从左到右,随着原子序数的递增,元素气态氢化物的稳定性增强; 同一族中,从上到下,随着原子序数的递增,元素气态氢化物的稳定性减弱。 此外还有一些对元素金属性、非金属性的判断依据,可以作为元素周期律的补充: 随同一族元素中,由于周期越高,价电子的能量就越高,就越容易失去,因此排在下面的元素一般比上面的元素更具有金属性。元素的气态氢化物越稳定,非金属性越强。 同一族的元素性质相近。 以上规律不适用于稀有气体。 八、位置规律判断元素在周期表中位置应牢记的规律: (1)元素周期数等于核外电子层数; (2)主族元素的族数等于最外层电子数。 九、阴阳离子的半径大小辨别规律 三看: 一看电子层数,电子层数越多,半径越大, 二看原子序数,当电子层数相同时,原子序数越大半径反而越小 三看最外层电子数,当电子层数和原子序数相同时最外层电子书越多半径越小 r(Na)>r(Mg)>r(Al)>r(S)>r(Cl)、r(Na+ ) >r(Mg2+ )>r(Al3+ )、r(O2- ) >r(F-) r(S2—)>r(Cl—)>r(Ar) >r(K+)>r(Ca2+)、r(O2—)> r(F—)> r(Na+)> r(Mg2+)> r(Al3+) r(Na+ )r(Cl)

(完整版)苏教版化学选修3物质结构与性质专题3知识点

第一单元 金属键 金属晶体 金 属 键 与 金 属 特 性 [基础·初探] 1.金属键 (1)概念:金属离子与自由电子之间强烈的相互作用称为金属键。 (2)特征:无饱和性也无方向性。 (3)金属键的强弱 ①主要影响因素:金属元素的原子半径、单位体积内自由电子的数目等。 ②与金属键强弱有关的性质:金属的硬度、熔点、沸点等(至少列举三种物理性质)。 2.金属特性 特性 解释 导电性 在外电场作用下,自由电子在金属内部发生定向移动,形成电流 导热性 通过自由电子的运动把能量从温度高的区域传 到温度低的区域,从而使整块金属达到同样的 温度 延展性 由于金属键无方向性,在外力作用下,金属原 子之间发生相对滑动时,各层金属原子之间仍 保持金属键的作用 [核心·突破] 1.金属键????? 成键粒子:金属离子和自由电子 成键本质:金属离子和自由电子间 的静电作用 成键特征:没有饱和性和方向性存在于:金属和合金中

2.金属晶体的性质 3.金属键的强弱对金属物理性质的影响 (1)金属键的强弱比较:金属键的强度主要取决于金属元素的原子半径和外围电子数,原子半径越大,外围电子数越少,金属键越弱。 (2)金属键对金属性质的影响 ①金属键越强,金属熔、沸点越高。 ②金属键越强,金属硬度越大。 ③金属键越强,金属越难失电子。如Na的金属键强于K,则Na比K难失电子,金属性Na比K弱。 【温馨提醒】 1.并非所有金属的熔点都较高,如汞在常温下为液体,熔点很低,为-38.9 ℃;碱金属元素的熔点都较低,K-Na合金在常温下为液态。 2.合金的熔点低于其成分金属。 3.金属晶体中有阳离子,无阴离子。 4.主族金属元素原子单位体积内自由电子数多少,可通过价电子数的多少进行比较。

元素周期表中元性质递变规律

元素周期表中元性质递变规律

————————————————————————————————作者:————————————————————————————————日期:

专题一主要知识点 1. 元素周期表中元素性质的递变规律 同周期(从左到右)同主族(从上到下)原子半径逐渐减小逐渐增大 电子层排布电子层数相同 最外层电子数递增 电子层数递增最外层电子数相同 失电子能力逐渐减弱逐渐增强得电子能力逐渐增强逐渐减弱金属性逐渐减弱逐渐增强非金属性逐渐增强逐渐减弱 主要化合价最高正价(+1 →+7) 非金属负价 == ―(8―族 序数) 最高正价 == 族序数 非金属负价 == ―(8―族序 数) 最高氧化物的 酸性 酸性逐渐增强酸性逐渐减弱 对应水化物的 碱性 碱性逐渐减弱碱性逐渐增强 非金属气态氢化物的形成难易、稳定性形成由难→易 稳定性逐渐增强 形成由易→难 稳定性逐渐减弱

2. 3.几个规律: ①金属性强弱:单质与水或非氧化性酸反应难易; 单质的还原性(或离子的氧化性); M(OH)n的碱性; 金属单质间的置换反应; 原电池中正负极判断,金属腐蚀难易; 非金属性强弱:与氢气反应生成气态氢化物难易; 单质的氧化性(或离子的还原性); 最高价氧化物的水化物(H n RO m)的酸性强弱; 非金属单质间的置换反应。 ②半径比较三规律: 阴离子与同周期稀有气体电子层结构相同;阳离子与上周期稀有气体电子层结构相同。 (1)电子层数越多,半径越大

(2)电子层数相同,核电荷数越多,半径越小 (3)电子层数和核电荷数相同,最外层电子数越多,半径越大 ③元素化合价规律 主族最高正价 == 最外层电子数,非金属的负化合价 == 最外层电子数-8,最高正价数和负化合价绝对值之和为8;其代数和分别为:0、2、4、6。 化合物氟元素、氧元素只有负价(-1、-2),但HFO中0为+1价;金属元素只有正价; ④熔沸点高低的比较:详细见《导学》P24 原子晶体>离子晶体>分子晶体 ⑤1-20号元素符号、名称、原子结构、特殊化学性质。 ⑥电子式的书写 原子的电子式 离子的电子式: 分子或共价化合物电子式 离子化合价电子式,

专题复习 选修三 物质结构与性质部分(共10题)无答案

物质结构与性质部分(共10题) 1、【2019 江苏 (物质结构与性质)】臭氧(O 3)在[Fe(H 2O)6]2+催化下能将烟气中的SO 2、NO x 分别氧化为24SO -和3NO - ,NO x 也可在其他条件下被还原为N 2。 (1)24SO -中心原子轨道的杂化类型为___________;3NO -的空间构型为_____________(用 文字描述)。 (2)Fe 2+基态核外电子排布式为__________________。 (3)与O 3分子互为等电子体的一种阴离子为_____________(填化学式)。 (4)N 2分子中σ键与π键的数目比n (σ)∶n (π)=__________________。 (5)[Fe(H 2O)6]2+与NO 反应生成的[Fe(NO)(H 2O)5]2+中,NO 以N 原子与Fe 2+形成配位键。 请在[Fe(NO)(H 2O)5]2+结构示意图的相应位置补填缺少的配体。 2、【2019 全国Ⅰ35(15分)】 Li 是最轻的固体金属,采用Li 作为负极材料的电池具有小而轻、能量密度大等优良性能,得到广泛应用。回答下列问题: (1)下列Li 原子电子排布图表示的状态中,能量最低和最高的分别为_____、_____(填标号)。 A . B . C . D . (2)Li +与H ?具有相同的电子构型,r (Li +)小于r (H ?),原因是______。 (3)LiAlH 4是有机合成中常用的还原剂,LiAlH 4中的阴离子空间构型是______。中心原子的杂化形式为______,LiAlH 4中,存 在_____(填标号)。 A .离子键 B .σ键 C .π键 D .氢键 (4)Li 2O 是离子晶体,其品格能可通过图(a)的 born?Haber 循环计算得到。 可知,Li 原子的第一电离能为 kJ·mol ?1,O=O 键键能为 kJ·mol ?1,Li 2O 晶格能为 kJ·mol ?1。 (5)Li 2O 具有反萤石结构,晶胞如图(b)所示。已知晶胞参数为0.4665 nm ,阿伏加德罗常数的值为N A ,则Li 2O 的密度为 ______g·cm ?3(列出计算式)。 3、【2019 全国Ⅱ35.(15分)】硫及其化合物有许多用途,相关物质的物理常数如下表所示: 回答下列问题: (1)基态Fe 原子价层电子的电子排布图(轨道表达式)为__________,基态S 原子电子占据最高能级的电子云轮廓图为_________ 形。 (2)根据价层电子对互斥理论,H 2S 、SO 2、SO 3的气态分子中,中心原子价层电子对数不同其他分子的是_________。 (3)图(a )为S 8的结构,其熔点和沸点要比二氧化硫的熔点和沸点高很多,主要原因为__________。 (4)气态三氧化硫以单分子形式存在,其分子的立体构型为_____形,其中共价键的类型有______种;固体三氧化硫中存在如图 (b )所示的三聚分子,该分子中S 原子的杂化轨道类型为________。 (5)FeS 2晶体的晶胞如图(c )所示。晶胞边长为a nm 、FeS 2相对式量为M ,阿伏加德罗常数的值为N A ,其晶体密度的计算表达 式为___________g·cm ?3;晶胞中Fe 2+位于22S -所形成的正八面体的体心,该正八面体的边长为______nm 。 4、【2019 全国Ⅲ 35.(15分)】锌在工业中有重要作用,也是人体必需的微量元素。回答下列问题: (1)Zn 原子核外电子排布式为________________。 (2)黄铜是人类最早使用的合金之一,主要由Zn 和Cu 组成。第一电离能Ⅰ1(Zn ) _______Ⅰ1(Cu)(填“大于”或“小于”)。原因是________________。

【化学选修—物质结构与性质】专题训练

【化学选修—物质结构与性质】专题训练 1、有A、B、C、D四种元素,其中A元素和B元素的原子都有1个未成对电子,A+比B—少一个电层,B原子得一个电子后3p轨道全满;C原子的p轨道中有3个未成对电子,其气态氢化物在水中的溶解度在同族元素所形成的氢化物中最大;D的最高化合价和最低化合价的代数和为4,其最高价氧化物中含D 的质量分数为40%,且其核内质子数等于中子数。R是由A、D两元素形成的离子化合物,其中A与D 离子的数目之比为2:1。请回答下列问题。 (1)A单质、B单质、化合物R的熔点高低顺序为__②___(填序号) ①A单质> B单质> R ②R > A单质> B单质 ③B单质> R > A单质④A单质> R > B单质 (2)CB3分子的空间构型是__三角锥形___,其固态时的晶体类型为__分子晶体_ _____。 (3)写出D原子的核外电子排布式__1S22S22P63S23P4_______,C的氢化物比D的氢化物在水中溶解度大得多的原因__ NH3与水分子形成氢键且发生化学反应__________。 (4)B元素和D元素的电负性大小关系为Cl>S(用元素符号表示)。 (5)A与B形成的离子化合物的晶胞中,每个A+周围与它距离相等且最近的B—有6个,这些B—围成的空间几何构型为正八面体。 2、已知R、W、X、Y、Z是周期表中前四周期元素,它们的原子序数依次递增.R的 基态原子中占据哑铃形原子轨道的电子数为1;W的氢化物的沸点比同族其它元素氢 化物的沸点高;X2 +与W2-具有相同的电子层结构;Y元素原子的3P能级处于半充满状 态;Z+的电子层都充满电子。请回答下列问题: (2)R的某种钠盐晶体,其阴离子A m- (含R、W、氢三种元素)的球棍模型如上图所示:在A m-中,R原 (3)经X射线探明,X与W形成化合物的晶体结构与NaCl的晶体结构相似,X2+的配位离子所构成的立 (4)往Z的硫酸盐溶液中加入过量氨水,可生成[Z(NH3)4]S04,说法正确的是__ A D ___ A. [Z(NH3)4]SO4中所含的化学键有离子键、极性键和配位键 B. 在[Z(NH3)4]2+中Z2+给出孤对电子,NH3提供空轨道 C. [Z(NH3)4]SO4组成元素中第一电离能最大的是氧元素 D. SO42-与PO43-互为等电子体,空间构型均为四面体 (5)固体YCl5的结构实际上是YCl4+和YCl6-构成的离子晶体,其晶体结构与CsCl相似。若晶胞边长

原子结构与元素性质

第二节原子结构与元素的性质 一、元素周期表的编排原则 1.将电子层数相同的元素按原子序数递增的顺序从左到右排成横行。 2.把最外层电子数相同的元素(个别例外)按电子层数递增的顺序从上到下排成纵行。 二、周期表的结构 周期:具有相同的电子层数的元素按照原子序数递增的顺序排成一个横行。 主族:由短周期和长周期元素共同构成的族。 副族:仅由长周期元素构成的族。 1.核外电子排布与族序数之间的关系 可以按照下列方法进行判断:按电子填充顺序由最后一个电子进入的情况决定,具体情况如下:

(3)进入(n -1)d ①(n -1)d 1~5为ⅢB~ⅦB ?族数=[(n -1)d +n s]电子数 ②(n -1)d 6~8为Ⅷ ③(n -1)d 10为ⅠB、ⅡB ?族数=n s 的电子数 ④进入(n -2)f ? ?????????4f ——La 系元素5f ——Ac 系元素ⅢB 2. 3.(1)主族(ⅠA~ⅦA)和副族ⅠB、ⅡB 的族序数=原子最外层电子数(n s +n p 或n s)。 (2)副族ⅢB~ⅦB 的族序数=最外层(s)电子数+次外层(d)电子数。 (3)零族:最外层电子数等于8或2。 (4)Ⅷ族:最外层(s)电子数+次外层(d)电子数。若之和分别为8、9、10,则分别是Ⅷ族第1、2、3列。 1.同周期,从左到右,原子半径依次减小。 2.同主族,从上到下,原子或同价态离子半径均增大。 3.阳离子半径小于对应的原子半径,阴离子半径大于对应的原子半径,如r (Na +)

4.电子层结构相同的离子,随核电荷数增大,离子半径减小,如r(S2-)>r(Cl-)>r(K+)>r(Ca2+)。 5.不同价态的同种元素的离子,核外电子多的半径大,如r(Fe2+)>r(Fe3+),r(Cu+)>r(Cu2+)。 特别提醒 在中学要求的畴可按“三看”规律来比较微粒半径的大小 “一看”能层数:当能层数不同时,能层越多,半径越大。 “二看”核电荷数:当能层数相同时,核电荷数越大,半径越小。 “三看”核外电子数:当能层数和核电荷数均相同时,核外电子数越多,半径越大。 七、电离能 1.第一电离能 (1)每个周期的第一个元素(氢和碱金属)第一电离能最小,稀有气体元素原子的第一电离能最大,同周期中自左至右元素的第一电离能呈增大的趋势。 (2)同主族元素原子的第一电离能从上到下逐渐减小。 2.逐级电离能 (1)原子的逐级电离能越来越大 首先失去的电子是能量最高的电子,故第一电离能较小,以后再失去电子都是能级较低的电子,所需要的能量多;同时,失去电子后离子所带正电荷对电子吸引更强,从而电离能越来越大。 (2)金属元素原子的电离能与其化合价的关系 一般来讲,在电离能较低时,原子失去电子形成阳离子的价态为该元素的常见价态。如Na的第一电离能较小,第二电离能突然增大(相当于第一电离能的10倍),故Na的化合价为+1,而Mg在第三电离能、Al在第四电离能发生突变,故Mg、Al的化合价分别为+2、+3。 八、元素电负性的应用 1.元素的金属性和非金属性及其强弱的判断 (1)金属的电负性一般小于 1.8,非金属的电负性一般大于 1.8,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性则在1.8左右,它们既有金属性,又有非金属性。 (2)金属元素的电负性越小,金属元素越活泼;非金属元素的电负性越大,非金属元素越活泼。 (3)同周期自左到右,电负性逐渐增大,同主族自上而下,电负性逐渐减小。 (4)电负性较大的元素集中在元素周期表的右上角。 2.化学键的类型的判断 一般认为:如果两个成键元素原子间的电负性差值大于1.7,它们之间通常形成离子键;如果两个成键元素原子间的电负性差小于1.7,它们之间通常形成共价键。

原子结构与元素的性质说课稿

《原子结构与元素的性质》说课设计 高二年级化学组xx 一、教学分析: (一)分析教材 本节课是在必修2第一章《物质结构元素周期律》,选修3第一章第一节《原子结构》基础上进一步认识原子结构与元素性质的关系。在复习原子结构及元素周期表相关知识的基础上,从原子核外电子排布的特点出发,结合元素周期表进一步探究元素在周期表中的位置与原子结构的关系。按照课程标准要求比较系统而深入地介绍了原子结构与元素性质的关系,为后阶段学习元素周期律和分子结构奠定了基础。尽管本节内容比较抽象,学生学起来有困难,但教科书在内容编排上注重了由易到难层层深入,能够激发和保持学生的学习兴趣。 (二)分析学生 1、知识技能方面:学生已学习了原子结构及元素周期表的相关知识和元素的核外电子排布、元素的主要化合价、元素的金属性与非金属性变化等知识,为学习本节奠定了一定的知识基础。 2、学法方面:在必修2第一章《物质结构元素周期律》的学习过程中已经初步掌握了理论知识的学习方法——逻辑推理法、抽象思维法、总结归纳法,具有一定的学习方法基础。根据以上两个分析,我确定本课教学目标如下 二、教学目标: (一)知识与技能目标 1、了解元素原子核外电子排布的周期性变化规律。 2、进一步认识元素周期表与原子结构的关系。 (二)过程与方法目标通过问题探究和讨论交流,进一步掌握化学理论知识的学习方法──结构决定性质。

(三)情感态度与价值观目标学生在问题探究的过程中,同时把自己融入科学活动和科学思维中,体验科学研究的过程和认知的规律性,在认识上和思想方法上都得到提升。根据以上两个分析,我确定了本节课的教学重点和难点:(四)教学的重点和难点 1、教学重点:元素的原子结构与元素周期表的关系 2、教学难点:元素周期表的分区为了有用地达成教学目标,突出教学重点,突破难点,我准备采用以下教学策略,下面说教学策略的设计 三、教学策略: (一)教学模式 在建构主义学习理论指导下,采用“复习引入——自主探究——合作交流——巩固练习”的教学模式。 (二)教学方法与手段讲授法与讨论法相结合,其中运用多媒体等教学手段。 (三)教学流程图 教学策略是有针对性的,必须把例外的教学策略运用到相应的教学环节中,要想使一堂课优化,只有把有用的教学策略恰当地运用到优化的教学过程中,才能更有用地达成教学目标下面,我重点说教学过程的设计。 四、说教学过程 (一)创设情境,温故导新1.创设情景:展示门捷列夫的第一张元素周期表和例外形式排列的几种元素周期表,激发学生学习的兴趣,扩展学生知识面。 2.温故导新:通过复习元素周期表的结构如何?元素的原子结构与元素在周期表中的位置有什么关系等问题?很自然的导入新课。 (二)活动探究、探索新知为了让学生参与活动探究,使生疏的化学概念变得栩栩如生,易于理解,同时也使学生对化学学习,尤其是微观领域的学习

元素的性质与原子结构教学设计资料

元素的性质与原子结构教学设计 第一章第一节元素周期表 第 2 课时元素的性质与原子结构 教学目标: 1、知识与技能:初步掌握元素的性质与原子结构的关系、初步学会总结元素的性质递变规律的能力。 2 、过程与方法:自主学习、归纳总结同主族元素的性 质;自主探究元素性质与原子结构关系以及同主族性质递变规律。 3、情感态度与价值观:逐步养成勤于思考,勇于探究的科学品质,培养理论联系实际的科学观念和科学态度;树立事物变化是量变引起质变的辨证唯物主义观点。教学重点、难点:元素周期表中同主族元素性质与原子结构的关系、及同主族元素性质的递变规律。 教学方法: 引导——探究——实验。 教学过程:[引入]元素周期中,为什么把Li、Na、K 等元素编在一个族呢?它们的原子结构和性质有什么联系呢?请同学们打开课本第5 页,填写第5 页的表格,探究碱金属的原子结构。[投影] 课本第五页表格 [板书] 1 、碱金属元素(1 )原子结构

[ 师] 你能发现碱金属元素原子结构的共同和不同之处吗? [ 生] 讨论总结 ①原子的最外层电子数相同,一个电子; ②原子的电子层数逐渐增多; ③原子的核电荷数逐渐增多; ④原子半径逐渐增大。 [过渡] 我们已经知道碱金属元素原子结构上有相似和不同,那么它们的性质如何呢?是否也有相似和不同呢?[ 演示] 演示钾与氧气的反应。 [学生] 观察现象,并对比钠与氧气反应的现象。 [总结]①都熔化成银(银白)色小球,但钾先燃烧; ②颜色不同; ③钠、钾都易和氧气反应,钾比钠反应剧烈,钾更易与氧气反应。 [ 演示] 演示钾与水反应的实验 [学生] 对比钠、钾和H2O 反应,现象有哪些相似和不同?得出 怎样的结论? [总结]浮、熔、游、响、红;K 轻微爆炸;钠、钾都易和水反应,钾比钠反应剧烈。 [思考]通过实验我们知道钠和钾都能和O2、H2O 等反应,在反应中Na、K 失电子表示出还原性,但钾更易发生反应。碱金属性质为什么会相似呢?又为什么有不同呢?你认为元素的性质与它们的原子结构有关系吗?

原子结构与元素的性质高考总复习

原子结构与元素的性质 1.原子核外电子排布与周期的划分 周期外围电子排布 各周期增加的能级元素种数ⅠA族0族最外层最多容纳电子数 一1s11s221s2 二2s12s22p682s、2p8 三3s13s23p683s、3p8 四4s14s24p684s、3d、4p18 五5s15s25p685s、4d、5p18 六6s16s26p686s、4f、5d、6p32 七7s187s、5f、6d(未完)…… (2)观察分析上表,讨论原子核外电子排布与周期划分的关系 ①元素周期系形成的原因:元素原子核外电子排布发生周期性的变化。 ②元素周期系的形成过程 ③元素周期系的特点:每一周期(除第一周期外)从碱金属元素开始,到稀有气体元素结束,外围电子排布从n s1递增至n s2n p6;元素周期系的周期不是单调的,而是随周期序号的递增逐渐增多,同时,金属元素的数目也逐渐增多。 2.原子核外电子排布与族的划分 族数ⅠAⅡAⅢAⅣAⅤAⅥAⅦA 价电子排布式n s1n s2n s2n p1n s2n p2n s2n p3n s2n p4n s2n p5 列数121314151617 价电子数1234567 副族元素21Sc22Ti23V24Cr25Mn29Cu30Zn 族数ⅢBⅣBⅤBⅥBⅦBⅠBⅡB 价电子排布式3d14s23d24s23d34s23d54s13d54s23d104s13d104s2 价电子数目34567 (3)依据上述表格,讨论族的划分与原子核外电子排布的关系 ①同主族元素原子的价层电子排布完全相同,价电子全部排布在n s或n s n p轨道上。价电子数与族序数相同。 ②稀有气体的价电子排布为1s2或n s2n p6。 ③过渡元素(副族和Ⅷ族)同一纵行原子的价层电子排布基本相同。价电子排布为(n-1)d1~10n s1~2,ⅢB~ⅦB族的价电子数与族序数相同,第ⅠB、ⅡB族和第Ⅷ族不相同。

元素周期律和元素周期表知识总结

元素周期律和元素周期表知识总结 考试大纲要求 1.理解原子的组成及同位素的概念。掌握原子序数、核电荷数、质子数、中子数、核外电子数,以及质量数与质子数、中子数之间的相互关系。 2.以第1、2、3周期的元素为例,掌握核外电子排布规律。 3.掌握元素周期律的实质及元素周期表(长式)的结构(周期、族)。 4.以第3周期为例,掌握同一周期内元素性质(如:原子半径、化合价、单质及化合物性质)的递变规律与原子结构的关系;以ⅠA族和ⅦA族为例,掌握同一主族内元素性质递变规律与原子结构的关系。 知识规律总结 一、原子结构 1.几个量的关系() 质量数(A)=质子数(Z)+中子数(N) 质子数=核电荷数=原子序数=原子的核外电子数 离子电荷数=质子数-核外电子数 2.同位素 (1)要点:同——质子数相同,异——中子数不同,微粒——原子。 (2)特点:同位素的化学性质几乎完全相同;自然界中稳定同位素的原子个数百分数不变。 注意:同种元素的同位素可组成不同的单质或化合物,如H2O和D2O是两种不同的物质。 3.相对原子质量 (1)原子的相对原子质量:以一个12C原子质量的1/12作为标准,其它原子的质量跟它相比较所得的数值。它是相对质量,单位为1,可忽略不写。 (2)元素的相对原子质量:是按该元素的各种同位素的原子百分比与其相对原子质量的乘积所得的平均值。元素周期表中的相对原子质量就是指元素的相对原子质量。 4.核外电子排布规律 (1)核外电子是由里向外,分层排布的。 (2)各电子层最多容纳的电子数为2n2个;最外层电子数不得超过8个,次外层电子数不得超过18个,倒数第三层电子数不得超过32个。 (3)以上几点互相联系。 核外电子排布规律是书写结构示意图的主要依据。 5.原子和离子结构示意图 注意:①要熟练地书写1~20号元素的原子和离子结构示意图。 ②要正确区分原子结构示意图和离子结构示意图(通过比较核内质子数和核外电子数)。 6.微粒半径大小比较规律 (1)同周期元素(稀有气体除外)的原子半径随原子核电荷数的递增逐渐减小。 (2)同主族元素的原子半径和离子半径随着原子核电荷数的递增逐渐增大。 (3)电子层结构相同的离子,核电荷数越大,则离子半径越小。 (4)同种元素的微粒半径:阳离子<原子<阴离子。 (5)稀有气体元素的原子半径大于同周期元素原子半径。 (6)电子层数多的阴离子半径一定大于电子层数少的阳离子半径,但电子层数多的阳离子半径不一定大于电子层数少的阴离子半径。 二、元素周期律和周期表 1.位、构、性三者关系

第二节原子结构与元素的性质

第二节原子结构与元素的性质

教学步骤、内容 教学方法、手段、 师生活动 [引入]我们明白元素性质是由元素原子结构决定的,那具体阻碍哪些性质呢? [讲]元素的性质指元素的金属性和非金属性、元素的要紧化合价、原子半径、 元素的第一电离能和电负性。 [学与咨询]元素周期表中,同周期的主族元素从左到右,最高化合价和最低 化合价、金属性和非金属性的变化规律是什么? [投影小结]同周期主族元素从左到右,元素最高化合价和最低化合价逐步升 高,金属性逐步减弱,非金属性逐步增强。 [讲]元素的性质随核电荷数递增发生周期性的递变,称为元素周期律。元素 周期律的内涵丰富多样,下面,我们来讨论原子半径、电离能和电负性的周期 性变化。 [板书]二、元素周期律 1、原子半径 [投影]观看图1—20分析: [学与咨询]1.元素周期表中同周期主族元素从左到右,原子半径的变化趋 势如何?应如何明白得这种趋势? 2.元素周期表中,同主族元素从上到下,原子半径的变化趋势如何?应 如何明白得这种趋势? [小结]同周期主族元素从左到右,原子半径逐步减小。其要紧缘故是由于核 电荷数的增加使核对电子的引力增加而带来原子半径减小的趋势大于增加电子 后电子间斥力增大带来原子半径增大的趋势。 同主族元素从上到下,原子半径逐步增大。其要紧缘故是由于电子能层增 加,电子间的斥力使原子的半径增大。 [讲]原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是 核电荷数。明显电子的能层数越大,电子间的负电排斥将使原子半径增大,因

此同主族元素随着原子序数的增加,电子层数逐步增多,原子半径逐步增大。而当电子能层相同时,核电荷数越大,核对电子的吸引力也越大,将使原子半径缩小,因此同周期元素,从左往右,原子半径逐步减小。 [咨询]那么,粒子半径大小的比较有什么规律呢? [投影小结]1、原子半径大小比较:电子层数越多,其原子半径越大。当电子层数相同时,随着核电荷数增加,原子半径逐步减小。最外层电子数目相同的原子,原子半径随核电荷数的增大而增大 2、核外电子排布相同的离子,随核电荷数的增大,半径减小。 3、同种元素的不同粒子半径关系为:阳离子<原子<阴离子,同时价态越高的粒子半径越小。 [过渡]那么,什么叫电离能呢,电离能与元素的金属性间有什么样的关系呢?[板书]2、电离能 〔1〕定义:气态原子或气态离子失去一个电子所需要的最小能量叫做电离能. ①常用符号I表示,单位为KJ?mol-1 ②意义:通常用电离能来表示原子或离子失去电子的难易程度。[讲]原子为基态原子,保证失去电子时消耗能量最低。电离能用来表示原子或分子失去电子的难易程度。电离能越大,表示原子或离子越难失电子;电离能越小,表示原子或离子易失电子, [点击试题]Na元素的I1=496 KJ·mol-1,那么Na (g) -e-→Na +(g) 时所需最低能量为 . [板书]〔2〕元素的第一电离能:处于基态的气态原子失去1个电子,生成+1价气态阳离子所需要的能量称为第一电离能,常用符号I1表示。 [讲]气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能。上述表述中的〝气态〞〝基态〞〝电中性〞〝失去一个电子〞等差不多上保证〝最低能量〞的条件。 [投影] [咨询]读图l—21。碱金属原子的第一电离能随核电荷数递增有什么规律呢? [讲]从图l—2l可见,每个周期的第一个元素(氢和碱金属)第一电离能最小,最后一个元素(稀有气体)的第一电离能最大;同族元素从上到下第一电离能变小(如He、Ne、Ar、Kr、Xe、Rn的第一电离能依次下降,H、Li、Na、K、Rb、

化学元素周期表性质

化学元素周期表性质 1元素周期表中元素及其化合物的递变性规律 1.1原子半径 (1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小; (2)同一族的元素从上到下,随电子层数增多,原子半径增大。 1.2元素化合价 (1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外); (2)同一主族的元素的最高正价、负价均相同 1.3单质的熔点 (1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增 1.4元素的金属性与非金属性 (1)同一周期的元素从左到右金属性递减,非金属性递增; (2)同一主族元素从上到下金属性递增,非金属性递减。 1.5最高价氧化物和水化物的酸碱性 元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。 1.6非金属气态氢化物 元素非金属性越强,气态氢化物越稳定。同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强;同主族非金属元素的非金属性越强,其气态氢化物水溶液的酸性越弱。 1.7单质的氧化性、还原性 一般元素的金属性越强,其单质的还原性越强,其氧化物的氧离子氧化性越弱;元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。 2.推断元素位置的规律 判断元素在周期表中位置应牢记的规律: (1)元素周期数等于核外电子层数; (2)主族元素的序数等于最外层电子数; (3)确定族数应先确定是主族还是副族,其方法是采用原子序数逐步减去各周期的元素种数,即可由最后的差数来确定。最后的差数就是族序数,差为8、9、10时为VIII族,差数大于10时,则再减去10,最后结果为族序数。

高考化学-专题18物质结构与性质

专题18 物质结构与性质 1.锗(Ge)是典型的半导体元素,在电子、材料等领域应用广泛。回答下列问题: (1)基态Ge 原子的核外电子排布式为[Ar]________,有________个未成对电子。 (2)Ge 与C 是同族元素,C 原子之间可以形成双键、叁键,但Ge 原子之间难以形成双键或叁键。从原子结构角度分析,原因是________________________________________。 (3)比较下列锗卤化物的熔点和沸点,分析其变化规律及原因_________________。 (4)光催化还原CO 2制备CH 424Zn 、Ge 、O 电负性由大至小的顺序是________。 (5)Ge 单晶具有金刚石型结构,其中Ge 原子的杂化方式为________,微粒之间存在的作用力是________。 (6)晶胞有两个基本要素: ①原子坐标参数,表示晶胞内部各原子的相对位置。如图为Ge 单晶的晶胞,其中原子坐标参数A 为(0,0,0);B 为(12,0,12);C 为(12,1 2 ,0)。则D 原子的坐标参数为________。 ②晶胞参数,描述晶胞的大小和形状。已知Ge 单晶的晶胞参数a =565.76 pm ,其密度为________g·cm -3 (列出计算式即可)。

对照晶胞图示,坐标系以及A 、B 、C 点坐标,选A 点为参照点,观察D 点在晶胞中位置(体对角线1 4处),由 B 、 C 点坐标可以推知 D 点坐标。②类似金刚石晶胞,1个晶胞含有8个锗原子,ρ= 8×736.02×565.76 3×107 g·cm -3 。 答案:(1)3d 10 4s 2 4p 2 2 (2)Ge 原子半径大,原子间形成的σ单键的键长较长,p-p 轨道肩并肩重叠程度很小或几乎不能重叠,难以形成π键 (3)GeCl 4、GeBr 4、GeI 4的熔、沸点依次增高。原因是分子结构相似,相对分子质量依次增大,分子间相互作用力逐渐增强 (4)O>Ge>Zn (5)sp 3 共价键 (6)①(14,14,14) ②8×736.02×565.76 3×107 2.东晋《华阳国志·南中志》卷四中已有关于白铜的记载,云南镍白铜(铜镍合金)闻名中外,曾主要用于造币,亦可用于制作仿银饰品。回答下列问题: (1)镍元素基态原子的电子排布式为________,3d 能级上的未成对电子数为________。 (2)硫酸镍溶于氨水形成[Ni(NH 3)6]SO 4蓝色溶液。 ①[Ni(NH 3)6]SO 4中阴离子的立体构型是________。 ②在[Ni(NH 3)6]2+ 中Ni 2+与NH 3之间形成的化学键称为________,提供孤电子对的成键原子是________。 ③氨的沸点________(填“高于”或“低于”)膦(PH 3),原因是________;氨是________分子(填“极性”或“非极性”),中心原子的轨道杂化类型为________。 (3)单质铜及镍都是由________键形成的晶体;元素铜与镍的第二电离能分别为:I Cu =1 958 kJ·mol -1 、I Ni =1 753 kJ·mol -1 ,I Cu >I Ni 的原因是___________________。 (4)某镍白铜合金的立方晶胞结构如图所示。

化学元素周期表规律

化学元素周期表规律 (一)元素周期律和元素周期表 1.元素周期律及其应用 (1)发生周期性变化的性质 原子半径、化合价、金属性和非金属性、气态氢化物的稳定性、最高价氧化物对应水化物的酸性或碱性。 (2)元素周期律的实质 元素性质随着原子序数递增呈现出周期性变化,是元素的原子核外电子排布周期性变化的必然结果。也就是说,原子结构上的周期性变化必然引起元素性质上的周期性变化,充分体现了结构决定性质的规律。 2.比较金属性、非金属性强弱的依据 (1)金属性强弱的依据 1/单质跟水或酸置换出氢的难易程度(或反应的剧烈程度)。反应越易,说明其金属性就越强。 2/最高价氧化物对应水化物的碱性强弱。碱性越强,说明其金属性也就越强,反之则弱。 3/金属间的置换反应。依据氧化还原反应的规律,金属甲能从金属乙的盐溶液中置换出乙,说明甲的金属性比乙强。 4/金属阳离子氧化性的强弱。阳离子的氧化性越强,对应金属的金属性就越弱。 (2)非金属性强弱的依据 1/单质跟氢气化合的难易程度、条件及生成氢化物的稳定性。越易与反应,生成的氢化物也就越稳定,氢化物的还原性也就越弱,说明其非金属性也就越强。

2/最高价氧化物对应水化物酸性的强弱。酸性越强,说明其非金属性越强。 3/非金属单质问的置换反应。非金属甲把非金属乙对应的阴离子从其盐溶液中置换出来,说明甲的非金属性比乙强。 如Br2 + 2KI == 2KBr + I2 4/非金属元素的原子对应阴离子的还原性。还原性越强,元素的非金属性就越弱。 3.常见元素化合价的一些规律 (1)金属元素无负价。金属单质只有还原性。 (2)氟、氧一般无正价。 (3)若元素有最高正价和最低负价,元素的最高正价数等于最外层电子数;元素的最低负价与最高正价的关系为:最高正价+|最低负价|=8。 (4)除某些元素外(如N元素),原子序数为奇数的元素,其化合价也常呈奇数价,原子序数为偶数的元素,其化合价也常呈偶数价,即价奇序奇,价偶序偶。 若元素原子的最外层电子数为奇数,则元素的正常化合价为一系列连续的奇数,若有偶数则为非正常化合价,其氧化物是不成盐氧化物,如NO;若原子最外层电子数为偶数,则 正常化合价为一系列连续的偶数。 4.原子结构、元素性质及元素在周期表中位置的关系1/原子半径越大,最外层电子数越少,失电子越易,还原性越强,金属性越强。 2/原子半径越小,最外层电子数越多,得电子越易,氧化性越强,非金属性越强。 3/在周期表中,左下方元素的金属性大于右上方元素;左下方元素的非金属性小于右上方元素。

2017年高考真题-专题18+物质结构与性质(选修)Word版含解析

2017年高考真题-专题18+物质结构与性质(选修)Word版含解析

1.【2017新课标1卷】(15分) 钾和碘的相关化合物在化工、医药、材料等领域有着广泛的应用。回答下列问题: (1)元素K的焰色反应呈紫红色,其中紫色对应的辐射波长为_______nm(填标号)。 A.404.4 B.553.5 C.589.2 D.670.8 E.766.5 (2)基态K原子中,核外电子占据最高能层的符号是_________,占据该能层电子的电子 云轮廓图形状为___________。K和Cr属于 同一周期,且核外最外层电子构型相同,但 金属K的熔点、沸点等都比金属Cr低,原 因是___________________________。 (3)X射线衍射测定等发现,I3AsF6中存在+3I离子。+3I离子的几何构型为_____________,中 心原子的杂化形式为________________。 (4)KIO3晶体是一种性能良好的非线性光学材料,具有钙钛矿型的立方结构,边长为 a=0.446 nm,晶胞中K、I、O分别处于顶 角、体心、面心位置,如图所示。K与O间 的最短距离为______nm,与K紧邻的O个

学式,以及晶胞结构,可知K处于体心,O处于棱心。【名师点睛】本题考查化学选修3《物质结构与性质》的相关知识,以填空或简答方式考查,常涉及如 下高频考点:原子结构与元素的性质(基态微粒的 电子排布式、电离能及电负性的比较)、元素周期 律;分子结构与性质(化学键类型、原子的杂化方 式、分子空间构型的分析与判断);晶体结构与性 质(晶体类型、性质及与粒子间作用的关系、以晶 胞为单位的密度、微粒间距与微粒质量的关系计 算及化学式分析等)。只有掌握这些,才可以更好 的解决物质结构的问题。 2.【2017新课标2卷】(15分) 我国科学家最近成功合成了世界上首个五氮阴离子盐(N5)6(H3O)3(NH4)4Cl(用R代表)。回答下列问题: (1)氮原子价层电子的轨道表达式(电子排布图)为_____________。 (2)元素的基态气态原子得到一个电子形成气态负一价离子时所放出的能量称作第一电 子亲和能(E1)。第二周期部分元素的E1变 化趋势如图(a)所示,其中除氮元素外,

相关文档
相关文档 最新文档